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Abstract. Target-oriented multi-modal sentiment classification (TMSC) aims to
identify sentiment polarity towards specific targets by considering multiple modal-
ities, e.g., text and images. However, current methods often ignore spurious cor-
relations within the data, which can cause models to learn irrelevant features
that misrepresent the sentiment of targets. To address this issue, we propose a
novel Cross-Modal Causal Scheduling framework (CMCS) that prioritizes learn-
ing multi-modal features with fewer spurious correlations. Specifically, we first
design a Multi-modal Feature Selection model (MFS) that utilizes causal inter-
vention to select relevant features. Second, we construct a Causal cross-Modal
Scheduler (CMS) to assess the causal effects of selected features, which further
optimize the multi-modal learning process based on these effects. Finally, we
formulate the CMS and the multi-modal learning process as a bi-level optimiza-
tion problem. In the lower optimization, the MFS is updated with the scheduled
gradient, while in the upper optimization, the CMS is updated with the implicit
gradient. Extensive experiments demonstrate that our method outperforms exist-
ing baseline methods on TMSC and can effectively schedule the learning process
of multi-modal features based on causal effects.

Keywords: Multi-modal Sentiment Analysis · Target-oriented multi-modal sen-
timent classification · Causal Inference .

1 Introduction

Target-oriented multi-modal sentiment classification (TMSC) [27, 19, 47] is a challeng-
ing fine-grained sentiment analysis task that determines the sentiment polarity of opin-
ion targets by considering various modalities, such as text and images. Taking Fig. 1
(a) as an example, in the sentence “Pat celebrating her 90th birthday with Emily Roux
in Chez Roux at the Newmarket Guineas Festival”, three distinct targets can be iden-
tified: “Pat”, “Emily Roux”, and “Newmarket Guineas Festival”. The corresponding
sentiment polarities for these targets are “positive”, “positive”, and “neutral”, respec-
tively. TMSC has gained notable attention in multi-modal sentiment analysis due to
the challenges of simultaneously handling different modalities [24, 11, 53]. Most ex-
isting works on TMSC primarily focus on effectively fusing multi-modal information,
⋆ The first two authors contributed equally to this work.
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Fig. 1: The example and spurious correlations in the TMSC task. In (b), the left side
depicts intra-modal spurious correlations, where the sentiment of the blue target may be
influenced by the word “win”. The right side shows inter-modal spurious correlations,
where the irrelevant visual features may interfere with the sentiment of the red target.

including methods like feature concatenation [25, 41], cross-modal alignment of image
regions with text sequences [47, 11, 55], and using Energy-Based Models [30, 15] to
enhance TMSC performance.

Despite progress in the TMSC field, most existing works overlook the spurious
correlations within the multi-modal data, easily learning features irrelevant to the sen-
timent polarities of targets and degrading TMSC performance [37]. On the one hand,
for a text sentence, a correlation bias (i.e., intra-modal spurious correlation) often exists
between targets and co-occurring contextual words, which may lead the model to fo-
cus on words irrelevant to the sentiment of the targets, harming sentiment classification
performance [54]. As shown in Fig. 1 (b), the word “win” is typically associated with
positive sentiment, which may interfere with the negative sentiment polarity of targets
(i.e., blue-marked words). On the other hand, given text-image pairs, images often con-
tain information irrelevant to the text, leading models to erroneously associate irrelevant
visual features with sentiment labels during training (i.e., inter-modal spurious correla-
tions) [52]. As shown in Fig. 1 (b), the text “Benicia High baseball clinches a playoff
berth with 10-0 win over Fairfield” lacks meaningful correlation with its correspond-
ing image, which can cause the model to learn irrelevant visual features mistakenly.

Fig. 2: The SCMs of TMSC. T , I , C, UT ,
UI , Y denote text, image, confounders, tex-
tual/visual features, and predictions. Solid
and dotted arrows indicate causal rela-
tionships and spurious correlations. Do −
operator is an intervention operation.

To identify the causes of spurious
correlations and suggest solutions, we
construct a Structural Causal Model
(SCM) (Fig. 2), where T , I , C and Y
represent the text sentence, image, con-
founding factors and the sentiment pre-
dictions of targets, respectively. Here,
T → Y and I → Y denote the desired
causal effect, enabling the model to pre-
dict label Y directly from image T and
I . However, not all features in T and I
are relevant to Y . The confounding fac-
tors C, stemming from data bias, can in-
terfere between T and Y , as well as be-
tween I and Y , creating spurious corre-
lations with irrelevant features [13]. To
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address this, we aim to mitigate spurious correlations via causal intervention (i.e.,
Do − operator), extracting relevant textual features UT and relevant visual features
UI to learn beneficial causal effects (i.e., T → UT → Y and I → UI → Y ). Notely,
different modal features can introduce varying degrees of spurious interference on sen-
timent labels, with samples exhibiting strong spurious correlations presenting greater
challenges for model learning and hindering the convergence of multi-modal feature
learning. This motivates us to explore a method that adaptively optimizes the learning
process of multi-modal features based on causal effects, ultimately enhancing TMSC
performance.

To achieve the above goal, we propose a novel Cross-Modal Causal Scheduling
framework (CMCS), which prioritizes the learning of multi-modal features based on
their susceptibility to spurious correlations. Our framework consists of three main com-
ponents. First, we introduce the Multi-modal Feature Selection model (MFS), which
leverages causal interventions to identify key features across modalities. Second, we
design the Causal cross-Modal Scheduler (CMS), which employs counterfactual rea-
soning to assess the causal effects of selected features and schedule them for learning
accordingly. Lastly, we implement a bi-level optimization strategy that determines the
optimal cross-modal scheduling. The lower-level optimization updates the MFS using
the scheduled gradient, while the upper-level optimization updates the CMS by implicit
gradient updates. The key contributions are summarized as follows:

– We propose a novel Cross-Modal Causal Scheduling framework (CMCS) that op-
timizes multi-modal feature learning from a causal perspective, enhancing the per-
formance of TMSC.

– We design a multi-modal feature selection model, which selects relevant multi-
modal features with targets by simple yet effective causal intervention, alleviating
spurious correlations.

– We construct a causal cross-modal scheduler that manages multi-modal learning
processes by assessing the causal effects of features, incorporating a bi-level opti-
mization to determine the optimal scheduling adaptively.

– Extensive experiments on two benchmark datasets show the superiority of our pro-
posed framework over several baselines in terms of TMSC.

2 Related Work

2.1 Target-oriented Sentiment Classification

Sentiment analysis, also known as opinion mining, is a key research area in natural
language processing and data mining [20, 45]. It focuses on systematically identifying
affective states in textual data, enabling computational evaluation of emotions, opinions,
and attitudes in written or spoken language [9].

Over the past decade, Target-Oriented Sentiment Classification (TSC), also known
as Aspect-Based Sentiment Analysis (ABSA) [21], has become a key subfield of senti-
ment analysis, primarily focusing on identifying the sentiment polarity of target words



4 P. Zhao et al.

in textual data [4, 26]. Early studies in target-oriented sentiment classification primarily
focused on modeling the structural relationships between target words and their contex-
tual environments. For instance, introducing multi-grained attention architectures [6] to
explicitly capture fine-grained linguistic dependencies between target words and their
surrounding context. Others leverage graph convolutional networks, utilizing syntactic
dependency trees and semantic role labeling frameworks to represent the bidirectional
interdependencies between target words and their contextual descriptors [17, 16, 28].

More recently, causal inference has been incorporated into target-oriented sentiment
classification to address issues related to data biases and spurious correlations between
target words and their context. For example, some studies have introduced Structural
Causal Models (SCMs) to disentangle confounding factors [54], while others have em-
ployed prompt-enhanced Large Language Models (LLMs) to generate counterfactually
augmented training samples, effectively mitigating dataset biases [38].

2.2 Target-oriented Multi-modal Sentiment Classification

In recent years, with advancements in multimedia technology, social media data has
exhibited a multi-modal trend, leading to widespread research interest in multi-modal
sentiment analysis [51, 1, 11]. This has led to growing interest in target-oriented multi-
modal sentiment classification (TMSC), which seeks to utilize both visual and textual
content for more accurate sentiment predictions.

Most works in TMSC focus on fusing multi-modal information to improve senti-
ment analysis accuracy. For example, [2] bridges the gap between text and images using
image attributes, while ESAFN [48] applies LSTM for entity-level sentiment analysis.
[49] leverages BERT [5] for aspect-sensitive representations, offering deeper insights
into sentiment in specific contexts. Additionally, [12] translates images into text to im-
prove sentiment prediction, and [39] introduces multi-modal retrieval to refine text-
image integration. [44] translates facial expressions into emotional semantics, connect-
ing visual cues to emotional understanding. [18] advances vision-language pre-training
for richer modality representations. [55] introduces an aspect-aware attention module
that enhances the model’s ability to focus on relevant features tied to specific sentiment
aspects. [50] captures image-target relationships. [30] integrates Energy-Based Models
[15] into TMSC, refining the fusion process and boosting sentiment classification by
modeling energy-based relationships between modalities.

Differences. Existing works primarily focus on fusion and alignment across modal-
ities, often overlooking spurious correlations within multi-modal data. In contrast, we
propose a novel cross-modal causal scheduling framework that extracts multi-modal
features and assigns weights based on causal effects, reducing spurious correlations.

2.3 Causal Inference

Causal inference has gained attention for improving predictions by focusing on causal
relationships rather than mere statistical correlations. For instance, structural causal
models and do-calculus formalize causal relationships and guide interventions [29].
Neural networks can estimate causal effects between input variables and output tar-
gets [34, 10]. [8] mitigate the spurious association problem in the sarcasm detection
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Fig. 3: An overview of CMCS training. First, the MFS selects relevant features with
targets via causal interventions. These selected features are further input into classifiers
for sentiment prediction. Second, the CMS assesses the causal effects of features us-
ing counterfactual reasoning, dynamically assigning learning weights based on causal
effects. Last, the bi-level optimization is to solve optimal scheduling weights for en-
hanced multi-modal feature learning.

task through causal interventions. [46] alleviate the problem of spurious correlations of
visual modalities through causal interventions. Although few works apply causal infer-
ence to sentiment analysis, such as [54] for text-aspect-based sentiment and [36, 35, 43]
for traditional multi-modal sentiment, research on causal inference in TMSC is limited.
Our method not only measures the causal effects of different modal features but also
adaptively schedules them based on these effects, a consideration missing in existing
approaches.

3 Methodology

3.1 Overview.

Task Definition. Given a set of multi-modal samples X , each sample X ∈ X contains
a text sentence Xt with n words and its corresponding image Xv , as well as the l
opinion targets T = (T1, T2, ..., Tl) referring to a span in the sentence Xt. TMSC aims
to predict the sentiment label y of each opinion target mentioned in the text-image pair
X = (Xt, Xv), where y can be either positive, negative, or neutral.

Our framework. Fig. 3 illustrates our proposed CMCS training framework. Specif-
ically, to reduce the interference from spurious features, we first introduce the Multi-
modal Feature Selection model (MFS), employing causal intervention to select relevant
multi-modal features with targets. These selected features are then fed into the classi-
fiers to generate predictions. Considering that different modal features exhibit varying
levels of spurious interference with sentiment labels, we also develop a Causal cross-
Modal Scheduler (CMS) that uses counterfactual reasoning to assess the causal effects
of selected features and assigns learning weights accordingly. Finally, bi-level optimiza-
tion is implemented to adaptively find the optimal weights for scheduling multi-modal
learning.
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3.2 Multi-modal Feature Selection

Spurious correlations may mislead the model into learning irrelevant textual and visual
features to sentiment labels, further degrading TMSC effectiveness. To address these
issues, we propose the Multi-modal Feature Selection model (MFS) that utilizes simple
yet effective causal intervention to identify relevant features with targets’ labels.

Textual Feature Selection. Given the sentence Xt, we use the BERT [5] to obtain
its textual embedding from the [CLS] token Et ∈ Rm×d by Et = Φt(Xt), where Φt is
the BERT encoder and m× d is the dimensions of the textual embedding. To mitigate
intra-modal spurious correlations in the text data, we design a causal intervention net-
work with learnable masks M t ∈ Rm×d. The values of M t range between (0, 1) and
are used to filter textual features by training the corresponding parameters. ⊙ means
element-wise multiplication and M t assigns weights to each feature to implement the
do-operator.. Through the causal intervention network, we can derive the counterfactual
textual features E

t
as follows:

M t = Sigmoid(MLP(Et)), (1)

E
t
= MLP(M t ⊙ Et + MLP

(
M t ⊙ Et

)
), (2)

where MLP is the multi-layer perception.
The E

t
are designed to predict the correct sentiment label accurately. Thus, we use

the Cross-Entropy loss function Lce to guide the model to learn label-relevant textual
features as follows,

Lt = Lce

(
yt, yt

)
, (3)

where yt = ft(E
t
) is the prediction of the counterfactual textual features, ft represents

the textual classifier, and yt denotes the textual ground truth.
Visual Feature Selection. The image information may interfere with predicting the

target sentiment due to inter-modal spurious correlations. To address this issue, we also
design a causal intervention network to capture relevant visual features with targets’ la-
bels. Given the image Xv ∈ Rc×h×w with the dimensions of c×h×w, we use the CLIP
[31] image encoder Φv to obtain the image embedding Ev = Φv(Xv) ∈ Rm×d. The
causal intervention network for selecting relevant visual features by training learnable
masks Mv ∈ Rm×d, which has the same structure as the textual causal intervention
network. The counterfactual visual features E

v
can be obtained using Eq. (5),

Mv = Sigmoid(MLP(Ev)), (4)

E
v
= MLP(Mv ⊙ Ev + MLP (Mv ⊙ Ev)). (5)

To better align images with their corresponding sentiment labels of targets, we for-
mulate the task as a multi-class classification problem. In practice, the sentiment labels
can be marked by a triple (negative, neutral, positive). For instance, if the text as-
sociated with an image contains both “neutral” and “positive” sentiments, its label is
defined as (0, 1, 1). We use Binary Cross-Entropy Loss Lbce to constrain predictions of
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counterfactual visual features. Therefore, the training loss of visual features is formu-
lated by Eq. (6),

Lv = Lbce (y
v, yv) , (6)

where yv = fv(E
v
) denotes the prediction of counterfactual visual features, fv repre-

sents the image classifier, and yv denotes the image ground truth.

3.3 Causal Cross-modal Scheduler

An intuitive way for joint learning of selected multi-modal features is to train the sum of
Lt and Lv . However, this can be sub-optimal as it ignores the fact that varying degrees
of spurious correlations in the multi-modal data impact model training differently. To
enhance multi-modal learning, we propose a Causal cross-Modal Scheduler (CMS)
that adapts training based on the perceived causal effects of selected features, assigning
greater learning weights to those with stronger causal effects. Inspired by the granger-
causal objective [33, 32] for mining causal relationships (illustrations are provided in
the Appendix A.1), we propose a novel counterfactual reasoning method to measure
the causal effect by computing the loss difference between the counterfactual features
and the original features.

Causal Effect of Textual Feature. Specifically, the causal effect ∆ϵ(E
t
) is com-

puted by comparing the losses of E
t

and Et, which is formulated by Eq. (7),

∆ϵ(E
t
) = exp

(
Lce

(
yt, ŷt

)
− Lce

(
yt, yt

))
, (7)

where ŷt = ft(E
t) denotes the prediction of original textual features, yt is the predic-

tion of the counterfactual textual features, and yt denotes the textual ground truth.
Causal Effect of Visual Feature. Given the counterfactual visual features E

v
and

the original visual features Ev , we also introduce counterfactual reasoning to measure
the causal effect of selected visual features. It is formulated by Eq. (8),

∆ϵ(E
v
) = exp

(
Lbce

(
yv, ŷv

)
− Lbce

(
yv, yv

))
, (8)

where ŷv = fv(E
v) represents the prediction of the original visual features, yv denotes

the prediction of counterfactual visual features, and yv is the image ground truth.
When ∆ϵ(E

t
) or ∆ϵ(E

v
) is greater than 1, it indicates that E

t
or E

v
generates

smaller task loss compared to Et or Ev , suggesting the selected features positively im-
pact sentiment prediction. Conversely, if ∆ϵ(E

t
) or ∆ϵ(E

v
) is less than 1, the selected

features negatively affect the task. As the model trains, the causal effect is expected to
increase or remain stable, allowing the model to learn more relevant features aligned
with the target.

Casual Scheduling Objective. The larger the causal effect of features, the greater
their causal contribution to predicting correct sentiment labels. Based on the causal ef-
fects, we then design learnable scheduling weights φt,b = σ

(
α ·∆ϵ(E

t
)
)

and φv,b =

σ
(
β ·∆ϵ(E

v
)
)

(detailed explanation is provided in the Appendix A.2), where b is the
batch index, σ is the softplus function, α and β are the learnable parameters. φt and φv
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aim to perceive the causal effects of the extracted textual and visual features, respec-
tively. Then, we use these learnable scheduling weights to perform a weighted summa-
tion of the multi-modal joint training losses to obtain the final scheduled objective, as
follows,

L =
∑

b∈Dtrain

(φt,b · Lt + φv,b · Lv), (9)

where Dtrain is the training dataset.

3.4 Solving Scheduler via Bi-level Optimization

The scheduler is to optimize the learnable parameters set ϕ = {α, β} to minimize
Eq. (9). Considering the high computational cost of searching for optimal schedul-
ing parameters for multi-modal features in each batch, this approach demands sub-
stantial resources. To address this, we introduce a small developing dataset Ddev ={(

xdev
b , ydevb

)}B

b
, which is a small subset sampled from the validation set Dv [3]. We

utilize the objective loss on Ddev to optimize the parameters ϕ to achieve the optimal
scheduling weights for multi-modal loss on Ddev . Given the ϕ and MFS model param-
eter θ, our problem can be formulated as a bi-level optimization problem shown as Eq.
(11),

Ldev (θ
∗ (ϕ)) =

∑
b∈Ddev

(φt,b · Lt + φv,b · Lv), (10)

ϕ∗ = argmin
ϕ

Ldev (θ
∗ (ϕ)) ,

s.t. θ∗ = argmin
θ

L (θ, ϕ) ,
(11)

where Ldev (θ
∗ (ϕ)) is the scheduled training loss in Eq. (9) on Ddev . It is noted that

φt,b and φv,b are parameterized by ϕ.
In the lower-level optimization, we update the MFS parameter θ with the fixed pa-

rameter ϕ. θ is updated by using the weighted gradient sum of the different modalities
as follows,

∇θL (θ, ϕ) =
∑

b∈Dtrain

(φt,b · ∇θLt + φv,b · ∇θLv). (12)

In the upper-level optimization, it is expected to compute the gradient Ldev (θ
∗(ϕ))

to ϕ. Given the indirect dependency of Ldev (θ
∗(ϕ)) on ϕ through θ, we use implicit

differentiation to obtain this implicit gradient [22]. Inspired by the Cauchy-based Im-
plicit Function Theorem [22], we can leverage the chain rule to systematically derive
the gradient of Ldev (θ

∗(ϕ)) to ϕ,

∇ϕLdev (θ
∗(ϕ)) = ∇θLdev · ∇ϕθ

∗

= −∇θLdev ·
(
∇2

θL
)−1 · ∇ϕ∇θL|(ϕ,θ∗(ϕ)).

(13)

The detailed derivation of the implicit gradient is in Appendix A.3. However, directly
computing the inverse of the Hessian matrix for deep neural models is often compu-
tationally intractable due to its immense size and complexity. To address this, we em-
ploy the K-truncated Neumann series [3] to approximate this inverse, i.e.,

(
∇2

θL
)−1 ≈
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Algorithm 1 CMCS Algorithm
1: Input: datasets: Dtrain, Ddev; hyperparameters: H , K, η1, η2
2: Initialization: θ, ϕ, θopt
3: while not converge do
4: // lower-level optimization (update θ with fixed ϕ)
5: for t = 0 to H − 1 do
6: Calculate the causal effect of textual features by Eq. (7)
7: Calculate the causal effect of visual features by Eq. (8)
8: Update model parameters θ by

θ = θ − η1∇θL (θ, ϕ)
9: end for

10: // upper-level optimization (update ϕ with current θ)
11: Obtain the Ldev (θ

∗ (ϕ)) on Ddev by Eq.(14)
12: Update scheduling parameters ϕ by

ϕ = ϕ− η2∇ϕLdev

13: end while
14: Return θopt

∑K
j=0

(
I −∇2

θL
)j

where I is the identity matrix. Thus, the implicit gradient ∇ϕLdev (θ
∗(ϕ))

can be calculated as in Eq. (14).

∇ϕLdev = −∇θLdev ·
K∑
j=0

(
I −∇2

θL
)j · ∇ϕ∇θL. (14)

Algorithm 1 outlines the comprehensive process for optimizing the MFS (θ) and the
CMS (ϕ) based on their gradients. During the lower-level optimization phase, ϕ re-
mains fixed while θ is updated using the gradient specified in Eq. (12) at a learning
rate of η1. Rather than aiming for full convergence of θ, we employ an efficient H-step
optimization approach, inspired by [22], where θ undergoes H iterations of updates be-
fore shifting to the upper-level optimization of ϕ. We first evaluate Ldev according to
Eq. (14) and then leverage the implicit gradient to update ϕ with a learning rate of η2.
Given N modalities, the truncated Neumann series number as K, the time complexity
for the gradient backward of CMCS is O(N + (K + N)/H). Details are provided in
the Appendix A.4.

3.5 Model Inference

Cross-modal feature fusion may be suboptimal because images often contain a signifi-
cant amount of information that may be irrelevant to the sentiment of the target words
in the text [52]. To address this, we integrate the prediction scores from both the im-
age and text modalities to make the final sentiment classification during the inference
stage. Following previous works [30], we design prompts for images. Specifically, the
prompt corresponding to an image is “it’s a picture of with a target of [label]”, where
[label] is the target term from the text. For the text prompt XP , we use the CLIP [31]
text encoder Φp and prompt embedding Ep = Φt(XP ) ∈ Rm×d. The similarity scores
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θ = cos(Et, Ep) can be used to ensemble prediction scores from the two modalities. If
the similarity is higher, the image and the text are more relevant, so the proportion of the
image will be larger in the final fusion. Finally, the prediction is obtained by computing
the weighted sum of the image and text predictions, formulated by Eq.(15),

yh = (1− θ) · yt + θ · yv. (15)

4 Experiment

4.1 Experimental settings

Dataset. Following previous works [55, 42], we conduct experiments on two well-
known benchmark datasets: Twitter2015 [23] and Twitter2017 [47]. Basic statistics for
datasets are summarized in Appendix A.5.

Methods Twitter2015 Twitter2017
Acc F1 Acc F1
Text-based

AE-LSTM∗ 70.3 63.4 61.7 58.0
MGAN∗ 71.2 64.2 64.8 61.5
BERT 77.1 71.1 70.2 68.2

Multimodal
ESAFN♣ 73.4 67.4 67.8 64.2
TomBERT♣ 77.2 71.8 70.5 68.0
CapTrBERT♣ 78.0 73.2 72.3 70.2
JML♣ 78.7 - 72.7 -
FITE∗ 78.5 73.9 70.9 68.7
ITM 78.3 74.2 72.6 72.0
CLUE 77.8 72.6 71.7 70.3
GEAR 78.5 73.8 73.1 72.2
VEMP 78.6 74.1 73.0 72.4
AoM 78.3 72.9 73.6 72.0
DQPSA 76.5 - 70.3 -
CMCS(ours) 79.7 75.5 74.3 73.5

Table 1: Results of different methods
for TMSC. ∗ denotes the results from
VEMP [42]. ♣ denotes the results from
AoM [55].

Implementation Details. Our method is
built on BERT [5] and CLIP [31], trained for
30 epochs with a batch size of 32 on TMSC.
The learning rate is set to 2e-5, and the hid-
den sizes of BERT and CLIP are both 1024.
All instruction-tuning experiments are con-
ducted using PyTorch on an NVIDIA Tesla
V100 GPU.

Evaluation Metrics. Following previous
studies, we evaluate the performance of our
model on the TMSC task by Micro-F1 score
(F1) and accuracy (Acc) and report the av-
erage of 5 independent training runs as re-
sults. To prevent overfitting of the model, the
dropout is set to 0.1.

4.2 Baselines

We compare our proposed CMCS with
the twelve baselines, including AE-LSTM
[40], MGAN [7], BERT [5], ESAFN [48],
TomBERT [49], CapTrBERT [12], JML [11],
FITE [44], ITM [50], CLUE[36], GEAR[35],
VEMP[42], AoM [55], and DQPSA [30].

Due to the space limit, details of baselines are in the Appendix A.6.

4.3 Main Results and Analysis

Performance. Table 1 presents performance metrics for TMSC. Our proposed CMCS
outperforms all text-based models, highlighting the advantages of using multi-modal
information. Existing multi-modal sentiment analysis methods often require extensive
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Fig. 4: Visualization of causal effect and scheduling weights.

pre-training on image datasets to align image and text features. In contrast, CMCS
does not require such pre-training. Even without pre-training, CMCS exceeds previ-
ous multi-modal models in several metrics, achieving 1.0% and 0.9% improvements
in accuracy and 1.5% and 0.5% improvements in F1 scores on the Twitter2015 and
Twitter2017 datasets, respectively. The accuracy change curves of CMCS compared to
the sub-optimal methods in Appendix A.7 show that CMCS achieves a higher accu-
racy more quickly. The computational efficiency analysis in Appendix A.8 shows that
CMCS achieves optimal TMSC performance without significantly increasing training
and inference overhead.

4.4 Ablation Study

Method Twitter2015 Twitter2017
Acc F1 Acc F1

ours 79.7 75.5 74.3 73.5
w/o Visual Modality 79.1 75.1 73.5 71.2
w/o CMS 78.2 73.4 72.4 71.2
w/o MFS 78.3 72.8 72.9 71.6
w/o (MFS & CMS) 78.4 72.5 73.1 71.5

Table 2: Ablation results.

We study the effectiveness of each component in
CMCS, the results are shown in Table 2.

W/o Visual Modality shows that after remov-
ing the visual modality, the performance declines
by 0.6% and 0.9% in accuracy on Twitter2015 and
Twitter2017, but 0.4% in F1 on Twitter2015 and
2.4% on Twitter2017. It underscores the impor-
tance of the visual modality.

W/o CMS indicates that removing the causal cross-modal scheduler results in per-
formance drops of 1.5% and 1.2% in accuracy on Twitter2015 and Twitter2017, respec-
tively. This underscores that measuring the causal effects of different samples helps
prioritize those that are easier to learn, ultimately enhancing model performance.

W/o MFS. We set the learnable mask values in MFS to a fixed value of 0.5 and
tested its ablation results, and it shows that MFS plays a significant role in TMSC.

W/o (MFS & CMS) shows that cross-modal causal scheduling is essential; merely
extracting features without measuring their effects does not benefit model improvement.

4.5 Further Analysis

To investigate the effectiveness of the causal scheduling, we show the causal effects
and scheduling weight of 16 batches at Epoch 1 and Epoch 15, presented in Fig. 4.
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Fig. 5: Textual feature visualization in Twitter2017.
First, within the same epoch, batches with greater causal effects correspond to larger
scheduling parameters, demonstrating that our causal cross-modal scheduler effectively
adjusts to different samples based on their causal effects. Second, for text features,
some causal effects are less than 1 in Epoch 1, while in Epoch 15, almost all exceed 1,
suggesting the model becomes more adept at selecting relevant features over time. For
image features, a noticeable increase in causal effects with more epochs indicates the
presence of irrelevant features in the image data, allowing the model to identify relevant
features more easily.

We also use the t-SNE [14] to visualize textual features of test datasets, as shown in
Fig. 5 and Fig. 2 (in the Appendix A.7). These two figures illustrate that some original
instances are misclassified into other categories. In contrast, CMCS effectively distin-
guishes the three sentiment polarities through textual causal intervention. This indicates
that textual causal intervention can enhance textual sentiment classification.

4.6 Case Study

To intuitively demonstrate the advantage of our method, we compare the predictions
of BERT [5], ITM [50], AoM [55], VEMP [42], and CMCS on three test samples, as
shown in Fig. 6. In sample (a), BERT misjudges the sentiment by ignoring important
words relevant to the target “Mumias” while ITM and VEMP errors seem to arise from
interference from the visual modality. In sample (b), BERT, VEMP, and ITM incor-
rectly classify the sentiment of “Southern NJ” as negative due to a spurious correlation
between the word "Warning" and negative sentiment. In sample (c), both BERT and
VEMP misclassify the sentiment of “Facebook” as neutral, influenced by surround-
ing neutral sentiment words. These examples highlight CMCS’s effectiveness in iden-
tifying important features related to the target through causal intervention and causal
cross-modal scheduling.

5 Conclusion

In this paper, we propose a novel Cross-Modal Causal Scheduling framework (CMCS)
for TMSC, aiming to tackle spurious correlations in multi-modal data. By implement-
ing a Multi-modal Feature Selection model (MFS), a Causal cross-Modal Scheduler
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Fig. 6: Comparison of BERT, ITM, AoM, VEMP, and CMCS on three test samples.

(CMS), and the bi-level optimization strategy, CMCS can prioritize relevant multi-
modal features. Experimental results on two public datasets validate the effectiveness
of our framework in improving sentiment classification.

Limitations

Since existing datasets for the TMSC task primarily include only the image and text
modalities, our method considers information from these two modalities and does not
account for other modalities such as audio and video. In the future, we will explore how
to effectively utilize additional modalities and investigate multi-modal target sentiment
analysis in incremental scenarios.
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