
Better Features, Better Calibration:
A Simple Fix for Overconfident Networks

Soumya Suvra Ghosal1 Ramya Hebbalaguppe2 Dinesh Manocha1
1University of Maryland 2 TCS Research Labs

Abstract. A model is considered perfectly calibrated when the pre-
dicted probabilities align accurately with the true likelihood of the asso-
ciated classes being correct. Past studies have shown that Deep Neural
Networks (DNNs) are susceptible to overfitting and generate miscali-
brated predictions. In this paper, we identify that the miscalibration
problem in DNNs can be traced back to the features learned by the net-
work. To this end, we propose a new training approach called RelCal,
which guides the model to focus on a subset of relevant features for each
class. Our empirical analysis highlights that training with RelCal helps
mitigate overconfidence in DNNs, leading to better-calibrated models in
terms of Expected Calibration Error (ECE) and Adaptive Expected Cal-
ibration Error (AECE). We demonstrate the state-of-the-art results on a
diverse range of 8 image classification datasets across architectures span-
ning CNNs to Transformer-based architectures in terms of network cali-
bration without compromising discriminative performance. Compared to
the current best calibration technique, RankMixup [32], RelCal reduces
the ECE by 4.25% on the challenging imbalanced dataset CIFAR-100-
LT. Additionally, on the large-scale ImageNet dataset, RelCal reduces
the AECE from 9.45% to 3.08%— a 6.37% improvement over the baseline
model trained with NLL loss.

Keywords: Confidence Calibration · Reliability · Uncertainty Quantifi-
cation

1 Introduction

DNNs excel in tasks like object detection, classification, and segmentation but of-
ten produce miscalibrated, overconfident predictions. However, despite achieving
impressive classification accuracy, they often produce miscalibrated and over-
confident predictions [11, 28, 29]. Analysis by [11] revealed that due to large
model capacity, neural networks typically become prone to overfitting the neg-
ative log-likelihood (NLL) loss during training, thereby essentially prioritizing
higher accuracy at the expense of well-calibrated predictions.

The primary issue with miscalibrated predictions lies in providing a false
sense of correctness, i.e., the prediction probability associated with a given class
may overestimate the likelihood of the class being correct. This issue carries
significant implications, especially in safety-critical domains like autonomous
driving [10] and healthcare applications [8], where the model must not only be
accurate but also correctly confident [11].

2 Ghosal et al.

Fig. 1: We illustrate via Grad-CAM vi-
sualizations for ResNet-50 feature ex-
tractor trained on ImageNet with and
without using RelCal. Notice that train-
ing with RelCal allows the network to
focus on relevant features of the cate-
gory enabling better discrimination.

There have been numerous efforts
to tackle the problem. [11] proposed
Temperature Scaling, i.e., dividing
the logit outputs by a scalar temper-
ature constant T > 0 before perform-
ing the softmax operation. Other than
temperature scaling, various post-hoc
techniques [30, 35, 43] have been in-
troduced to improve calibration dur-
ing inference. To mitigate model over-
fitting and miscalibration, [29] sug-
gested training with label-smoothing,
and [28] proposed training with focal
loss [26]. Recently, [15] argued that in
contrast to post-hoc calibration meth-
ods that rely on a small set of param-
eters, train-time strategies leveraging
the extensive array of learnable pa-
rameters within a DNN offer stronger
calibration performance. While many
studies propose new training losses for
better calibration, we trace miscali-
bration to the features learned by the
model and refine them during training
for improved calibration.

When processing an input image, DNNs typically learn a feature represen-
tation which is then passed through a dense linear layer to generate the logit
output. Intuitively, each dimension within these feature embeddings can be asso-
ciated to represent some semantic attribute present in the image [17, 24]. Using
a dense layer means that the prediction for a particular class is influenced by
contributions from all feature dimensions. Our approach is based on the idea
that not all feature dimensions carry equal significance for a particular class.
Our approach prioritizes class-relevant features—for example, whiskers and fur
matter for “Cat” class but not for “Snake” class.

Main Contributions. Building on this rationale, we propose RelCal, a simple
and novel approach centered on training a model to prioritize a subset of fea-
tures that are crucial for each class. To pinpoint critical features for a specific
class, we introduce a relevance score, computed as the absolute value of the
feature dimension’s contribution to that class. Our analysis (see Section 4) sug-
gests that RelCal introduces an implicit regularization on the model weights,
thereby reducing the weight norm. Additionally, we noted that training with
RelCal demonstrated an increase in NLL loss on accurately classified test sam-
ples (see Fig. 2), indicating decreased output confidence. Therefore, based on our
observations, we infer that RelCal enhances model calibration by imposing reg-
ularization on the network weights, consequently mitigating overconfident pre-

2. RELATED WORKS 3

dictions. These findings align with the analysis in [28] which identified increase
in weight norm as a contributing factor to miscalibration. Further, our observa-
tions also highlight that training with RelCal not only enhances calibration but
also improves test accuracy.

1. A simple and novel approach, RelCal for improving model calibra-
tion. During training, RelCal aims to alleviate overfitting by guiding the
model to focus on a subset of relevant features that are crucial for each
class. Training with RelCal leads to reduction in norm of model weights and
prediction confidence thereby improving model calibration.

2. We highlight the strong calibration performance of RelCal: (a) on
5 standard image classification benchmarks (SVHN, CIFAR-10, CIFAR-100,
TinyImageNet-200, and ImageNet-1k), (b) two imbalanced datasets (CIFAR-
10-LT, and CIFAR-100-LT), (c) one fine-grained image classification dataset
(CUB-200), and (d) one NLP dataset (20 Newsgroups). For example, on
CUB-200 [42], a fine-grained image classification dataset, using ResNet-101
architecture, our approach reduces the Expected Calibration Error from
8.41% to 2.99% — a 5.42% of improvement compared to focal loss [28].

3. RelCal is architecture agnostic. We conduct extensive experimentation
using models of varying capacities from ResNet [14] (see Table 6), WideRes-
Net [44] (see Table 7) and Vision Transformer (see Appendix) architectures.
Our findings demonstrate that RelCal significantly improves model calibra-
tion regardless of the architectural choice.

2 Related Works

Calibration Techniques. In deep neural networks (DNNs), the issue of mis-
calibration was first brought to light by [11]. Their analysis unveiled that DNN
models trained with NLL loss tend to exhibit unwarranted overconfidence, lead-
ing to a discrepancy between output confidence and actual accuracy. The sever-
ity of this issue has sparked considerable research into mitigating this problem.
Broadly, approaches to calibrate DNNs can be categorized into two main strate-
gies: train-time calibration and posthoc calibration.
Train-time Calibration approaches introduce additional loss terms/regular-
ization during the training process to enhance model calibration. [34] proposed
adding additional entropy loss; [21] proposed MMCE, an auxiliary loss term com-
puted using a reproducing kernel in a Hilbert space; [29] used Label Smoothing
(LS) on soft targets; [28] showed that using Focal loss (FL) [26] can be benefi-
cial in preventing the model from becoming overconfident. [15] proposed training
with an additional MDCA loss to explicitly minimize the difference in confidence
and accuracy for all the classes. Other representative works are MbLS, MixUp,
Confidence Ranking Calibration, ACLS [4, 27–29, 33, 45]. Our approach on the
contrary utilizes a relevance score for confidence calibration.
Post-hoc Calibration methods operate on models after they have been trained,
typically utilizing a validation set. A widely-used post-hoc calibration technique
is Temperature Scaling [11], which involves the division of logit outputs by a

4 Ghosal et al.

scalar temperature constant T > 0 before applying the softmax operation. Apart
from temperature scaling, several other post-hoc approaches [30,35,43] have been
proposed that transform the model output during inference to improve calibra-
tion. Dirichlet calibration [19] builds on Dirichlet distributions and extends the
Beta-calibration [20] approach, which was originally designed for binary classi-
fication, to a multi-class setting. Posthoc calibration assumes the availability of
a validation dataset to tune the hyperparameters on the test set and may not
generalize well incase of distribution drift.
Pruning Approaches. Extensive research explores training-time pruning to
enhance DNN sparsity [2, 12, 13, 39]. The closest methods to our proposed ap-
proach include ReAct [40], DICE [41], LINe [1], and ASH [6] which explore
test-time sparsification mechanism for OOD detection, lacking explicit learning
of crucial features. RelCal differs from these studies as it serves as a training-
time regularization technique focusing on learning relevant features to enhance
model calibration.

3 Background

Notations. In this paper, we consider a supervised multi-class classification
problem. Formally, we consider a training set Dtrain consisting of N training
samples: {xi, yi}Ni=1. The samples are drawn i.i.d. from a probability distribution:
PX ,Y . Here, x ∈ X is a random variable defined in the image space, and y ∈
Y = {1, . . . ,K} represents its label. Traditionally, a parameterized model fθ :
X → Y is trained on samples drawn from the marginal distribution Pin of X .
The standard aim is to minimize the expected loss E(x,y)∼P [l(fθ(x), y)] under
the training distribution P, for some loss function l : Y × Y → R+.
Calibration. Consider a sample x ∈ X input to a classifier fθ parameterized by
θ. The logit output of the classifier is represented as f(x, θ) ∈ RK . The confidence
probabilities p ∈ RK are typically obtained by applying a softmax operation to
the logit vector f(x, θ). Let ŷ = argmax

k∈Y
f(x, θ)[k] represent the class predicted

by f . Correspondingly, the confidence for the predicted class is computed as
p̂ = p[ŷ]. A model is defined as perfectly calibrated [11] when:

P
(
ŷi = yi

∣∣ p̂i = pi
)
= pi, ∀pi ∈ (0, 1) (1)

Intuitively, if a perfectly calibrated classifier predicts an output with confidence
p̂ = 0.8, then the prediction is accurate 80% of time. The model is over-confident
if the prediction accuracy is less than 80% and is under-confident if the prediction
accuracy is more than 80%.

4 Our Approach: RelCal
Our proposed training approach is designed to enhance the model’s focus on
relevant features crucial for each class. To identify these important feature di-
mensions, we first define the notion of relevance (see Section 4.1). Next, given
an input image, we select a subset of features by thresholding the calculated

4. OUR APPROACH: RELCAL 5

feature-wise relevance score. In what follows, we provide an in-depth overview
of our proposed approach RelCal.

4.1 Learning the Relevant Features

For feature extraction, we consider a deep neural network fθ parameterized by
θ. Given an input x ∈ X , let h(x) ∈ RL represent the features extracted from
the penultimate layer of the model. The final output f(x) is obtained by passing
h(x) through a dense linear layer with weight matrix W ∈ RL×K :

f(x, θ) = WTh(x) + b (2)

where b ∈ RK is the bias vector. Typically, the penultimate layer embeddings
h(x) serve as a proxy for the features learned by a neural net [38]. Hence, we cal-
culate the feature-wise relevance score based on penultimate embeddings h(x).

Relevance Score. Our main idea is to define a notion of relevance for each
feature dimension in h(x) = [h(1), h(2), ..., h(L)]. This is primarily motivated by
the observation that the classification of a specific example is dependent on a
subset of pertinent attributes. Further, the significance of a particular feature
dimension can fluctuate across various classes and instances. Revisiting the “Cat”
vs “Snake” example, attributes like whiskers and fur hold significance for a “Cat”
image, but may not be relevant for an image from the “Snake” class. To formulate
the notion of significance between a feature dimension h(l), where l ∈ {1, · · · , L},
and a class c ∈ {1, · · · ,K}, an intuitive relevance score can be defined as:

r(h(l), c) = |h(l)Wl,c|, (3)

where Wl,c represents the weight connecting the feature dimension h(l) & the
c-th class, and | · | is the absolute value operator. The term h(l)Wl,c essentially
quantifies the contribution of the feature h(l) to the c-th class. Finally, based
on Eqn. 3, we construct a relevance matrix R ∈ RL×K such that R[i, j] =
r(h(i), j) ∀ i ∈ {1, · · · , L}, j ∈ {1, · · · ,K}.
Mask Matrix. Given a feature dimension h(l), its contribution for each class
can be measured using the relevance score r(h(l), ·). Based on these scores, we can
identify the classes for which h(l) is significant by thresholding on the calculated
relevance scores. Specifically, for each feature dimension h(l) we generate a mask
vector m(l) ∈ {0, 1}K in which each element is 0/1 and is defined as:

m(l)[j] =

{
1 if r(h(l), j) ≥ δ(l)

0 if r(h(l), j) < δ(l)
∀j ∈ {1, · · · ,K}, (4)

where, δ(l) represents the threshold constant for the feature dimension h(l). To
modulate the threshold, we define a pruning percentile p. Specifically, the thresh-
old δ(l) is set as the p-th percentile of the scores in the vector R[l, :]. Next, we
define the mask matrix M ∈ RL×K as: M = [m(1);m(2); · · · ;m(L)].

6 Ghosal et al.

4.2 Training

During training, given an input sample x, we use the mask matrix to prune out
any insignificant connection between a feature dimension and class. Specifically,
after pruning, the logit output for the c-th class is given by:

frel(x, θ)[c] =

L∑
l=1

(R⊙M)⊤[c, l] + b[c] , (5)

where, ⊙ indicates the Hadamard product. Note that, our formulation also flex-
ibly allows each feature dimension to be used for multiple class predictions. As
an example, a class “Laptop” might depend on the two most relevant feature
dimensions: keyboard and screen. Similarly, the class prediction for “TV” might
rely on two features telecontrol and screen. In both cases, the feature of screen
is responsible for the classes “TV” and “Laptop”. Finally, our training objective
takes the form:

min
θ

E(x,y)∼PXY [L (frel(x; θ), y)] , (6)

where L is any standard classification loss.
In Appendix, we provide a detailed algorithmic description and PyTorch-

based pseudocode of our proposed method. Further, in Section 4.3, we show
that training RelCal does not lead to any additional computational overhead.
The complete code will be made available following paper’s acceptance.

Understanding why RelCal improves calibration. Existing studies [11,
28] have shown that a significant factor contributing to miscalibration lies in
the tendency to overfit the training loss, leading to overconfident yet incorrect
predictions. Furthermore, [28] have also pinpointed that the increase in logit
magnitudes can be linked to an increase in the norm of the model weights ∥W∥.
To understand, how RelCal improves model calibration, in Fig. 2 we visualize
the evolution of different metrics during training the model.

1. RelCal reduces overconfident predictions. In Fig. 2(a), we compare the
test NLL loss for the correctly classified samples throughout training for
models trained with and without RelCal. We observe that the loss for the
RelCal trained model remains consistently higher, indicating relatively lower
confidence in correctly predicted samples. This observation is further cor-
roborated by Fig. 2(d), where we track the confidence of correctly predicted
test samples. It is noteworthy that although RelCal reduces confidence in
predictions, there is an enhancement in test accuracy (see Tab. 3). Addi-
tionally, Fig. 2(b) illustrates that the RelCal-trained model demonstrates a
lower NLL loss for the misclassified samples. This indicates that for incor-
rect predictions, RelCal (w. NLL) generates relatively higher confidence for
the correct class compared to the NLL-trained model, consequently resulting
in: (a) reduced test NLL and, (b) decreased confidence for the misclassified
class. This observation is also further verified in Fig. 2(e).

4. OUR APPROACH: RELCAL 7

Fig. 2: We visualize ResNet-50’s performance metrics on CIFAR-10 across training
epochs.

2. RelCal acts as weight regularizer. Recall that the relevance matrix is de-
fined as R[i, j] = r(h(i), j) = |h(i)Wi,j |. Let H ∈ RL×L = diag(h(1), h(2), · · · , h(L)),
be a diagonal matrix with the entries set as the feature embeddings. Then,
the relevance matrix can be expressed as R = |HW| = |H||W|, where | · |
represents the absolute value of the elements of the matrix and W ∈ RL×K

is the weight of the last linear layer. Based on this formulation, the logit
output for the c-th class can also be written as:

frel(x, θ)[c] =

L∑
l=1

(R⊙M)⊤[c, l] + b[c], (7)

=

L∑
l=1

(|H||W| ⊙M)⊤[c, l] + b[c], (8)

=

L∑
l=1

((|W| ⊙M)⊤|H|)[c, l] + b[c], (9)

=

L∑
l=1

(W⊤
rel|H|)[c, l] + b[c], where Wrel = |W| ⊙M (10)

8 Ghosal et al.

From Equation 2, model output based on standard training objective without
RelCal can be written as:

f(x, θ)[c] =

L∑
l=1

(W⊤H)[c, l] + b[c] (11)

Comparing Equation 10 and Equation 11, we observe that training with
RelCal provides an additional implicit regularization on the network weight
W. This observation is further supported by Fig. 2(i), where we plot the
norm of the weight matrix ∥W∥ across different training epochs. We see
that the weight norm of the RelCal-trained model is always lower than the
model trained using only NLL loss, further indicating that RelCal effectively
regularizes the model weights.

4.3 Exploring the Properties of RelCal

In this section, we provide a comprehensive understanding of the advantages
offered by RelCal as well as explore its properties.
RelCal focuses on relevant cues. The core idea of our method is that learn-
ing class-relevant features can address the issue of overly confident predictions,
leading to enhancement in model calibration. To examine our hypothesis, we
analyse GradCAM [37] visualizations of few representative bird images from
CUB-200-2011 [42] dataset in Fig. 4(b). To ensure a fair comparison, both mod-
els are trained using NLL loss. Our observations indicate that the model trained
with RelCal exhibits a more precise focus on semantic attributes critical for
accurate classification. For instance, the image of the “Winged Gull” in the last
row has been misclassified by both models. However, it is noteworthy that the
class predicted by the RelCal-trained model is much more relevant compared to
the other model. Specifically, RelCal predicts the image as a “California Gull”
which is closely related to the original image, whereas the other model outputs
the class label as “Least Auklet” which is entirely unrelated to a Gull. This con-
clusion is further supported by the saliency maps, highlighting the enhanced
discriminative capability of the RelCal-trained model.
RelCal reduces misclassification confidence. Fig. 3 shows distribution plots
of confidence scores for correct and incorrect predictions made by a ResNet-50
model on the CIFAR-10 and CIFAR-10-LT dataset trained with and without
RelCal. The results highlight that RelCal significantly reduces the average con-
fidence level of incorrect predictions. This indicates that RelCal not only results
in a more calibrated model but also provides a more realistic confidence mea-
sure for each prediction, particularly misclassification. To further corroborate the
observation in Fig. 3, we validate our findings through an analysis in Fig. 4(a).
RelCal is model agnostic. To assess the model-agnostic nature of RelCal,
we conducted experiments employing different ResNet architectures with vary-
ing capacities, ranging from 11.2M to 42.5M parameters. Specifically, we trained
two models for each architecture—one using standard technique and other using
RelCal. For training both models, we used focal loss [28]. The experimental re-
sults are presented in Table 6. We observe that training with RelCal consistently

4. OUR APPROACH: RELCAL 9

0.00 0.25 0.50 0.75 1.00

NLL
Correct Predictions
Incorrect Predictions

0.00 0.25 0.50 0.75 1.00

RelCal (w. NLL)
Correct Predictions
Incorrect Predictions

(a) CIFAR-10

Fig. 3: Confidence score distribution for correct and misclassified predictions on
CIFAR-10.

enhances model calibration, irrespective of the underlying model architecture.
In Appendix, we provide further analysis utilizing other standard architectures
such as WideResNet [44], and Vision Transformers [7].

Method ECE AECE
↓ ↓

Random features 8.74 8.97
Features with least relevance 11.73 12.90
RelCal (w. FL) (ours) 2.45 2.43

Table 1: Analysis on relevant
feature selection. We compare dif-
ferent strategies for selecting the
relevant features. All models are
trained using focal loss [28]. Best
performing results are marked in
bold. Model is ResNet-50 and the
dataset is CIFAR-100.

Analysis on relevant feature selec-
tion. A key aspect of our algorithm is
the strategic selection of the most rele-
vant features for class predictions. In par-
ticular, the features are chosen based on
the dimensions that contributed most to
the class’s output. In this analysis, we
contrast our feature selection mechanism
with a random feature selection method
that depends on a stochastic process for
randomly selecting elements within the
feature vector. We report results of this
analysis in Table 1. Empirical results
highlight that randomly choosing feature
dimensions is suboptimal for model cali-
bration.

Training
Method

C-10 C-100 TIN-200
(Train time in hours)

NLL 3.27 3.11 7.30
RelCal (w. NLL) (Ours) 3.33 3.28 7.42

Table 2: Computational cost for
training.We train ResNet-50 with the
same batch size for both setups, using
the software configuration reported in
Appendix.

Training Time of RelCal. In Table 2,
we compare the train time of RelCal
against the standard training method us-
ing NLL loss for different datasets. We
observe that training using RelCal in-
curs no additional computational over-
head as compared to standard training
procedures. Thus, our method not only al-
leviates miscalibration but also does not
impose any extra training time.

10 Ghosal et al.

NLL

Class: Lazuli Bunting Pred: Indigo Bunting Pred: Lazuli Bunting

Class: Red Winged Blackbird Pred: Red Winged Blackbird Pred: Red Winged Blackbird

C
la

ss
: C

at
C

la
ss

: A
irp

la
ne

C
la

ss
: S

hi
p

Class: Winged Gull Pred: Least Auklet Pred: California Gull

(a) (b)

Fig. 4: (a) Training with RelCal reduces the confidence of the misclassifications. Images
are from the CIFAR-10 dataset. (b) GradCAM visualization of models trained with
and without RelCal using NLL loss. The model is ResNet-101 and the images are from
CUB-200.

5 Experiments
In this section, we highlight the effectiveness of our proposed training approach
RelCal. We present a set of experiments to evaluate RelCal against state-of-
the-art train-time calibration methods on several benchmarks.
Datasets. To understand the effectiveness of RelCal for network calibration,
we primarily evaluate RelCal on four standard image classification datasets -
SVHN [31], CIFAR10 [18], CIFAR-100 [18], TinyImageNet-200 [23] (TIN-200)
and one fine-grained image dataset CUB-200 [42]. We divide the training set into
two distinct subsets: (a) a training subset comprising 90% of the samples, and (b)
a validation subset with the remaining 10%, which is used for hyper-parameter
optimization. Further, to analyse the generalization capability of our method,
we also evaluate on the large-scale ImageNet [5] dataset. In addition, we also
validate our technique on two imbalanced long-tailed datasets: CIFAR-10-LT [3],
CIFAR-100-LT [3], and a standard natural language processing (NLP) dataset,
Newsgroups [22]. Our choice of diverse datasets allows us to comprehensively
assess the generalization capability of our proposed method, RelCal, for network
calibration. For more detailed descriptions of each dataset, refer to the Appendix.
Evaluation Metrics. For evaluation, we report standard calibration metrics, in-
cluding Expected Calibration Error (ECE), and Adaptive Expected Calibration
Error (AECE), along with test accuracy to assess the calibration performance.
For fair comparison, following previous studies [15, 27, 32], we use 15 bins to
measure the ECE and AECE. Training with RelCal surpasses state-of-the-art
calibration techniques, enhancing both calibration and test accuracy.
Training Details. For image-classification tasks, we used the ResNet [14] and
WideResNet [44] architecture for primary experimentation. For the NLP classi-
fication task, following past studies [27], we train a Global Pooling CNN (GP-
CNN) architecture [25]. The pruning percentile p ∈ {15, 25, 35, 55, 75, 85, 95} is
cross-validated as described in the Appendix. Following our validation strategy,

6. RESULTS 11

Dataset Model NLL RelCal (w. NLL) LS [29] RelCal (w. LS [29]) FL [28] RelCal (w. FL [28])

Acc ECE AECE Acc ECE AECE Acc ECE AECE Acc ECE AECE Acc ECE AECE Acc ECE AECE

↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓

CIFAR-10 R50 94.99 3.65 2.95 95.19 2.98 2.88 94.97 3.25 3.56 94.91 3.05 3.23 95.02 3.32 3.30 95.32 0.97 1.02
CIFAR-10 WRN-26-10 95.60 2.83 2.83 95.88 2.47 2.47 95.64 4.48 4.29 95.91 3.05 3.23 95.85 4.65 4.44 96.08 0.60 0.80
CIFAR-10-LT(IF=10) R50 89.39 6.91 6.91 89.87 6.47 6.44 89.85 3.86 4.06 89.56 3.41 3.98 88.78 4.16 4.12 89.95 3.21 3.21
CIFAR-10-LT(IF=100) R50 73.53 20.05 20.04 76.19 15.10 15.09 74.19 14.77 14.76 74.50 14.92 14.87 70.03 14.98 15.01 74.43 14.71 14.67

CIFAR-100 R50 78.13 12.54 12.39 78.91 9.34 9.23 77.27 6.87 6.84 78.54 3.92 3.83 77.69 5.51 5.40 78.32 2.75 2.45
CIFAR-100 WRN-26-10 80.21 8.29 8.34 80.63 6.50 6.44 79.27 2.94 2.93 80.32 3.12 3.59 80.42 4.62 4.73 80.10 2.73 2.75
CIFAR-100-LT(IF=10) R50 60.53 13.23 13.14 63.57 12.57 12.43 62.31 6.73 6.75 61.88 6.18 6.12 62.09 6.16 6.19 62.40 5.74 5.73
CIFAR-100-LT(IF=100) R50 39.00 32.13 32.12 40.60 28.39 28.38 39.26 19.98 19.94 43.21 20.91 20.93 36.20 20.76 20.75 41.52 18.23 18.22

TinyImagenet-200 R50 65.76 13.20 13.19 66.14 8.26 8.23 63.52 2.85 2.27 64.75 2.38 2.13 63.80 3.22 3.08 66.48 2.17 2.19

CUB-200 R101 72.57 18.19 18.18 72.85 8.46 8.38 73.25 12.51 12.52 75.02 3.45 3.46 72.87 8.41 8.39 73.11 2.99 3.22

SVHN R50 96.15 2.41 2.40 96.21 2.10 2.05 95.83 4.35 4.18 96.20 4.60 4.38 96.14 4.16 4.21 96.10 1.10 1.07

20 Newsgroups GP-CNN 66.89 22.74 22.78 65.07 22.06 22.47 66.55 6.67 6.36 66.78 5.44 5.89 67.03 13.32 13.30 67.43 10.88 10.86

Table 3: Calibration performance with different loss functions. Comparison
of calibration performance when using RelCal with three commonly used loss func-
tions (NLL/LS/FL). We observe that for all classification loss, training with RelCal
enhances model calibration. Results obtained using RelCal are highlighted in blue. R50
represents ResNet-50 [14] model and WRN-26-10 represents WideResNet-26-10 [44] ar-
chitecture. The best results for each dataset are marked in bold.

Methods
CIFAR-10 [18] CIFAR-100 [18] ImageNet [5]

ResNet-50 ResNet-101 ResNet-50 ResNet-101 ResNet-50

Acc ECE AECE Acc ECE AECE Acc ECE AECE Acc ECE AECE Acc ECE AECE

↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓

NLL 94.99 3.65 2.95 94.48 3.68 3.57 78.13 12.54 12.39 77.84 13.12 13.10 73.86 9.34 9.45
MMCE [21] (ICML 2018) 95.20 3.87 3.89 95.03 3.83 3.83 77.12 12.90 12.89 77.56 13.53 13.39 74.29 8.81 8.83
LS [29] (NeurIPS 2019) 94.97 3.25 3.56 94.10 3.21 3.21 77.27 6.87 6.84 76.98 8.54 8.58 75.14 3.31 3.23
FL [28] (NeurIPS 2020) 95.02 3.32 3.30 95.16 3.48 3.49 77.69 5.51 5.40 77.12 4.99 5.01 74.69 3.93 3.94
FL+MDCA [15] (CVPR 22) 95.16 1.84 1.78 95.18 2.01 2.15 75.46 5.71 5.71 77.21 3.74 3.79 75.05 6.95 6.33
CPC [4] (CVPR 22) 95.10 4.67 4.67 95.38 5.34 5.39 77.78 10.98 10.90 77.82 12.17 12.18 74.98 4.38 4.32
MbLS [27] (CVPR 22) 95.24 1.21 2.98 95.31 1.39 3.45 77.12 4.56 4.56 77.55 5.48 5.78 75.29 4.24 4.28
RankMixup [32] (ICCV 23) 94.88 2.59 2.58 94.25 3.24 3.21 77.11 3.46 3.45 76.46 3.49 3.49 74.86 3.93 3.92

RelCal (w. FL) (Ours) 95.32±0.49 0.97±0.18 1.02±0.16 95.38±0.36 1.41±0.20 1.40±0.17 78.32±0.36 2.75±0.40 2.45±0.37 78.12±0.44 2.43±0.28 2.44±0.30 75.51±0.75 3.06±0.43 3.08±0.38

Table 4: Comparison with state-of-art. We compare RelCal with an ar-
ray of state-of-art train-time calibration techniques on CIFAR10/100 [18] and
ImageNet [5] dataset. Best results are highlighted in bold. All values are in per-
centage (%). Mean and std of our method are estimated over 3 random runs.

we set p = 85 for the ResNet-50 model and p = 95 for the ResNet-101 and
WideResNet-26-10 model across all datasets. We report ablation results for the
effect of p in Section 7.2. We provide further training details in Appendix.
Baselines. We compare our method against an array of competitive train-time
calibration techniques including Negative Log Likelihood (NLL), Label Smooth-
ing [29], MMCE [21], Focal Loss (FL) [28], FL+MDCA [15], CPC [4], MbLS [27]
and RankMixup [32]. For detailed description of each method, refer Appendix.

6 Results
Investigating the impact of different loss functions with RelCal. Since
RelCal is designed to learn features relevant to each class, it can be seamlessly in-
tegrated with standard classification and calibration losses such as Negative Log
Likelihood (NLL), Label Smoothing (LS) [29], Focal Loss (FL) [28], MDCA [15],
or MbLS [27]. Due to space constraints, we show comparative analysis of model
calibration using NLL, LS, and FL in Table 3. We report additional results using
MDCA and MbLS in Appendix. Our empirical evaluation reveals several key in-
sights: (1.) Integrating RelCal with these loss functions substantially enhances

12 Ghosal et al.

Methods
ResNet-50 [14]

CIFAR-10-LT (IF=10) CIFAR-100-LT (IF=10)
Acc ECE AECE Acc ECE AECE

↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓

NLL 89.39 6.91 6.91 60.53 13.23 13.14
LS [29] 89.85 3.86 4.06 62.31 6.73 6.75
FL [28] 88.78 4.16 4.12 62.09 6.16 6.19
FL+MDCA [15] 87.60 5.45 5.44 46.20 11.32 11.43
MbLS [27] 87.82 7.04 6.99 58.10 8.36 8.93
RankMixup [32] 89.80 5.80 5.84 63.83 10.01 9.98

RelCal (w. FL)(Ours) 89.95 3.21 3.21 62.40 5.74 5.73

Table 5: Results on Imbalanced
Datasets. Comparison of calibration per-
formances on two imbalanced datasets
CIFAR-10-LT [3] and CIFAR-100-LT [3].
For imbalanced datasets, we use an imbal-
ance factor (IF) of 10.

Model Params FLOPS Optimal p ECE (%) (↓↓↓)

FL RelCal (w.FL) ∆

R-18 11.2M 0.6G 15 1.11 0.63 +0.48
R-34 21.2M 1.1G 65 2.69 1.59 +1.10
R-50 23.5M 1.3G 85 3.32 0.97 +2.35
R-101 42.5M 2.5G 95 3.48 1.41 +2.07

Table 6: Exploring relationship be-
tween model capacity and pruning
percentile p. We observe training with
RelCal leads to more gains in calibration
for models with larger capacities.

calibration performance across various datasets and architectures. For instance,
employing RelCal in conjunction with NLL loss on the TIN-200 dataset leads
to a reduction in both ECE and AECE by 4.94% and 4.96% respectively, as
compared to the standard NLL training. (2.) Beyond calibration improvements,
RelCal also enhances test accuracy. Notably, when used in conjunction with FL,
we see a 5.32% improvement in accuracy on the CIFAR-100-LT dataset. (3.)Out
of all configurations tested, the combination of RelCal and FL [28] demonstrates
superior calibration performance across most datasets.

Based on these observations, for the subsequent sections of this paper, we
primarily train RelCal in conjunction with Focal Loss [28] unless stated other-
wise.

Comparison with state-of-the-art. Table 4 compares our RelCal with an
array of competitive train-time calibration techniques. We observe that RelCal
consistently improves ECE and AECE on all the datasets and different architec-
tures. Notably, on CIFAR-10 with ResNet-50 architecture, RelCal reduces the
ECE to 0.97% and AECE to 1.02%, which are considerable improvements over
state-of-art techniques such as RankMixup [32] and MbLS [27]. Further, we ob-
serve that RelCal also demonstrates superior performance on the large-scale Im-
ageNet [5] dataset thereby highlighting the importance of learning class-relevant
features. Further, we also note that RelCal is able to achieve the best calibration
performance without sacrificing on the test accuracy.
Performance on imbalanced datasets. In Table 4, we highlighted the im-
pressive performance of RelCal over various standard datasets. However, it is
essential to recognize that these datasets are predominantly balanced, which
may not fully capture the challenges that models face in real-world scenarios.
When deployed in the wild, a model is more likely to encounter skewed and
long-tailed distributions where few classes dominate over the rare classes [36].
To simulate this setup, following [3], we deliberately introduce class imbalance
to the CIFAR dataset to create a long-tail (-LT) distribution. This type of eval-
uation is important for understanding how well the model can make confident

7. DISCUSSION 13

and reliable predictions, especially for rare classes, where class distributions are
often imbalanced. The results of this experiment are presented in Table 5, where
it is noteworthy that RelCal achieves the highest calibration performance for
both CIFAR-10-LT and CIFAR-100-LT datasets.

Methods
WideResNet-26-10 [44]

CIFAR-10 [18] CIFAR-100 [18]
Acc ECE AECE Acc ECE AECE

↑↑↑ ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓

NLL 95.60 2.83 2.83 80.21 8.29 8.34
LS [29] 95.64 4.48 4.29 79.27 2.94 2.93
FL [28] 95.85 4.65 4.44 80.42 4.62 4.73
FL+MDCA [15] 95.90 0.98 1.27 80.05 3.13 3.19
MbLS [27] 95.89 1.32 2.56 79.21 4.58 4.51
RankMixup [32] 95.88 1.72 1.49 78.56 3.13 3.24

RelCal (w. FL)(Ours) 96.08 0.60 0.80 80.10 2.73 2.75

Table 7: Results using WideResNet ar-
chitecture.

Performance on different architec-
tures. In Table 4, we established the su-
periority of RelCal on ResNet [14]. Going
beyond, in Table 7, we show that RelCal
remains competitive and outperforms the
state-of-art for other common architec-
tures such as WideResNet [44]. From Ta-
ble 7, we observe that on CIFAR-10
dataset using WideResNet-26-10 model,
RelCal reduces the ECE to 0.60%– a
1.12% improvement over RankMixup [32].

7 Discussion
7.1 Exploring relationship model capacity and p

In this section, we investigate the presence of any correlation between model
capacity and the optimal pruning percentile p. To this end, we utilize a series of
ResNet [14] models with varying capacities, specifically ResNet-18, ResNet-34,
ResNet-50, and ResNet-101. We present the results of our experiments in Ta-
ble 6. Our findings reveal two important insights: (1) We discern a positive
correlation between the pruning percentile p and number of model parameters.
This observation aligns with the analysis presented in [11], which demonstrated
that models with larger capacities are more susceptible to overfitting. (2) The
advantages gained from training with RelCal become notably more pronounced
in models with larger capacities, such as ResNet-50 and ResNet-101.

7.2 Ablations on pruning percentile p

15 25 35 55 75 85 95
Pruning Percentile (p)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
C

E
 (%

)

FL

Fig. 5: Effect of varying the prun-
ing percentile (p) on calibration
performance of RelCal (w. FL).

In this ablation, we aim to understand the ef-
fect of pruning percentile p on the calibration
performance. The pruning percentile p plays
a critical role in determining the threshold for
selecting the relevant features during train-
ing. A higher value of p implies a more strin-
gent criterion for feature relevance, potentially
pruning more connections deemed less signif-
icant for each class. This ablation is based
on a ResNet-50 model trained on CIFAR-10
dataset. Specifically, we train and compare
multiple models by varying p ∈ {15, 25, 35, 55, 75, 85, 95}. Fig. 5 reports the
influence of p on the Expected Calibration Error (ECE). We observe that: (1)
Setting p = 85 provides the optimal calibration performance, which is consistent

14 Ghosal et al.

with one chosen using our validation strategy (see Appendix). Further, irrespec-
tive of the pruning percentile used, RelCal is consistently better than FL [28].
(2) Lower p values significantly diminish the model’s calibration performance,
corroborating the necessity of pruning irrelevant features. (3) In the extreme
case, when p is too high (e.g. p = 95), we observe a slight deterioration in the
calibration performance.
Additional Comparison. In Appendix, we also compare RelCal with other
common sparsification techniques like Unit Dropout [39], Targeted Dropout [9],
DICE [41], Adaptive Dropout [2], and Guided Dropout [16]. Our findings show
that RelCal consistently achieves the best ECE.

8 Conclusion

We propose RelCal, a simple and novel training approach designed to enhance
network calibration by concentrating on class-relevant features. Our compre-
hensive experiments across various datasets and architectures demonstrate the
effectiveness of RelCal in improving model calibration without much increase
in training time. Notably, training RelCal in conjunction with focal loss consis-
tently outperforms state-of-art train-time calibration methods, achieving signif-
icant reductions in both ECE and AECE metrics. Furthermore, our approach
also exhibits promising results on challenging long-tailed datasets. Our mathe-
matical analysis suggests that RelCal enhances model calibration by implicitly
regularizing network weights, thereby mitigating overconfident predictions.

References

1. Ahn, Y.H., Park, G.M., Kim, S.T.: Line: Out-of-distribution detection by leverag-
ing important neurons (2023) 4

2. Ba, J., Frey, B.: Adaptive dropout for training deep neural networks. Advances in
neural information processing systems 26 (2013) 4, 14

3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets
with label-distribution-aware margin loss. In: Advances in Neural Information Pro-
cessing Systems (2019) 10, 12

4. Cheng, J., Vasconcelos, N.: Calibrating deep neural networks by pairwise con-
straints. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 13699–13708 (2022). https://doi.org/10.1109/CVPR52688.
2022.01334 3, 11

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 10, 11, 12

6. Djurisic, A., Bozanic, N., Ashok, A., Liu, R.: Extremely simple activation shap-
ing for out-of-distribution detection. In: The Eleventh International Confer-
ence on Learning Representations (2023), https://openreview.net/forum?id=
ndYXTEL6cZz 4

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
International Conference on Learning Representations (2021) 9

https://doi.org/10.1109/CVPR52688.2022.01334
https://doi.org/10.1109/CVPR52688.2022.01334
https://doi.org/10.1109/CVPR52688.2022.01334
https://doi.org/10.1109/CVPR52688.2022.01334
https://openreview.net/forum?id=ndYXTEL6cZz
https://openreview.net/forum?id=ndYXTEL6cZz

8. CONCLUSION 15

8. Dusenberry, M.W., Tran, D., Choi, E., Kemp, J., Nixon, J., Jerfel, G., Heller, K.,
Dai, A.M.: Analyzing the role of model uncertainty for electronic health records.
Proceedings of the ACM Conference on Health, Inference, and Learning (2020) 1

9. Gomez, A.N., Zhang, I., Kamalakara, S.R., Madaan, D., Swersky, K., Gal, Y.,
Hinton, G.E.: Learning sparse networks using targeted dropout. arXiv preprint
arXiv:1905.13678 (2019) 14

10. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learn-
ing techniques for autonomous driving. Journal of Field Robotics 37(3), 362–386
(2020) 1

11. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: International Conference on Machine Learning. pp. 1321–1330.
PMLR (2017) 1, 2, 3, 4, 6, 13

12. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding (2016) 4

13. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in neural information processing systems.
pp. 1135–1143 (2015) 4

14. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks
(2016) 3, 10, 11, 12, 13

15. Hebbalaguppe, R., Prakash, J., Madan, N., Arora, C.: A stitch in time saves nine:
A train-time regularizing loss for improved neural network calibration. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 16081–16090 (2022) 2, 3, 10, 11, 12, 13

16. Keshari, R., Singh, R., Vatsa, M.: Guided dropout. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 33, pp. 4065–4072 (2019) 14

17. Kriegeskorte, N.: Deep neural networks: a new framework for modeling biological
vision and brain information processing. Annual review of vision science 1, 417–446
(2015) 2

18. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. Rep. 0, University of Toronto, Toronto, Ontario (2009) 10, 11, 13

19. Kull, M., Perello-Nieto, M., Kängsepp, M., Song, H., Flach, P., et al.: Beyond tem-
perature scaling: Obtaining well-calibrated multiclass probabilities with dirichlet
calibration. arXiv preprint arXiv:1910.12656 (2019) 4

20. Kull, M., Silva Filho, T., Flach, P.: Beta calibration: a well-founded and easily
implemented improvement on logistic calibration for binary classifiers. In: Artificial
Intelligence and Statistics. pp. 623–631. PMLR (2017) 4

21. Kumar, A., Sarawagi, S., Jain, U.: Trainable calibration measures for neural net-
works from kernel mean embeddings. In: International Conference on Machine
Learning. pp. 2805–2814. PMLR (2018) 3, 11

22. Lang, K.: Newsweeder: Learning to filter netnews. In: Machine Learning Proceed-
ings 1995, pp. 331–339. Elsevier (1995) 10

23. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3
(2015) 10

24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015) 2

25. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013) 10

26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017) 2, 3

16 Ghosal et al.

27. Liu, B., Ben Ayed, I., Galdran, A., Dolz, J.: The devil is in the margin: Margin-
based label smoothing for network calibration. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 80–88 (2022) 3, 10,
11, 12, 13

28. Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P., Dokania, P.: Cal-
ibrating deep neural networks using focal loss. Advances in Neural Information
Processing Systems 33, 15288–15299 (2020) 1, 2, 3, 6, 8, 9, 11, 12, 13, 14

29. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? Advances
in neural information processing systems 32 (2019) 1, 2, 3, 11, 12, 13

30. Naeini, M.P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities
using bayesian binning. In: Twenty-Ninth AAAI Conference on Artificial Intelli-
gence (2015) 2, 4

31. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011) 10

32. Noh, J., Park, H., Lee, J., Ham, B.: Rankmixup: Ranking-based mixup training for
network calibration. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 1358–1368 (2023) 1, 10, 11, 12, 13

33. Park, H., Noh, J., Oh, Y., Baek, D., Ham, B.: Acls: Adaptive and conditional label
smoothing for network calibration. In: Proceedings of the IEEE/CVF ICCV (2023)
3

34. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing
neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548 (2017) 3

35. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers 10(3), 61–74
(1999) 2, 4

36. Reed, W.J.: The pareto, zipf and other power laws. Economics letters 74(1), 15–19
(2001) 12

37. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
2017 IEEE International Conference on Computer Vision (ICCV). pp. 618–626
(2017) 8

38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014) 5

39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15(1), 1929–1958 (2014) 4, 14

40. Sun, Y., Guo, C., Li, Y.: React: Out-of-distribution detection with rectified acti-
vations. Advances in NeurIPS 34, 144–157 (2021) 4

41. Sun, Y., Li, Y.: Dice: Leveraging sparsification for out-of-distribution detection.
In: Proceedings of European Conference on Computer Vision (2022) 4, 14

42. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011) 3, 8, 10

43. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision
trees and naive bayesian classifiers. In: Proceedings of the International Conference
on Machine Learning. vol. 1, pp. 609–616 (2001) 2, 4

44. Zagoruyko, S., Komodakis, N.: Wide residual networks. BMVC (2016) 3, 9, 10, 11,
13

45. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: ICLR (2018) 3

	Better Features, Better Calibration: A Simple Fix for Overconfident Networks

