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Abstract. Temporal Knowledge Graph (TKG) reasoning seeks to infer
the future evolution of incomplete facts from observed historical data. Al-
though supervised contrastive learning has recently enhanced query rep-
resentations for TKG reasoning, two critical challenges remain. First, cur-
rent methods uniformly treat all negative samples, overlooking their se-
mantic and temporal correlations. Second, these approaches do not fully
exploit the hierarchical relationships between fine-grained events and
higher-level event categories, thereby missing crucial event taxonomies.
To address these limitations, we propose a Hierarchical Semantic-aware
Contrastive Learning (HSCL) framework. Specifically, our Instance-level
objective introduces a dynamic adaptive weighting mechanism that dif-
ferentiates negative samples based on semantic similarity, while our Categ
ory-level objective incorporates ontology-guided clustering to represent
hierarchical event semantics. This dual-level design encourages cohesive
embeddings within the same event category and clear separation across
different categories. Extensive experiments on four real-world bench-
marks demonstrate that HSCL consistently outperforms state-of-the-art
baselines1.

Keywords: Temporal knowledge graph · Contrastive learning · Graph
Neural Network.

1 Introduction

Temporal Knowledge Graphs (TKGs) extend traditional Knowledge Graphs
(KGs) by incorporating temporal information, associating event facts with times-
tamps or time intervals to indicate their validity periods. Unlike static KGs,

1 The code is available at https://github.com/AONE-NLP/TKGR-HSCL
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Fig. 1. An illustrative example highlighting the importance of capturing the hi-
erarchical semantics related to the query. Event codes have been replaced with
corresponding numbers from the codebook to emphasize the structured catego-
rization. △ denotes fine-grained events, while ⃝ denotes coarse-grained events.

which represent facts as triples (subject, relation, object), TKGs add a tempo-
ral dimension, forming quadruples < s, r, o, t >, where t specifies when the fact
holds, such as < USA, negotiate, Japan, 2019− 6− 29 >.

Reasoning over TKGs involves inferring missing facts based on observed
quadruples within a specified time range [t0, tT ]. It is categorized into inter-
polation [2, 3, 11], which infers missing facts within the historical range (t0 ≤
t ≤ tT ), and extrapolation [28, 32, 7], which predicts facts beyond the observed
range (t > tT ). This study focuses on the extrapolation setting, emphasizing its
forward-looking significance.

Accurately predicting future facts requires a thorough understanding of the
developmental patterns embedded within historical facts. Existing research pri-
marily focuses on aggregating structural information from adjacent entities and
integrating temporal dynamics to construct historical representations of entities
and relations [32, 37, 38]. These representations are then utilized within scoring
functions, such as ConvTransE [52], to estimate the likelihood of future event
facts. Building upon these foundational methods, recent advancements have in-
troduced contrastive learning to enhance TKG reasoning by leveraging the dis-
criminative capability of contrasting diverse types of information, such as local
and global historical contexts [39], or historical and non-historical dependencies
[36]. These techniques aim to refine feature representations by emphasizing the
distinctions between positive and negative samples.

Despite the significant progress of contrastive learning in TKG reasoning,
these methods exhibit inherent limitations. First, they uniformly treat all
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negative samples, failing to capture essential semantic and temporal
correlations among queries [39, 36]. This uniform treatment overlooks criti-
cal distinctions necessary for optimal feature representation and contradicts the
alignment principle of feature representations [42, 44, 43], which aims to position
semantically similar samples closer together. As illustrated in Figure 1, events
within the same coarse-grained category are treated uniformly as negative sam-
ples, ignoring their internal semantic and temporal relationships and potentially
leading to suboptimal representations. Second, existing approaches fail to
account for the hierarchical relations between fine-grained events and
their broader categories, as defined in the widely used CAMEO ontology,
thereby preventing the model from capturing hierarchical semantic structures
[48, 50]. Consider the event “Investigate" in Figure 1, which encompasses the
fine-grained events “091" (“Investigate crime, corruption") and “092" (“Inves-
tigate human rights abuses"). While these fine-grained events exhibit distinct
characteristics, they share the broader semantic context of “Investigate". We
argue that incorporating these hierarchical semantics into contrastive learning
objective would enable capture of latent semantic, resulting in more robust and
generalized representations.

To bridge these gaps, we propose a Hierarchical Semantic-aware Contrastive
Learning (HSCL) framework for TKG reasoning. Specifically, HSCL integrates
short and long term sequence encoders with an entity-aware attention mechanism
to capture query-specific temporal dynamics. Additionally, we design a hierar-
chical contrast module for short and long term queries. The instance-level con-
trastive learning refines representations by directly comparing individual event
embeddings, distinguishing semantically similar and dissimilar events, and en-
abling the model to discern fine-grained differences between queries and their
contexts; meanwhile, the category-level contrastive learning captures hierarchi-
cal relationships between detailed events and broader categories, encouraging
events of the same type to cluster while keeping distinct types separated. This
higher-level grouping enhances the generalization of the representations and sup-
ports the model in inferring broader patterns and relationships. The contribution
of our work are three-fold:

– We propose two optimization objectives to maximize the mutual information
of query-specific information in different granularities.

– We introduce a hierarchical contrastive learning framework in which an
instance-level objective distinguishes subtle differences between events, while
a category-level objective enforces hierarchical grouping into broader cate-
gories, enhancing generalization and robustness.

– Evaluations across four benchmark datasets highlight the effectiveness of the
proposed method compared to the current state-of-the-art baselines in terms
of reasoning accuracy and representation capability.
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2 Related Work

Temporal Knowledge Graph (TKG) reasoning seeks to predict facts at future
timestamps by modeling observed historical facts. This task typically operates
under two settings interpolation and extrapolation with our primary focus on
the extrapolation scenario. Existing approaches mainly concentrate on either
learning temporal patterns [55, 32] or capturing structural information [26, 34]
to enrich entity and relation representations. RE-NET [55] models long-term his-
torical interactions of target entities as sequences, integrating a Recurrent Neural
Network (RNN) and a relational Graph Convolutional Network (GCN) to cap-
ture both temporal and structural dependencies. RE-GCN [32] similarly encodes
temporal and relational dependencies among entities, leveraging graph convo-
lutions to capture complex interactions. L2TKG [40] exploits both intra-time
relations (co-occurring entities at the same timestamp) and inter-time relations
(entities appearing at different timestamps). DaeMon [57] adaptively retrieves
temporal path information between query subjects and object candidates over
time without relying on entity representations. TiPNN [56] constructs a unified
history temporal graph to comprehensively represent past information, using
query-aware temporal paths for historical path modeling. In addition, Tlogic
[58] enhances interpretability through a symbolic framework built on temporal
logical rules extracted via temporal random walks. Despite these achievements,
existing methods often have shortcomings when modeling both long and short
term temporal dependencies, as they frequently overlook explicit dependencies
among distinct entities across different timestamps in long-term histories.

To address above limitation, TiRGN [35] proposes a global history encoder
to identify entities associated with historical or unseen facts, complemented by
a time-guided decoder. HGLS [38] directly connects the same entity at each
timestamp to capture long and short term dependencies. CRAFT [41] lever-
ages candidate-specific historical context via dual-attention-enhanced path en-
coding for long-term relevance, while using frequency-based contextual mod-
eling for short-term repetitive patterns. Similarly, MGESL [60] incorporates a
multi-granularity history module, capturing long-term coarse-grained multi-hop
history alongside short-term fine-grained repetitive patterns. Building on these
strategies, recent work integrates contrastive learning to merge historical and
non-historical dependencies for enhanced temporal reasoning. CENET [36] ap-
plies historical contrastive learning in temporal knowledge graphs to improve
entity prediction and event reasoning. LogCL [39] unifies local and global tem-
poral embeddings through a contrastive loss function, ensuring robust historical
context fusion. Dejavu [21] proposes a unified PLM-based framework that em-
ploys contrastive learning to model historical contextual information, effectively
balancing temporal information and textual knowledge.

Despite these advances, existing contrastive learning methods often treat all
negative samples uniformly, overlooking crucial semantic and temporal corre-
lations that may arise across different queries. Moreover, they fail to leverage
the hierarchical relationships between fine-grained events and their broader cat-
egories, thus limiting their ability to capture nuanced event structures.



Improving Temporal Knowledge Graph Reasoning with HSCL 5

Category-level 

Contrastive Learning

Instance-level Contrastive Learning

Long-context subgraph sequence
t0 tq-1

Short-context subgraph sequence

tq-lt1 t2 tq-2tq-3tq-l+1 tq-l+2

tq-1tq-l tq-2tq-3tq-l+1 tq-l+2

Entity Prediction

Adaptive soft weight

Ontology guided cluster

ν

Hierarchical Contrastive Unit 
Instance-level

Contrastive Learning

Similarity

Category-level Contrastive Learning

Sequential Representation Fusion Unit

Short-term Squence EncoderLong-term Squence Encoder

Fig. 2. Model overview of HSCL. Given a query < s, r, ?, t+∆t >, HSCL em-
ploys long and short term sequence encoders to capture query-specific temporal
dynamics. The instance-level contrastive module refines representations by dis-
tinguishing subtle differences between individual events, while the category-level
module organizes events into broader semantic groups. then the sequential rep-
resentation fusion unit integrates the long and short term representations via a
cross-attention to generate the final probability distribution over entities.

3 Methods

In this section, we detail our proposed framework, as shown in Figure 2 We
begin by formulating the preliminaries of Temporal Knowledge Graph (TKG)
reasoning. A TKG is formally represented as a sequence of snapshots G =
{G1, G2, . . . , Gt−1}, where each snapshot Gti encompasses all quadruples that
occur at timestamp ti. Each fact within a snapshot is denoted as a quadru-
ple (es, r, eo, ti), indicating that the subject entity es interacts with the object
entity eo through relation r at time ti. To ensure comprehensive representa-
tion [54], inverse relation quadruples (es, r

−1, eo, ti) are incorporated into G.
The aim of TKG reasoning is to predict either the missing object (es, r, ?, t) or
subject (?, r, eo, t) at future timestamp by leveraging the historical snapshots
{Gt−l, Gt−l+1, . . . , Gt−1} spanning the preceding l timestamps.

3.1 Sequential Representation Learning

To comprehensively capture the diverse temporal dynamics inherent in TKGs,
we propose modeling both long-term and short-term representations of historical
quadruple sequences. Long-term representations provide the essential context
required to understand the evolution of entity relationships and interactions
over extended periods. In contrast, short-term representations focus on recent
interactions and transient relationships, which may indicate emerging trends or
temporary states within the TKG.
Long-term Sequence Encoder. To model the long-term temporal dynamics,
we adopt the R-GCN [9] as the encoder to capture historical subgraphs infor-
mation. Given a query (eq, rq, ?, tq) and its corresponding temporal knowledge



6 R. Pang et al.

graph Gtq = {G1, G2, . . . , Gtq−1}, we first extract all one-hop historical facts
associated with the query. Subsequently, for each of these target entities, we
expand the sub-graph to include two-hop relational patterns to model historical
long-term temporal information. The aggregated representation obtained from
this expanded structure is then used for downstream processing.

To effectively encode the structural and semantic information embedded in
this sub-graph, we update the entity embeddings at layer l as follows:

elo = σ1

 1

co

∑
(es,r)∈Eo

W1

(
es

l−1 + r
) (1)

Where (es, r) ∈ Eo represents the neighbors connected to the target node via edge
co, and W1 ∈ Rd×d is the trainable parameter matrix at layer l layer for feature
aggregation. σ1 denotes the ReLU activation function, and elo represents weighted
summation of the neighboring entitys and relations by R-GCN at layer l − 1.
And for simplicity, the output of the R-GCN at the final layer L is represented
as eL.

To further exploit the long-term facts relevant to queries, we deploy an at-
tention aggregation mechanism, as follows:

eLT
q = σ2(W2e

L + e′) · eL (2)

Where W2 ∈ Rd×d is learnable weight matrix, while σ2 denotes the RReLU
activation function. eLT

q denotes the final long-term representations with respect
to the query.
Short-term Sequence Encoder. To capture the recent interactions and tran-
sient relationships with respect to the query. At timestamp t and in context c,
the representation message elo ∈ Rd received by an object o at the l-th layer of
graph propagation is defined as:

elo,t = σ2

 1

co

∑
(s,r),∃(s,r,o)∈Et

W3

(
el−1
s,t + r

)
+W4e

l−1
o,t

 (3)

where Et denotes the set of edges for timestamp t; el−1
s,t is the representation

of a neighboring entity es in (l − 1)-th layer at timestamp t. W3,W4 ∈ Rd×d

are learnable parameters for feature aggregation and self-loop connections. For
simplicity, the output of the R-GCN at the final layer L is denoted as eLt .

To update entity representations over time, we employ a Gated Recurrent
Unit (GRU) [4] to model short-term sequence dynamics:

Et+1 = GRU(et, e
L
t ) (4)

Additionally, we apply a time gate unit over the relation embedding at t− 1 to
obtain the updated relation representation:

Rt = Ut · Rw
t + (1−Ut) · Rt−1; (5)
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Ut = σ3(W5R
w
t + b) (6)

Where Ut ∈ Rd×d. σ3 denotes sigmoid function, W5 is learnable weight matrix.
Rw

t denotes the relation representation at time t, calculated by aggregating the
representations of entities interacting with the relation at time t:

Rw
t = Meanpool(Es,r) + r, ∀es ∈ N t

r (7)

where Es,r is the embedding associated with r, Meanpool(·) aggregates the em-
beddings of entities in the set N t

r that interact with relation r at time t.
Subsequently, we refine the entity embeddings using an attention mechanism

to emphasize the importance of query-relevant KG snapshots. For a query at
timestamp tq, the query-specific features representation etq is calculated as:

etq = W6

[
Meanpool(rtq ) ∥ eq

]
(8)

where eq denotes query entity, rtq denotes relations associated with etq ,W6 is
learnable weight matrix, and ∥ represents the concatenation operation.

For entity and relation within a time window Twin = {τ | τ ∈ [tq − (p −
1) . . . tq]}, we apply an attention mechanism to weight the importance of query-
relevant features:

eST
q,tq = etq +

∑
τ∈Twin\{tq}

δeτδ = σ3

(
W7

(
eLτ + etq

))
, τ ∈ Twin\ {tq} (9)

Where eST
q,tq is the final representation of the short-term sequence, δ denotes

attention scores for historical snapshots within Twin, then σ3 is the Softmax
function, and W7 is learnable weight matrix. eτ is representation of the entity
associated with the query at historical timestamp τ .

3.2 Hierarchical Contrastive Learning

To improve the discriminative power and generalization of the embeddings, we
propose a hierarchical contrastive learning unit comprising two complementary
objectives: instance-level and category-level contrastive learning. These objec-
tives address the challenges of capturing semantic correlations and hierarchical
relationships, respectively.
Instance-level Contrastive Learning. To overcome the uniform treatment of
negative samples, we incorporate a dynamic adaptive weighting mechanism into
the instance-level contrastive learning objective. This mechanism differentiates
negative samples based on semantic relations, thereby improving the model’s
ability to learn informative gradients. The short-term contextual embeddings eSi
and the long-term contextual embeddings eLj are first projected into the same
latent space using a shared projection model:

zSi = Norm(Proj(eST
q,tq )); zLj = Norm(Proj(eLT

q )) (10)
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where Proj(·) is multi-layer perceptron (MLP), and Norm(·) denotes L2 nor-
malization. The adaptive soft weight V learned by 2-layer MLP accoding to the
samples under the long and short term squences, formulated as:

V = σ3(W8(σ4(W9 · [zSi ∥ zLj ] + b1)) + b2) (11)

where W8,W9 are earnable parameter matrices, while b1,b2 are bias vectors, σ4 is
the Tanh activation function. The instance-level contrastive loss is then defined
as:

LINS = − 1

|B|
∑
i∈B

log
exp

(
zSi · zLi /τ

)∑
j∈B

V · exp
(
zSi · zLj /τ

) (12)

Where τ is a temperature parameter, B denotes batch size.
Category-level Contrastive Learning. To capture hierarchical relationships
and semantic context, we propose a Category-level contrastive learning task
that models the relationships between fine-grained events and their broader cat-
egories. Specifically, We employ ontology-guided K-means clustering to group
event based on their event types. The centroid Cc for each event type c is com-
puted as:

Cc =
1

|Sc|
∑
i∈Sc

zi, (13)

where Sc denotes the set of events associated with type c, and zi represents the
embedding of event i. Each event embedding zi treats its category centroid Cci

as the positive sample, and the centroids of other categories Cc(c ̸=ci) as negative
samples. The cosine similarity between event embedding and category centroid
is computed as:

sim (zi,Cc) =
zi ·Cc

∥zi∥ ∥Cc∥
(14)

we dynamically select the hardest negative sample as the centroid with the high-
est similarity among negative categories. The category-level contrastive loss is
then defined as:

LCAT =
1

N

N∑
i−1

max (0, ∆i)∆i = γ−sim (zi,Cci) + max
c ̸=ci

sim (zi,Cc) (15)

where γ is a hyper-parameter to control the hardness of probability assign-
ment. This loss ensures that embeddings of events within the same type are
closer together, while those of different categories are further apart, capturing
hierarchical semantic structures.

3.3 Sequential Representation Fusion Unit

To capture latent signals from sequential representations, we introduce a weight-
shared attention layer to optimally fuse diverse embeddings. For a clear explana-
tion we denote the linearly-transformed long-term and short-term embeddings
from eLT

q and eST
q,tq as EL and ES , respectively. We then evaluate the relevance
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between each event embedding in one set and the other using a cross-attention
mechanism:

ESL
c = MHA( ES︸︷︷︸

Q

, EL︸︷︷︸
K

, EL︸︷︷︸
V

); ELS
c = MHA( EL︸︷︷︸

Q

, ES︸︷︷︸
K

, ES︸︷︷︸
V

) (16)

where MHA(Q,K, V ) denotes multi-head attention operator, Q, K and V are
derived from the respective embedding sets.

These two features ESL
c and ELS

c are subsequently combined using a fusion
layer to obtain the final representation:

Ef = W9 ⊙ ELS
c +W10 ⊙ ESL

c (17)

W9,W10 are learnable weight matrices, Ef deliver a holistic representation
for reasoning.

3.4 Inference and Training

We utilize ConvTransE [10] to derive the representation of the query, we calculate
the prediction scores for all candidate entities given the query at time tq as
follows:

ϕ (eq, rq, e, q) = σ3

(
E
eq
tq ConvTransE

(
Ê
eq
tq , rtq

))
(18)

Ê
eq
tq = λêLT

q + (1− λ)êST
q,tq + Êf (19)

where λ is a variable factor that is set at [0,1].
TKG reasoning task can be regarded as a multi-classification task. Following

the past works [32], we employs Cross-Entropy as the loss function:

Ltkg =

T∑
t=0

∑
(cs,r,c,t)∈Ft

∑
e∈E

yet log ϕ (es, r, e, t) (20)

where ϕ (es, r, e, t) is the entity prediction probabilistic scores ye
t ∈ R|E| is the

label [0, 1]. The final loss is then computed as:

L = Ltkg + λ1LCAT + λ2LINS (21)

where λ1 and λ2 are the parameters that control the contrastive loss terms.

4 Experiments

4.1 Experimental Settings

Datasets We leverage four real-world event-based benchmark datasets to evalu-
ate our proposed methods. The datasets include four from the Integrated Crisis
Early Warning System (ICEWS) [3]: ICEWS14, ICEWS18, ICEWS05-15 and
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Table 1. Dataset Statistics, with "Unseen Events" showing the proportion of
test queries involving unseen events.

Dataset ICEWS14 ICEWS18 ICEWS05-15 GDELT

Training Facts 74,845 373,018 368,868 1,734,399
Validation Facts 8,514 45,995 46,302 238,765
Test Facts 7,371 49,545 46,159 305,241
Entities 6,869 10,094 23,033 7,691
Relations 230 256 251 240
Time Interval 1 day 1 day 1 day 15 mins
Timestamps 365 365 4017 2975
Unseen Events 58.43% 55.69% 39.82% 43.72%

one from the Global Database of Events, Language, and Tone (GDELT) [27].
Following previous works [35, 37], all datasets are split into training, validation,
and test sets in proportions of 80%, 10%, 10%. Detailed statistics for all datasets
are presented in Table 1.
Evaluation Metrics We evaluate our approach on the task of entity predic-
tion, where the objective is to predict the missing object entity given an entity-
relation pair. The evaluation metrics include Mean Reciprocal Ranking (MRR),
and Hits@1/3/10. Following standard practices in recent works [34, 38, 7], we
report results under the time-aware filtered setting, which excludes quadruples
occurring at the query time.
Baselines To provide a comprehensive comparison and intuitive proof, we com-
pare it against with interpolation methods including TTransE [2], TA-DisMult
[3] and DE-SimIE [11], as well as extrapolation methods RE-NET [28], CyGNet
[29], TITer [31], RE-GCN [32], CEN [33], TiRGN [35], HisMatch [34], RETIA
[37], CENET [36], HGLS [38], L2TKG [40], CRAFT [41], THCN[6], LogCL [39].
We provide detailed model descriptions in Appendix A.
Implementation Details All experiments are conducted on NVIDIA A100
GPUs. We utilize Adam as the optimizer with a learning rate of 0.001. The
embedding size d is set to 200. R-GCN layers on encoders is set to 2 and the
dropout rate for each layer is set to 0.2. The optimal local historical KG snapshots
sequences lengths of all datasets are set to 7. The number of heads of the multi-
attention mechanism is set to 8, dropout is set to 0.3. The optimal temperature
coefficient of all datasets are set to 0.05, 0.05, 0.03, 0.05.

4.2 Main Results

The experimental results for TKG reasoning are presented in Table 2, evaluated
using time-aware filtered MRR and Hit@{1/3/10}. These results highlight the
effectiveness of our proposed model, demonstrating robust performance and con-
firming the effectiveness of HSCL in addressing TKG reasoning tasks. Our model
consistently outperforms all baseline methods, achieving state-of-the-art (SOTA)
performance across the four TKG benchmark datasets. Notably, extrapolation
models outperform interpolation models on all datasets. This is attributed to
HSCL’s ability to incorporate the temporal features of events, enabling it to
predict future missing facts. When compared to models under the extrapolation
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Table 2. The prediction performance of MRR and Hit@{1/3/10} are on all
datasets with time-aware metrics. The best results are highlighted in bold, while
the second-best results are underlined. All results are retrieved from [7, 39]. To
highlight the effectiveness of our proposed HSCL method, we report its relative
performance improvement in the final row of the table.

Models ICEWS14 ICEWS18 ICEWS05-15 GDELT

MRR Hit@1 Hit@3 Hit@10 MRR Hits@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TTransE 13.72 2.98 17.70 35.74 8.31 1.92 8.56 21.89 15.57 4.80 19.24 38.29 5.50 0.48 4.94 15.25
TA-DisMult 25.80 16.94 29.74 42.99 16.75 8.61 18.41 33.59 24.31 14.58 27.92 44.21 12.00 5.76 12.94 23.54
DE-SimIE 33.36 24.85 37.15 49.82 19.30 11.53 21.86 34.80 35.02 25.91 38.99 52.75 19.70 12.22 21.39 33.70

RE-NET 36.93 26.83 39.51 54.78 28.81 19.05 32.44 47.51 43.32 33.43 47.77 63.06 19.62 12.42 21.00 34.01
CyGNet 35.05 25.73 39.01 53.55 24.93 15.90 28.82 42.61 36.81 26.61 41.63 56.22 18.48 11.52 19.57 31.98
RE-GCN 40.39 30.66 44.96 59.21 30.58 21.01 34.34 48.75 48.03 37.33 53.85 68.27 19.64 12.42 20.99 34.81

CEN 42.20 32.08 46.07 61.31 31.50 21.70 35.44 50.59 46.84 36.38 52.45 67.40 20.39 12.69 21.77 37.67
TiRGN 44.04 33.48 48.95 63.84 33.19 23.91 37.90 54.22 50.71 41.62 56.10 70.71 21.67 13.53 23.37 37.60

HisMatch 46.42 35.91 51.63 66.84 33.99 23.91 37.90 53.94 52.85 42.01 59.05 73.28 22.01 14.45 23.80 36.61
CENET 39.02 29.62 43.23 57.49 27.85 18.15 31.63 46.93 47.13 37.25 47.13 67.61 20.23 12.69 21.70 34.92
L2TKG 45.89 34.63 - 68.47 31.63 21.17 - 53.01 52.42 40.09 - 75.86 20.16 12.49 - 35.83
HGLS 47.00 35.06 - 70.41 29.32 19.21 - 49.83 46.21 35.32 - 67.12 19.04 11.79 - 33.23
RETIA 42.76 33.28 47.77 62.75 34.23 22.83 36.48 52.94 47.26 36.64 52.90 67.76 21.16 14.25 21.70 34.94
CRAFT 45.71 35.05 51.83 65.21 34.21 23.96 38.53 54.11 50.14 39.56 56.18 70.09 23.78 15.38 26.23 40.15
THCN 45.39 36.58 50.84 66.07 35.63 24.90 39.26 56.76 51.94 40.32 57.79 72.18 23.46 15.18 25.21 39.03
LogCL 48.87 37.76 54.71 70.26 35.67 24.53 40.32 57.74 57.04 46.07 63.72 77.87 23.75 14.64 25.60 42.33

HSCL 50.03 39.24 55.65 71.29 36.52 25.37 41.61 58.22 58.98 48.33 65.93 79.62 25.08 15.51 27.31 44.40
Improv. 2.37% 3.92% 1.72% 1.47% 2.46% 1.89% 3.20% 0.82% 3.40% 4.91% 3.47% 2.25% 5.47% 0.84% 4.12% 4.89%

setting, our method consistently achieves superior results in both MRR and Hit
scores, with improvements ranging from 0.82% to 5.47%. These results confirm
that our hierarchical contrastive learning strategy effectively leverages both tem-
poral and structural information, enabling the model to learn customized, query-
specific representations that enhance overall reasoning accuracy. Furthermore, it
is noteworthy that HSCL exhibits relatively better performance on ICEWS05-
15 and GDELT compared to ICEWS14 and ICEWS18. This phenomenon may
be due to more complex dynamic interactions among entities and relations in
the ICEWS18 and GDELT datasets, underscoring HSCL’s capability to model
intricate temporal fact interactions.

Table 3. Ablation study of HSCL on ICEWS14 and ICEWS18.
Models ICEWS14 ICEWS18

MRR Hit@1 MRR Hit@1

HSCL-w/o-CL 46.58 34.28 35.20 24.06
HSCL-w/o-LINS 47.08 35.66 35.25 24.20
HSCL-w/o-LCAT 47.42 35.96 35.38 24.36
HSCL-w/o-fusion 48.61 37.41 35.97 25.01

HSCL 50.03 39.24 36.52 25.37

4.3 Ablation Studies

To verify the effectiveness of each module in HSCL, ablation studies are carried
out with ICEWS14 and ICEWS18, as shown in Table 3. Compared with HSCL-
w/o-CL, which achieved an MRR of 46.58 and Hit@1 of 34.28 on ICEWS14,
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(a) Hit@1 across training data scales. (b) MRR across training data scales.

Fig. 3. Performance of HSCL in terms of MRR and Hit@1 on ICEWS14 under
different training data scale settings.

the full HSCL model improved these metrics to 50.03 and 36.52, respectively,
demonstrating the positive impact of contrastive learning. Specifically, removing
either the instance-level (HSCL-w/o-LINS) or category-level (HSCL-w/o-LCAT)
loss led to decreases in performance of MRR dropped to 47.08 and 47.42 on
ICEWS14, respectively, illustrating the complementary roles of both contrastive
components, which certificates that incorporating hierarchical semantics into
contrastive learning objective would enable capture of latent semantic, resulting
in more robust and generalized representations. Furthermore, HSCL-w/o-fusion,
which recorded 48.61 on MRR and 37.41 on Hit@1 on ICEWS14, was outper-
formed by the full model. The fusion unit, integrating long and short term se-
quence representations via cross-attention, contributed an absolute improvement
of over 2.4% in MRR and nearly 3% in Hit@1 on ICEWS14. These improvements
underscore how contrastive learning enhances feature differentiation and sam-
ple separation at dual semantic levels while the fusion unit facilitates positive
knowledge interactions, ultimately leading to more robust reasoning.

4.4 Performance under Low-resource Setting

In this section, we analyze the impact of different scales of training data setting.
We randomly generate different proportions r% (5%, 10%, 20%, 30%, 50%, 90%)
of training data to study the influence of the size of the training set and use
the original vaild and test set for evaluation. As shown in Figure 3, we compare
the performance of HisMatch, CEN and RE-GCN in various size of training set.
Generally, predictions under low-resource conditions yield poorer results due
to the greater difficulty in optimizing representations from limited data. How-
ever, HSCL consistently outperforms all baselines across various r% settings in
terms of MRR and Hit@1. This performance can be attributed to the hierarchi-
cal contrastive learning module, which is particularly effective in low-resource
scenarios. The hierarchical contrastive learning module operates by leveraging
both instance-level and category-level distinctions to refine representations. Un-
der data scarcity, the instance-level contrastive objective encourages the model
to discern subtle differences between facts using dynamic adaptive weighting,
which magnifies important relational and temporal cues even when direct exam-
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Table 4. Performance on predicting unseen events in terms of MRR and Hit@1
on both ICEWS14 and ICEWS18 datasets.

Models ICEWS14 ICEWS18
MRR Hit@1 MRR Hit@1

RE-GCN 23.26 13.91 15.08 7.09
CEN 22.06 13.28 15.41 8.20
RETIA 24.17 14.67 16.62 9.08
HisMatch 27.49 19.04 17.51 11.13
LogCL 29.19 18.72 18.40 11.74

HSCL 30.73 20.00 19.43 12.17
Improv. 5.28% 5.04% 5.60% 3.66%

ples are few. Simultaneously, the category-level contrastive component groups
events into broader semantic categories, allowing the model to draw on shared
structural and temporal patterns across similar events.

4.5 Performance under Inductive Setting

To further validate HSCL’s capacity for learning discriminative and generalized
query-specific representations, we evaluate its performance on ICEWS14 and
ICEWS18 datasets featuring unseen events absent from historical TKGs. Cho-
sen for their higher rate of unseen events, as shown in Table 1, these datasets pose
a rigorous test for generalization. Experimental results in Table 4 demonstrate
that HSCL outperforms all SOTA baselines, with relative improvements of 5.28%
and 5.60% on MRR and 5.04% and 3.66% on Hit@1 for ICEWS14 and ICEWS18,
respectively. This underscores HSCL’s ability to integrate both structural depen-
dencies and temporal dynamics of entities and relations. Its superior performance
on unseen events suggests that HSCL’s hierarchical contrastive learning effec-
tively captures underlying patterns, enabling robust reasoning even when en-
countering unfamiliar events. By synthesizing structural information with evolv-
ing temporal patterns, HSCL constructs nuanced, query-specific representations
that differentiate subtle semantic variations and relational changes critical for
reasoning in unseen events.

4.6 Sensitivity Analysis

We run our model with two sets of different important hyper-parameters to
explore weight impacts. The temperature coefficient τ is crucial in contrastive
learning, affecting how aggressively the model differentiates between positive
and negative pairs. A smaller τ encourages more assertive separation of negative
pairs, which can accelerate learning but may also lead to instability or overfitting.
To assess the training stability of HSCL, we conducted a sensitivity analysis of τ
across a range from 0.01 and 0.09 on both ICEWS14 and ICEWS18 datasets. As
shown in Figure 4a and Figure 4b, our findings reveal that the model’s effective-
ness remains consistent across various settings, without any significant decline
in performance metrics in terms of MRR and Hit@{1/3/10}. Furthermore, we
analyze the impact of the loss balancing terms λ1 and λ2 within our multi-task
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learning paradigm. To systematically investigate these terms, we conducted ex-
periments varying λ1 and λ2 from 0.1 to 0.9 in increments of 0.1 as depicted
in Figure 4c and Figure 4d. Our findings confirm that appropriate balancing of
task contributions is crucial for maximizing model effectiveness, with optimal
performance observed when λ1 and λ2 are set to 0.3 and 0.4, respectively.

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5
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(a) Various τ on ICEWS14.
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(b) Various τ on ICEWS18.
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(c) Various λ1 on ICEWS14.
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(d) Various λ2 on ICEWS14.

Fig. 4. Performance of HSCL under different hyper-parameters

5 Conclusion

In this study, we propose a novel Hierarchical Semantic-aware Contrastive Learn-
ing (HSCL) framework for TKG reasoning. HSCL leverages two complemen-
tary contrastive objectives that operate at different semantic levels to effectively
address the challenges of fine-grained differentiation and broader hierarchical
structuring. Specifically, the instance-level contrastive objective refines represen-
tations by distinguishing subtle differences between individual events, ensuring
that semantically similar events remain adequately differentiated. Meanwhile,
the category-level contrastive objective clusters events into broader semantic
groups, capturing hierarchical relationships among events and improving gen-
eralization. Our empirical evaluations across four benchmarks confirm HSCL’s
superior representation capability and inference accuracy under various experi-
mental setups.
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