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Abstract. Gradient boosting is a widely used algorithm for fitting sparse
additive models over flexible classes of basis functions. Despite its popular-
ity, the performance of gradient boosting as an approximation algorithm
to the empirical risk minimizing model with a specific number k of se-
lected basis functions is poorly understood. We provide a theoretical
lower bound of 1/2−1/(4k−2) on the worst-case approximation ratio for
the risk reduction that gradient boosting achieves relative to the optimal
model when both are limited to k terms. This result reveals an inherent
limitation in boosting’s ability to approximate the best possible sparse
additive model, raising the question of how tight and representative this
bound is in practice. To empirically answer this question, we employ
mixed integer programming (MIP) to approximate the optimal additive
models on 21 real datasets. The experimental results do not show larger
gaps than the theoretical analysis, indicating that the theoretical lower
bound is tight. Moreover, for twelve datasets, the approximation gaps
are of the same order of magnitude as the theoretical lower bound, which
shows the representativeness of the theoretical bound. To that end, the
study also has the practical implication that the presented MIP approach
frequently offers notable improvements over gradient boosting.

Keywords: Gradient boosting · Mixed integer programming · Approxi-
mation gap · Additive model · Rule learning

1 Introduction

Gradient boosting is a widely used algorithm for training additive models [10],
particularly in tasks that require a balance between predictive accuracy and model
complexity. By iteratively fitting weak learners to residual errors, boosting builds
powerful predictive models while maintaining a level of interpretability often
lacking in more complex machine learning approaches [21,4,1,16]. However, a
fundamental limitation arises due to its greedy nature: at each iteration, boosting
selects the basis function that most reduces the empirical risk in the immediate
step, rather than making globally optimal selections over all iterations [7]. This
property leads to an approximation gap, defined as the relative difference between
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the risk achieved by models generated by boosting and the theoretical optimum
for a given model class and number of terms [16].

To better understand the approximation gap of greedy approaches like boost-
ing, prior work has analyzed the performance of greedy algorithms relative to
optimal models. For instance, according to [7], the ratio between the risk reduc-
tions of models generated by greedy approaches and the optimal model is lower
bounded by 1− exp(−λmin) , where λmin is the smallest eigenvalue of the covari-
ance matrix of input variables, i.e. it shows an upper bound of the gap between
risks of greedy approaches and optimal models. However, in general, this upper
bound can be arbitrarily large, indicating that the potential for improvement
over boosting for general inputs remains unknown.

In this work, we show that there exists datasets for which k-term models gener-
ated by boosting have an approximation gap of 1/2− 1/(4k− 2). Since there may
be datasets for which boosting performs worse, we can state that the worst-case
approximation gap of boosting is at least 1/2−1/(4k−2). This bound formalizes a
fundamental limitation of boosting and quantifies its suboptimality. Furthermore,
to evaluate the bound empirically, we employ Mixed Integer Programming (MIP)
to attempt to improve the additive models generated by boosting on real-world
datasets. Our experiments confirm that the observed approximation gaps align
with the theoretical bound, indicating practical relevance.

A key goal of our study is to evaluate whether the theoretical bound on the
boosting approximation gap established is both tight (i.e., accurately characteriz-
ing the worst-case gap) and representative (i.e., aligning with typical empirical
cases). Figure 1 shows the cumulative distribution of the empirical risk gaps
across 21 datasets, along with reference lines that partition the space into four
interpretive quadrants. As shown in Figure 1, for twelve out of 21 datasets, the
approximation gaps have the same magnitude as the theoretical worst-case bound
(Optimistic), and for the eleven datasets where the optimal additive models are
achieved by MIP (Conservative), there are seven datasets whose approximation
gaps are of the same magnitude as the theoretical analysis. This result shows the
representativeness and tightness of the theoretical analysis. These results suggest
that the theoretical analysis captures not only the worst-case behavior but also
reflects typical empirical scenarios.

The remainder of this paper is structured as follows: Section 2 provides
background on gradient boosting and additive models. Section 3 presents the
lower bound of the worst-case approximation gap of boosting. Section 4 uses a
MIP approach to approximate the optimal additive models. With the empirical
evaluation using 21 real-world datasets, we show the tightness and the represen-
tativeness of our theoretical analysis. Section 5 concludes the paper with key
takeaways and future research directions.

2 Background

Throughout this paper we denote by Y the target random variable and by X the
input variable that take values in Y ⊆ R and X ⊆ Rd, respectively. Moreover,
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Fig. 1. The cumulative probabilities of the distribution of risk differences between
models generated by boosting and MIP where MIP provides a feasible solution (Opti-
mistic) and MIP obtains optimal solutions (Conservative). The dashed curves depict
four scenarios regarding the analysis in Theorem 1 and possible worst-case gaps: whether
the bound is tight or not to the actual worst-case gap, and whether the worst case is
representative of real-world datasets or not.

we assume a dataset {(x1, y1), . . . , (xn, yn)} drawn from the joint distribution
of Y and X. A set of basis functions H ⊆ Rd → R and an activation or inverse
link function µ : R → R define a family of additive models for predicting
Y given X, where an individual model correspond to a finite sub-selection
H = {h1, . . . , hk} ⊆ H. The H defines an additive model as a linear function

f(x) =

k∑
i=1

βihi(x) = βTh(x) (1)

parameterized by (β1, . . . , βk) ∈ Rk that defines ŷ(x) = µ(f(x)) as a prediction
for Y given X = x.

As an instance of additive models, an additive rule ensemble [11,9], or a
rule set has basis functions in the space of boolean query functions Hquery. An
additive rule ensemble can be represented as a set of “IF . . . THEN . . . ” rules,
which can be easily understood by humans. These additive rule ensembles can
be interpretable if the number of rules is not large [14].

2.1 Measurements of Performance of Machine Learning Models

Given a loss function l : R×R → R+ that quantifies the cost of misprediction and
a prescribed number of terms k, our goal is then to select a model H = (h1, . . . , hk)



4 F. Yang et al.

and estimate optimal corresponding parameters β1, . . . , βk that minimize the
expected loss or prediction risk R(β;H) = E[l(Y, ŷ(X))]. Absent any further
information about the joint distribution of X and Y , this goal is typically pursued
by minimizing the regularized empirical risk:

R̂λ(β;H) =

n∑
i=1

l(yi, ŷ(xi))/n+ λΩ(β)

as a surrogate, where λ ∈ R+ is a regularization parameter and Ω is a positive
penalty function that penalizes model parameters according to their magnitude.

An important special case are loss functions that are derived as deviance
functions when modeling the target variable as member of a canonical exponential
family [13] with natural parameter f , i.e., when considering the probabilistic
additive model where the target variable Y |X = x follows a probability density
or mass function given by

p(y | f(x)) = exp

(
yf(x)− b(f(x))

ϕ
− c(y, ϕ)

)
with some positive dispersion parameter ϕ and scaled log normalizer b : R → R.
In this case, the loss function

l(y, ŷ) = log p(y |µ−1(y))− log p(y |µ−1(ŷ)) (2)

is convex in ŷ = f(x) [13].

2.2 Forward Selection and Boosting

To learn additive models, forward selection and boosting approaches are commonly
used [18,3,10,5]. Forward selection methods construct model sequences H0 ⊂
H1 ⊂ · · · ⊂ Hk with H0 = {} and Ht+1 \Ht = {ht+1} via greedily optimizing a
selection score S(·;Ht,β

(t)) depending on the previous model and parameter fit:

ht+1 = argmax{S(h;Ht,β
(t)) : h ∈ H}

β(t+1) = argmin{R̂λ(β;Ht ∪ {ht+1}) : β ∈ Rt+1} .

The traditional forward selection methods [3] assume finite sets of basis functions
that are small enough to explicitly compute a model fit for each candidate
h ∈ H \Ht, i.e., they use

Sfs(φ;Φt) = −min{R̂λ([Φt;ϕ]β) : β ∈ Rt+1} . (3)

Gradient boosting [10] instead implicitly searches H by exactly or approxi-
mately optimizing a score that quantifies the alignment of the output vector of
h ∈ H defined by h = (h(x1), . . . , h(xn)) with the empirical risk gradient vector
g of the current model fit, i.e., at iteration t

gi =
∂

∂ft(xi)
l(yi, µ(ft(xi))) , i = 1, . . . , n . (4)
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Algorithm 1 Boosting for Additive Models
Input: dataset (X,y) = (xi, yi)

n
i=1, number of terms k,

Initialize f0 = 0, Φ0 = [].
for t = 1 · · · k do

ht = argmaxh obj(h)
Φt = [Φt−1;ht(X)]
β(t) = WeightCalculate(Φt)
ft(x) = β(t)Th(x)

Output the additive model fk

Starting with an empty model f0(x) = 0, idealized boosting adds a basis
function h∗

t ∈ H into the additive model to achieve the largest decrease in
(regularized) empirical risk for the training dataset in the t-th iteration. Then
an updated weight vector β(t) is calculated, resulting in a sequence of models
f1, · · · , fk, where

ft(x) =

t∑
j=1

β
(t)
j hj(x) , for t ∈ {1, . . . , k}. (5)

To efficiently choose basis functions, the commonly-used boosting variants ap-
proximate h∗

t based on an objective function obj(h) : Rn → R, which is a function
of the output vector of the basis function h = (h(x1), · · · , h(xn)). For instance,
we have the gradient boosting [10] objective objgb(h) = |hTg|/∥h∥2 and the
gradient sum [6,9] objective function objgs(h) = |hTg|.

To calculate the weight vector β, the stepwise weight update method
calculates the weight only for the last basis function added into the model [10,9].

β(t) =

[
β(t−1); argmin

β
R̂λ (ft−1 + βht)

]
. (6)

The stepwise weight update method keeps the weight of the previously-generated
basis functions unchanged. The corrective weight update method [17,21]
recalculates the weights of all queries:

β(t) = argmin
β

R̂λ (Φtβ), (7)

where Φt = [h1, . . . ,ht] is the n× t output matrix of selected basis functions.
The corrective weight update method further reduces the risk of the models,
yielding models with higher accuracy for given number of terms. We summarize
the general framework of boosting for learning additive models in Algorithm 1.

3 Lower Bound on Boosting Risk Gap

In this section, we give a lower bound to the risk difference between the optimal
k-term additive model and the boosting model fk, i.e., the approximation gap
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Fig. 2. An example alternating regression dataset with k = 5 and ∆ = 0.03.
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Fig. 3. The reference rule ensemble for D5,0.03. The blue dotted line is the rule covering
all data points, and the green dotted curves are the other rules. The red curve show
the predicted values of the additive rule ensemble.

Rλ(fk)−Rλ(f
∗
k ), in the worst-case across all input datasets. In particular, this

bound will apply to the special case of rule base-learners, i.e., H = Hrules, and
the squared loss l(y, ŷ) = lsq(y, ŷ) = (y − ŷ)2. It turns out that the bounds can
be proved using a simple construction of datasets with an alternating sequence
of positive and negative data points with target values of decreasing magnitude
(see Fig. 2 for an illustration). Formally, for a positive integer k, the alternating
regression dataset Dk,∆ ⊆ (R× R)2k−1 is defined by

Dk,∆ = {(x1, y1), . . . , (x2k−1, y2k−1)} (8)
xi = i (9)

yi = (−1)i−1(ai) (10)
ai = 1− (i− 1)∆ (11)

where 1 ≤ i ≤ 2k − 1 is the index of data points, and ∆ > 0 is used for
controlling the sequence of selected queries. For Dk,∆, we can construct a reference
rule ensemble f∗

k with k rules as follows: The first rule w1q1(x) has the query
q1(xi) = 1, where i = 1, . . . , 2k− 1; for j = 2, . . . , k, the rules wjqj are defined as
qj(xi) = 1(i = 2(j − 1)), as shown in Figure 3. With this reference rule ensemble,
we have the following lemma:

Lemma 1. For Dk,∆, there exists an additive rule ensemble f†
k containing k

rules whose risk is

R(f†
k) =

∆2k(k2 − 1)

3(2k − 1)
.
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Proof. We calculate the risk of the reference rule ensemble f∗
k as

min
β

R(f∗
k ) = min

β

1

2k − 1

(
k∑

i=1

(β1 − y2i−1)
2 +

k−1∑
i=1

(β1 + βi+1 − y2i)
2

)

setting βi+1 = y2i − β1 minimizes term i of the second sum, hence we get

= min
β1

1

2k − 1

(
k∑

i=1

(β1 − (1− (2i− 2)∆))2

)

= min
β1

k
(
(β1 − 1)2 + 2∆(β1 − 1)(k − 1) + 2

3∆
2(k − 1)(2k − 1)

)
2k − 1

which is a quadratic function in β1 − 1 which is minimised at β1 − 1 = −∆(k− 1)

=
∆2k(k2 − 1)

3(2k − 1)
. (12)

Therefore, f∗
k satisfies the condition in the lemma. ⊓⊔

Next, we show the behavior of boosting algorithms on the dataset Dk,∆. The
following lemma shows the risk of a rule ensemble generated by boosting for
Dk,∆ with k rules. Using the risks of the reference rule ensemble and the risk of
the rule ensemble generated by boosting, we are able to obtain the lower bound
of the worst case approximation gap of the boosting algorithm.

Lemma 2. For any Dk,∆ with 0 < ∆ < 1/(2k − 4 +
√
2/2), the total loss of an

ensemble fk of k basis functions fitted by idealized boosting is

R(fk) = (k − 1)

(
(1−∆(3k − 2))

2k − 1
+

∆2(6− 19k + 14k2)

6(2k − 1)

)
.

Proof. We start by examining the matrix Qt with entries qi,j = qi(xj) of the rule
ensemble fk produced by boosting at iteration t ∈ {0, 1, . . . , 2k − 1}. Specifically,
for 0 < ∆ < 1/(2k − 4 +

√
2/2), we will prove that the matrix Qt has the form

Qt =


1 0 . . . . . . . . . . . . . . . 0
b21 1 0 . . . . . . . . . . . . 0
b31 b32 1 0 . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
bt1 bt2 . . . bt,t−1 1 0 . . . 0

 , (13)

for all 1 ≤ i ≤ t, 0 ≤ bi,j ≤ bi,t+1 ≤ 1 and bi,j ∈ {0, 1}. Once this statement is
proven, we can readily show that ft covers the first t data points with a loss of 0,
and that the other data points are uncovered. Formally,

1. For i ≤ t, the loss l(ft(xi), yi) = 0;
2. For i > t, the loss l(ft(xi), yi) = (1− (i− 1)∆)2.
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For Property 1, since the matrix Qt has full rank, the equation system Qtβ = y
always has a unique solution, hence the corrective weight update ensures that
ft(xi) = yi for 1 ≤ i ≤ t. For Property 2, if i > t, qi,j = 0 for all j ∈ {1, . . . , 2k−1},
so ft(xi) = 0, thus l(ft(xi), yi) = (1− (i− 1)∆)2.

We now prove by induction that (13) holds. In the base case t = 0, the
model is empty. Therefore, the matrix Q0 is empty, so the base case is true.
The induction hypothesis is that (13), and therefore Properties 1 and 2, hold at
the t-th iteration. We denote β the weight of the (t + 1)-th rule generated by
boosting, and the ordered set A (resp. B) the indices of positive (resp. negative)
data points uncovered by rules q1 to qt, and covered by rule qt+1, ordered by
increasing xi. (Note that data points covered by rule t+1 can include data points
already covered, but Property 1 will ensure that their loss remain 0.) Formally,
we define A and B as following:

A = {i|qt+1(xi) = 1, yi > 0, qj(xi) = 0, for all j = 1, . . . , t} , (14)
B = {i|qt+1(xi) = 1, yi < 0, qj(xi) = 0, for all j = 1, . . . , t} , (15)

and At (resp. Bt) represents the t-th element of A (resp. B).
We denote α = |A| and γ = |B|. Since a rule can only cover contiguous data

points, and that positive and negative points alternate, we have |α− γ| ≤ 1.
For idealized boosting, the risk reduction of the i-th data point is (ai)

2 −
(ai−β)2 = −β2+2βai if yj > 0, and (−ai)

2− (−ai−β)2 = −β2−2βai if yi < 0.
Then, the total risk reduction produced by the (t+ 1)-th rule is

max
β

n(R(ft)−R(ft+1)) = max
β

α∑
k=1

(
−β2 + 2βaAk

)
+

γ∑
k=1

(
−β2 − 2βaBk

)
= max

β
−(α+ γ)β2 + 2β

(
α∑

k=1

aAk
−

γ∑
k=1

aBk

)

which is a quadratic function in β whose maximizer is β =

∑α
k=1 aAk

−
∑γ

k=1 aBk

α+ γ

=
1

α+ γ

(
α∑

k=1

aAk
−

γ∑
k=1

aBk

)2

,

where n = 2k − 1. Since ai = 1− (i− 1)∆,

maxn(R(ft)−R(ft+1)) = max
(αaA1

− γaB1
− α(α− 1)∆+ γ(γ − 1)∆)

2

α+ γ

If α = γ, then |aA1 − aB1 | = ∆, and

maxn(R(ft)−R(ft+1)) =
α∆2

2
. (16)
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Since the first t data points are already covered, the maximum of the risk reduction
in the case α = γ is (k − ⌊(t+ 1)/2⌋)∆2/2.

If α = γ + 1, then B1 = A1 − 1, aB1 = aA1 −∆, α ≥ 1, and

maxn(R(ft)−R(ft+1)) = max
(aA1 − (α− 1)∆)

2

2α− 1
(17)

In this expression, the numerator increases if α decreases, and the denominator
decreases if α decreases. Therefore, the maximum value of the risk reduction in
the case α = γ+1 is a2A1

, and it is achieved when α = 1. It means that the query
which covers only one positive data point reduces the most risk. The maximum
risk reduction is achieved at (xi, yi) where i = min{j : j > t, yj > 0}.

If α = γ − 1, then B1 = A1 + 1, aB1 = aA1 +∆, α ≥ 0, and

maxn(R(ft)−R(ft+1)) = max
(aB1

− α∆)2

2α+ 1
(18)

Similar to the case of α = γ + 1, the maximum value of the risk reduction in the
case α = γ − 1 is a2B1

, which is achieved when γ = 1. Therefore, the query which
covers only one negative data point reduces the most risk, and its maximum
value is achieved at (xi, yi) where i = min{j : j > t, yj < 0}. From the above
discussion, if |α− γ| = 1, then the query covering only (xt+1, yt+1) reduces the
most risk, and the maximum risk reduction is (1− t∆)2. If

∆ <
√
2/(k +

√
2(t− 1)− ⌊(t+ 1)/2⌋) , (19)

i.e. (1− t∆)2 > (k− ⌊(t+ 1)/2⌋)∆2/2, the query selected by boosting covers the
data points (xi, yi) with largest |yi|, which is the (t+ 1)-th data point. To make
sure (19) is satisfied for all iterations until the whole dataset is covered, we need

0 < ∆ <
1

2k − 4 +
√
2/2

. (20)

According to Properties 1 and 2, with t iterations, the losses of data points
(x1, y1), . . . , (xt, yt) are 0. Therefore, the risk of the t-term rule ensemble is

R(ft) =
1

2k − 1

2k−1∑
i=t+1

(1− (i− 1)∆)2

=
(2k − t− 1)(6− 6∆(2k + t− 2) +∆2(2t2 + 4kt+ 8k2 − 5t− 14k + 6))

6(2k − 1)
.

If t = k, then

R(fk) =
(k − 1)(6− 6∆(3k − 2) +∆2(14k2 − 19k + 6))

6(2k − 1)
.

⊓⊔
Lemma 2 highlights a key observation regarding the structure of rule ensembles

generated by boosting for the alternating dataset Dk,∆. Specifically, the rule
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Fig. 4. The additive rule ensemble generated by boosting for D5,0.03. The dotted lines
represent each rule generated by boosting, and the red solid line represent the output
of the model.

ensembles produced by boosting tend to cover only individual data points rather
than capturing the broader structure of the dataset. As shown in Figure 4, the
rules generated by boosting focus on minimizing the local risk for each point
rather than modelling the overall pattern, leading to suboptimal performance
when compared to the reference rule ensemble.

With Lemmas 1 and 2, we can calculate the gap between the risks of the
models generated by boosting and the reference solution. Formally, the lower
bound to the worst-case additive risk gap is given by the following theorem.

Theorem 1. For k > 0 and any ϵ > 0, the worst case additive approximation
gap between the k-term optimal model f∗

k and boosting model fk satisfies

R(fk)−R(f∗
k ) ≥

1

2
− 1

4k − 2
. (21)

Proof. Using Lemmas 1 and 2, we obtain for the approximation gap for Dk,∆

R(fk)−R(f∗
k ) =

(k − 1)(2−∆(6k − 4) +∆2(4k2 − 7k + 2))

2(2k − 1)

=
1

2
− 1

4k − 2
− (k − 1)(∆(6k − 4)−∆2(4k2 − 7k + 2))

2(2k − 1)︸ ︷︷ ︸
ξ(∆)

. (22)

For k = 1, ξ(∆) is the constant zero function, hence, the claim is true. For
k > 1, ξ is a concave quadratic function in ∆ with maximum value at ∆∗ =
(3k − 4)/(4k2 − 7k + 2) > 0. The claim is true for ϵ ≥ ξ(∆∗). For 0 < ϵ < ξ(∆∗),
we observe that ξ(0) = 0. Therefore, we can find a positive ∆′ such that ξ(∆′) = ϵ
by the intermediate value theorem, which concludes the proof. ⊓⊔

Note that this result is consistent with the optimality of boosting in the special
case of k = 1. For k = 2, we obtain a lower bound to the approximation gap of
1/3. In the limit, for arbitrarily large k, the bound converges to 1/2. Further, it is
worth noting that, while the proof of the result uses idealized boosting (forward
selection), it can be adapted to the other discussed variants.



Gradient Boosting versus MIP for Sparse Models 11

4 Empirical Evaluation of the Boosting Risk Gap via MIP

In Section 3, we analyze the lower bound of the worst-case gap between the risks
of boosting and optimal models theoretically. However, to answer the question
of how tight this bound is, and how representative the worst case is for the
real-world datasets, we need to explore alternative approaches of generating
rule ensembles with lower risks. In this section, we adopt a MIP approach to
approximate the optimal models for different datasets.

MIP involves modelling a problem into a formulation containing decision
variables, constraints and an objective function, and solving the formulation
using existing solvers like Gurobi [2,12]. In a typical MIP setting, a part of
variables are constrained to be integers or discrete values, while others can take
continuous values [20]. MIP allows us to find the optimal solution by maximizing
or minimizing an objective function subject to a set of constraints. MIP is
particularly well-suited for problems where decisions (such as whether a query is
selected) are binary or integer-based, while other parameters, like rule weights,
are continuous, making it commonly used to obtain or approximate the optimal
additive models [8,17,19].

A MIP formulation consists of several key components [20]. First, decision
variables represent the choices to be made, with some restricted to integers (e.g.,
binary decisions) and others take continuous values. The objective function is
a mathematical expression that the MIP seeks to optimize (either minimize or
maximize), often involving a cost or risk function. The problem is subject to
constraints, which are typically linear equations or inequalities that limit the
possible values of the decision variables, ensuring that solutions are feasible.
Previous works presented in literatures [15,12,17] solve the machine learning
problem using MIP solvers, but they usually adopt column generation approaches
to model the problem, such as IPBoost [15]. Instead, in our approach, we model
the problem of learning additive rule ensembles directly.

4.1 The MIP formulation

First, we introduce the MIP formulation for approximating optimal additive rule
ensembles. Below is a list of variables used in this formulation:

– lt,j (resp. ut,j): the lower (resp. upper) bound of t-th rule on j-th dimension
(t = 1, . . . , k, j = 1, . . . , d, same below) demonstrated in Figure 5.

– βt: the weight of the t-th rule, as shown in Figure 5.
– si,t,j : A binary variable indicating whether the i-th data point is between

the lower bound and the upper bound on the j-th dimension of the t-th rule
(i = 1, . . . , n, same below).

– zi,t: A binary variable indicating whether the i-th data point is selected by
the t-th rule. Figure 6 demonstrates the usage of the variables si,t,j and zi,t.

– ri,t,j (resp. pi,t,j): a binary variable indicating whether the j-th coordinate
value of the i-th data point is greater (resp. less) than lt,j .
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Fig. 5. An illustration of the decision variables used in the MIP formulation for learning
additive rule ensembles, including the lower and upper bounds and weights of rules.
There are two rules, and the query of each rule is a conjunction of two propositions.

The auxiliary variables ri,t,j and pi,t,j facilitate the expressing of si,t,j as linear
functions of other variables. Specifically, ri,t,j (resp. pi,t,j) indicates whether the
i-th data point is greater (resp. less) than the lower (resp. upper) bound on the
dimension j. The value of si,t,j is 1 only if both ri,t,j and pi,t,j are 1, meaning
the point is within the specified range. A data point is covered by the t-th rule
if si,t,j = 1 for all dimensions, in which case zi,t = 1. Totally, there are O(ndk)
decision variables in this formulation.

To reduce the number of constraints, rather than directly using lower and
upper bounds for each rule in every dimension, we represent rules based on the
data points they cover. The dataset is sorted along each dimension, and a point
is selected by a rule if it has a neighboring point that is also selected. Specifically:
If a selected data point exists to the left (resp. right) of the i-th data point on
dimension j, then ri,t,j (resp. pi,t,j) is 1. If both ri,t,j and pi,t,j are 1, the i-th
data point is covered by the t-th rule on dimension j.

The list of constraints is described below:

– On dimension j, if both neighboring points of the i-th data point are covered
by the t-th rule, then the i-th data point is also covered by the t-th rule:

si,t,j ≥ si<,t,j + si>,t,j − 1 ∀t, j,

where i< (resp. i>) refer to the data point whose value is smaller (resp.
greater) on dimension j, if any.

– If neither neighbors of the i-th data point are covered by the t-th rule on
dimension j, the i-th data point is not, either:

si,t,j ≤ si<,t,j + si>,t,j ∀t, j.

– If two points i and i= have the same coordinate on dimension j, then

s (resp. r, p)i,t,j = s (resp. r, p)i=,t,j ∀t, j .
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lt, 1 ut, 1
x1

lt, 2

ut, 2

x 2

q(xi, yi) = 1
q(xi, yi)=0
si, t, 2 = 1
si, t, 1 = 1
zi, t = 1

Fig. 6. The constraints in the MIP Formulation for learning rule ensembles. These
constraints guarantee that data points satisfying the condition of a query are covered by
the query. In this figure, the query q is represented as a conjunction of two propositions:
“lt,1 ≤ x1 ≤ ut,1 and lt,2 ≤ x2 ≤ ut,2”.

– ri,t,j and pi,t,j are no less than si,t,j :

r (resp. p)i,t,j ≥ si,t,j ∀i, t, j.

– ri,t,j (resp pi,t,j) is monotonically non-decreasing:

ri,t,j ≥ ri<,t,j , pi,t,j ≤ pi<,t,j ∀i, t, j.

– si,t,j = 1 if and only if both ri,t,j = 1 and pi,t,j = 1:

si,t,j = ri,t,j + pi,t,j − 1 ∀i, t, j.

This constraint ensures that if a data point is between the lower bound and
upper bound of a proposition, then it satisfies the condition of the proposition.

– The data point xi is in the box of the t-th rule if

zi,t ≤ si,t,j , ∀j ,

zi,t ≥
∑
j

si,t,j − d− 1 .

This constraint indicates that if a data point satisfies all the propositions in
a query, then it is covered by this query, as demonstrated in Figure 6.

The objective of this optimization problem is the regularized empirical risk,
which is calculated as:

R̂λ =
1

n

n∑
i=1

l

(
yi,

k∑
t=1

zi,tβt

)
+

λ

n

k∑
t=1

Ω(βt), (23)
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where n is the number of data points, k is the number of rules, λ is the regu-
larization parameter, l is the loss function, and Ω is a regularization function.
The risk function is the objective in this optimization formulation. The objective
of this optimization formulation is to minimize the risk value. After solving the
optimization problem, we determine the upper and lower bounds of the t-th rule
on the j-th dimension according to the values of si,t,j for all i = 1, . . . , n.

Based on this MIP formulation, we can easily implement the idealized boosting
algorithm (MIP-boosting). In the m-th iteration, we fix the weights β

(m)
t , lower

and upper bounds l(m)
t,j and u

(m)
t,j , s(m)

i,t,j and z
(m)
i,t of the t-th rule (t < m) generated

in previous iterations as constants. We take s
(m)
i,t,j as an example:

s
(m)
i,t,j = s

(m−1)
i,t,j , t < m .

Only the decision variables with t = m, such as β
(m)
m , s(m)

i,m,j and z
(m)
i,m , related to

the new rule to be generated in the m-th iteration are included as variables in
the MIP formulation in the m-th iteration. Therefore, in such a configuration,
only one more rule is generated by the optimization solver. There are totally
O(nd) decision variables and O(nd) constraints in this formulation. With the
MIP-boosting implementation, the problem of learning additive rule ensembles
generated by boosting are easily solved optimally, where the MIP bounds of the
training risks are the same as the solutions. In each iteration, this implementation
adds one rule which minimizes the empirical risk into the model.

4.2 Experiments

To answer the question whether the lower bound of the worst-case approximation
gap of boosting shown in Theorem 1 is tight and representative, we compare the
risks of models generated by MIP-boosting and the original MIP formulation. To
obtain the optimal models, the original MIP formulations are solved using starting
values provided by the boosting implementation. With this setting, the models
generated by MIP are always better than boosting models. All the experiments
use Gurobi to solve the MIP formulations. The time budget for generating each
rule for MIP and boosting are set as 600 second for all datasets. All experiments in
this paper are conducted on a computer with “Intel(R) Core(TM) i5-10300H CPU
@ 2.50GHz” and memory of 72GB. All code and datasets used in our experiments
are provided in the supplementary materials and in the GitHub repository
https://github.com/fyan102/MIPRule to ensure full reproducibility.

We compare the empirical risks of additive rule ensembles with 10 rules
generated by boosting for 21 datasets, and the optimal model implemented using
MIP approach in Table 1, as well as the MIP bounds. The MIP bound is the lower
bound of the objective value that can be achieved by the MIP solver, indicating
how close the solution found by the solver is to the true optimum. In the table,
we observe that for eleven datasets, such as IBM HR, gdp, fitness, and salary,
the MIP bound matches the training risk achieved by MIP, indicating that the
solver has successfully proved optimality for these models. For these datasets, the

https://github.com/fyan102/MIPRule
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Table 1. Comparison of training risks of additive rule ensembles trained via boosting
(b, implemented with MIP) and globally optimal models obtained via the MIP approach
(M) for both classification (+) and regression tasks. The middle section shows the
maximum difference in training risk between the two approaches (bolded), the iteration
k∗ where this occurs, and the corresponding risks. The right section reports the training
risks of both approaches, objective bounds (bnd) of MIP, and runtimes (t, in seconds)
for 10 rules. Optimal MIP risk values and their bounds are in red.

Max risk difference Training 10 rulesdataset d n diffmax k∗ Rb,k∗ RM,k∗ Rb,10 RM,10 bndM,10 tb,10/s tM,10/s
tic-tac-toe+ 27 958 .397 9 .835 .438 .793 .422 .000 2579 5082
salary 1 30 .357 2 .501 .144 .050 .050 .050 .214 3.08
study time 1 96 .328 2 .669 .341 .069 .069 .069 .654 75.2
demog. 13 6876 .313 10 .919 .606 .919 .606 .000 3061 5814
iris+ 4 150 .274 2 .490 .216 .095 .028 .028 133 4081
IBM HR+ 32 1470 .260 10 .848 .587 .847 .587 .587 340 1779
student marks 2 100 .250 2 .636 .386 .050 .045 .045 1.48 1762
titanic+ 7 1043 .241 1 .788 .547 .593 .387 .000 1767 4728
income 2 20 .222 2 .512 .290 .018 .016 .016 .371 1757
happiness 8 315 .206 2 .628 .421 .093 .071 .000 49.2 2059
used cars 4 1770 .206 3 .622 .417 .216 .202 .000 1045 2903
gdp 1 35 .203 2 .687 .484 .385 .385 .385 .964 141
boston 13 506 .135 2 .695 .560 .326 .307 .000 261 2364
headbrain 3 237 .131 2 .743 .612 .395 .387 .000 3.918 1800
fitness 3 30 .128 2 .573 .446 .115 .108 .1078 .641 1755
mobile 20 2000 .119 2 .842 .722 .602 .542 .000 2617 5340
wine+ 13 178 .063 3 .145 .082 .031 .013 .013 4719 5606
insurance 6 1338 .060 3 .383 .323 .196 .185 .000 1166 3547
social media 2 63 .050 4 .585 .535 .500 .490 .490 .871 1761
wage 5 1379 .036 3 .756 .720 .614 .594 .000 1109 2903
breast+ 30 569 .015 10 .392 .378 .392 .378 .378 240 4590

solution obtained is guaranteed to be the global optimum, which highlights the
effectiveness of the MIP approach in learning optimal rule ensembles for datasets
with a small size and dimensions. However, there are ten datasets with large
number of data points and features (like titanic, tic-tac-toe and insurance)
where the optimality of the solutions cannot be guaranteed. For these datasets,
the optimal models may still have a lower risk than the risks shown in Table 1.

In Table 1, we show the maximum difference between the risks of rule ensem-
bles generated by boosting and MIP over all the iterations between 1 and 10 in the
middle part of the table, as well as the iteration number the maximum difference
occurs and their risk values. We plot the distribution of the largest risk differences
between the boosting and optimal models in Figure 1. There are totally twelve
datasets where the largest risk gaps are of the same magnitude as the theoretical
lower bound, indicating that the worst-case scenario we analyze is representative.
Furthermore, since we have not found any datasets whose largest risk difference
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between boosting and MIP models are larger than the theoretical analysis, the
experimental results show that the actual approximation gaps are usually less
than the theoretical bound, suggesting that the lower bound of the worst-case
approximation gap is tight. This implies that boosting generally provides a good
approximation to the optimal solutions, with performance significantly better
than the worst-case bound in most real-world cases.

Notably, the MIP approach generally incurs a higher computational cost
compared to boosting. This is primarily due to its increased complexity: the
number of decision variables and constraints in the full MIP formulation scales
as O(nkd). In contrast, the MIP-boosting implementation only involves O(nd)
variables and constraints, since it incrementally adds one rule at a time. As the
number of rules increases, solving the full MIP formulation becomes increasingly
time-consuming, often reaching the pre-specified time limit. Nevertheless, as
shown in Table 1, for nine datasets the running times of the MIP and MIP-
boosting methods are of the same order of magnitude, demonstrating that MIP
can remain tractable for moderate-sized problems.

5 Conclusion

This paper examines the approximation gap by boosting to generate additive
models theoretically and empirically. We provide a constructive proof showing
the lower bound of the worst-case risk gap between boosting and the optimal
solutions, which is approximately 50% of the initial risk. This gap arises from the
greedy nature of boosting, highlighting the need for alternative approaches to
obtain better accuracy-complexity trade-offs. To empirically explore the gap, we
introduce MIP formulations to approximate optimal additive models. By reducing
redundancy in candidate solutions, MIP finds optimal models for small datasets.
The experimental results confirm that the observed risk gap aligns with our
theoretical analysis, suggesting the tightness and representative of the worst-case
bound. Future work may further explore the theoretical upper bound of the risk
gap of boosting. Another interesting direction is to improve the scalability of
MIP formulations to learn additive models for larger, more complex datasets.
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