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Abstract. Training prompt tuning models on task-specific data is a
common method for adapting vision-language model knowledge to image
recognition downstream tasks. Despite recent advancements in prompt
tuning, achieving superior generalization to heterogeneous images, across
a wide range of visual characteristics in style, format, and source, re-
mains a significant challenge. To this end, we propose a novel method,
namely Self-generated Cross-modal Prompt tuning (SCP), which gener-
ates pseudo prompts by applying the frozen knowledge in both the ini-
tialization and optimization stages to guide training. Consequently, the
model can be trained on available datasets while effectively generalizing
to heterogeneous image data in a wide spectrum of textual classes and vi-
sual characteristics. Extensive experiments on four benchmarks indicate
that our proposed SCP significantly outperforms well-known baselines
in generalization performance across a broad spectrum of downstream
tasks. Notably, our proposed SCP exhibits significant improvements in
both Cross-Dataset and Domain-Shift Generalization, with performance
gains of at least 3.63% and 11.71%, respectively. Our code is available at
https://github.com/Ghosttimber/Academic.
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1 Introduction

Recently developed vision-language models (VLMs) interpret and connect data
across a variety of modalities, representing a significant leap forward from the
traditional paradigm in multi-modal downstream tasks. Such a model, exempli-
fied by CLIP [28], aligns image and text in a shared space, achieving superior
generalization performance without task-specific training. Building upon CLIP,
Context Optimization (CoOp) [43] prepends learnable tokens into the prompt of
VLMs (learnable prompt), demonstrating improved generalization performance.
This paradigm, termed prompt tuning, tailors VLMs to task-specific datasets,
broadening the applicability of VLMs to a wide range of downstream tasks.

Expanding upon the foundation laid by CoOp, several subsequent approaches
(KgCoOp [36], PromptSRC [16] and TCP [37]) have focused on unlocking the
potential of prompt tuning in downstream tasks, retrieving the frozen knowledge
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Fig. 1. Challenges addressed by our proposed SCP and its performance
compared to the well-known baselines.

lost in training by establishing alignment between the prompted embedding (i.e.
the embedding carrying the learnable token) and the frozen CLIP embedding.
This mechanism facilitates the knowledge transfer from the training distribution
to out-of-distribution, thereby mitigating overfitting to the unseen textual classes
from the training data. As a result, further improved generalizability is attain-
able. Despite the advancement in prompt tuning, a remaining critical challenge
stems from achieving superior generalization to heterogeneous images, which en-
compasses diverse visual characteristics such as style, format, and source, reflect-
ing real-world scenarios as illustrated in Fig. 1(a). In other words, the challenge
lies in finding a learnable prompt against heterogeneous images.

Motivated by the challenges, we have found that transforming a textual
prompt into its counterpart in the image space results in pseudo prompts in-
dependent of visual characteristics. Consequently, incorporating such pseudo
prompts as guidance in training enhances the ability to achieve superior general-
ization across a broader range of downstream tasks as illustrated in Fig. 1(b). Ac-
cordingly, based on the aforementioned observation, we propose a novel prompt
tuning model agnostic to both textual classes and visual characteristics, and it
is referred to as Self-generated Cross-modal Prompt Tuning (SCP).

In essence, SCP systematically leverages frozen CLIP knowledge in both the
initialization and optimization phases. In the initialization, the optimal match-
ing embeddings between the textual and visual prompt are selected by the frozen
CLIP model and incorporated into learnable prompts representation. The main
purpose is to mitigate the negative effects of biases arising from the specificity of
textual class and visual characteristics. Consequently, robust learnable prompts
can be attained to enhance generalization capability. We refer to this initial-
ization strategy as Cascade Propagation Prompt Initialization (CPPI). As for
the optimization, the learnable prompt is aligned with the pseudo prompt em-
bedding (i.e. proxy representation) derived from frozen CLIP knowledge in a
cross-modal manner. Note that the proxy representation holds a different role
regarding the modality of the learnable prompt in the alignment. The proxy
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representation aligned with the visual learnable prompt is generated from the
textual prompt of frozen CLIP, serving as pseudo prompts in the image space. We
found that it remains independent of visual characteristics. Clearly this enables
visual learnable prompts to acquire a robust representation. Similarly, the proxy
representation aligned with the textual learnable prompt comes from the visual
prompt of frozen CLIP. It offers sufficient samples for the training in alignment
while existing baselines rely on limited samples or hand-crafted samples. This
optimization strategy is referred to as Self-generated Proxy Alignment (SPA).

In addition, building upon the cross-modal nature of SPA and following [27],
we adopt the Euclidean loss in the alignment to reduce the modality gap be-
tween textual and visual representations to a desirable level. To mitigate the
information loss [15] in the modality conversion of learnable prompts, we pro-
pose an Entropy-Regulation (ER) module, which, combined with the adoption
of Euclidean loss, further improves the generalization performance.

In summary, this paper makes four major contributions:

– We propose a novel prompt tuning method (Self-generated Cross-modal
Prompt tuning), that trains on limited readily available images, adapting
prompt tuning to a much broader array of downstream applications.

– In our method, we take advantage of textual and visual knowledge from
frozen CLIP into both the initialization and optimization process in a cross-
modal manner, conducive to superior generalization capability.

– We introduce the Euclidean loss and the ER to improve the generalization
capability, mitigating the challenge discussed by the existing research.

– Extensive experiments on four benchmarks clearly demonstrate that our
proposed SCP significantly outperforms the well-known baselines in gener-
alization capability across a wide range of downstream tasks.

2 Related Work

Vision Language Models. Recently, several methods, including BAN [17],
Intra-Inter [10], and MCAN [38], adopt the VLMs with the attention-based
framework, showing that the utilization of VLMs significantly improves the per-
formance across a wide spectrum of downstream tasks. Subsequently, the meth-
ods (ViLBERT [22], LXMERT [32] and UNITER [2]) explore the potential of
VLMs models based on BERT-like architectures, attaining further improvement.
Methods proposed thereafter, namely CLIP [28] and ALIGN [14], are trained to
align a considerable amount of web-scale image-text pair data in a multi-modal
architecture, leaping forward the generalization capability to a new level. Mean-
while, this training mechanism has been widely adopted in image recognition
[9, 41], object detection [8, 23, 39, 33], and segmentation [6, 20, 29].
Prompt Learning. As a new paradigm to leverage VLMs, prompt tuning man-
ages to significantly address the challenges of CLIP arising from the fact that
the hand-crafted text is insufficient for specialized tasks regarding training time
and the sensitivity of prompt design. On the other hand, a recent prompt tuning
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Fig. 2. Schematic architecture of two typical baselines and our proposed method.
Compared to (a) and (b), (c) utilizes multi-modal knowledge of frozen CLIP
and aligned prompted embedding with frozen CLIP embedding in a cross-modal
manner to direct the learnable prompt to obtain a robust representation.

method, Distribution-Aware Prompts tuning (DAPT) [3], optimize the learnable
prompt by minimising the intra-dispersion and maximizing the inter-dispersion
to obtain better generalization performance. Alternatively, Read-only Prompt
Optimization (RPO) [19] proposes a set of read-only prompts aiming to avoid
the impact on the internal representation of CLIP by using masked attention.
Another approach, Decoupled Prompt Tuning (DePT) [40], enhances general-
ization performance by isolating task-specific knowledge from the channels of
feature representation and preserving the shared knowledge.

More recently, two mechanisms, i.e. the multi-modal architecture and the
retrieval of frozen CLIP knowledge, are introduced to prompt tuning. Among
MaPLe, RPO, DAPT and PromptSRC [16], MaPLe [15] is the early method to
apply multi-modal architecture to utilise the knowledge in both text and image
encoders. PromptSRC applies the architecture, and concurrently aligns its learn-
able prompt embedding with frozen CLIP knowledge, which is another pathway
to improve the generalization. Alternatively, several methods improve generaliza-
tion by only retrieving frozen CLIP knowledge, including ProGrad, KgCoOp and
TCP. While ProGrad [44] only optimizes the prompt whose gradient is aligned
(or non-conflicting) to the frozen CLIP knowledge. KgCoOp [36] explicitly ad-
dresses the gap between the embedding of learnable prompts and that of frozen
CLIP as shown in Fig. 2(a). As an alternative, TCP further leverages the frozen
CLIP knowledge by injecting its text embeddings into the encoder illustrated
as Fig. 2(b), enhancing the generalization performance. Note that, these three
methods only retrieve the textual knowledge from frozen CLIP. Besides, meth-
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ods like PromptKD [21] and HPT [34] apply extra knowledge from fine-tuned
models and large language models are not covered in this study.

3 Methodology

In this paper, we propose a novel method, referred to as SCP, to achieve superior
generalization by leveraging the frozen CLIP knowledge in both the initialization
and optimization stage of the learnable prompt as its schematic architecture
shown in Fig. 2(c). Before delineating on SCP, to facilitate understanding, we
first review the fundamental knowledge from the existing baseline framework.

3.1 Existing Baseline Framework

The existing baseline, such as CoOp, adopts CLIP for image recognition down-
stream tasks by prepending learnable tokens to the prompt context. Note that,
the pre-trained encoders in CLIP, both image and text, convert the prompt
context and the image sample into corresponding embeddings, which are then
paired based on the contrastive loss to ensure optimal matching. In specific,
the hand-crafted template with c class labels, e.g. “a photo of a {Class}”,
Class : C ∈ {1, 2, ...c} , is embedded into vectorized textual tokens T = {ti}ci=1,
and the b learnable tokens P = {pi}bi=1 are initialized in text modality space.
Then, the text encoder B(·) interprets the combination of learnable tokens and
vectorized textual tokens into the text embedding W p = B([P, T ]) = {wp

i }
c
i=1.

To infer P , the cosine similarity score sim(·) needs to be maximized. Equiva-
lently, the contrastive loss, between the image embedding x and the prompted
text embedding wp

y, is calculated as

Lce =
exp(sim(x,wp

y/τ))∑c
i=1 exp(sim(x,wp

i /τ))
. (1)

Here, τ refers to the temperature parameter.
To further unlock the potential of CLIP, MaPLe extends learnable prompts

to the image side and takes advantage of multiple transformer blocks in the
learning process. Specifically, the prompted image embedding is generated as
Xp = V([P̃ , Z]). Here, P̃ = F(P ) is the operation that converts learnable token
to image modality space by a projection function F(·), Z refers to the vectorized
visual tokens. Following Maple [15], the operation for processing prompted text
and image embeddings through J transformer layers is

W p
j+1 = Bj+1([Pj , Tj ]) (2)

and

Xp
j+1 = Vj+1([P̃j , Zj ]) = Vj+1([F(Pj), Zj ]), (3)
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respectively, where j ∈ (0, 1, · · · , J − 1). Accordingly, the contrastive loss in
MaPLe is calculated as

Lce =
exp(sim(xp,wp

y/τ))∑c
i=1 exp(sim(xp,wp

i /τ))
. (4)

Alternatively, KgCoOp [36] proposed new loss function, i.e.

Lkg =
∥∥W frozen −W p

∥∥2
2
, (5)

to account for the distribution gap between the text embedding of frozen CLIP
and that of prompted model. Therefore, KgCoOp has the final loss function as

LTotal = Lce + ωLkg, (6)

where ω serves as a crucial weighting hyper-parameter.
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Fig. 3. The framework of Self-generated Cross-model Prompt tuning. Here, Tex-
tual DT and Visual DT perform intra-modal dimension transformation, while
P r and Pu refer to restricted tokens and unrestricted tokens, respectively. F
refers to the projection function, and CDT refers to the cross-modal dimension
transformation module. In addition, LCE is the standard cross-entropy loss, LER

is the proposed Entropy-Regulation constraint to minimize information during
the projection function. LDR and LPA are the constraints for the proposed
Self-generate Proxy Alignment to minimize the discrepancy between the corre-
sponding prompted embedding and frozen CLIP embedding.

3.2 Self-generated Cross-modal Prompt Tuning

In the existing framework, the learnable prompts obtain task-specific knowl-
edge to learn a representation space that potentially overfits the training data.
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Clearly, it degrades the generalization capability when the data is not present
in training. Recent baselines, such as KgCoOp, PromptSRC, and TCP, draw
upon the frozen CLIP knowledge in intra-modal to retrieve the generalization
capability of CLIP lost in such training. However, such a mechanism is insuffi-
cient to direct the learnable prompt to learn a representation that manages to
generalize the heterogeneous images, resulting in a minor improvement in the
related evaluation, i.e. Cross-Dataset generalization and Domain-Shift general-
ization. Accordingly, our proposed method, Self-generated Cross-modal Prompt
tuning (SCP), taps the frozen CLIP knowledge in a cross-modal manner to gen-
erate the pseudo prompts. Consequently, robust learnable prompts are achieved
by aligning pseudo prompts in training, leading to the superior generalization
capability on the image recognition downstream task. It mainly consists of three
major modules, as shown in Fig. 3, each of which is introduced in the sequel.
Cascade Propagation Prompt Initialization (CPPI). In initialization,
CPPI introduces two learnable tokens (restricted tokens P r and unrestricted
tokens Pu) to dynamically leverage the frozen CLIP knowledge, allowing the
learnable prompt to learn a robust representation for a wide range of scenarios.
Specifically, the text and image are first encoded by the frozen CLIP encoder.
Then, the optimal matching embeddings between the textual and visual prompts
are selected by the frozen CLIP model, referred to as W frozen and Xfrozen. The
resulting embeddings are projected by Dimension Transformation (DT) and fur-
ther reshaped into the size of the restricted tokens P r ∈ RC×b×512. Note that,
there are visual DT and textual DT for corresponding modality, and both of them
are built with a two-layer bottleneck structure (Linear-ReLU-Linear), with the
hidden layer reducing the input layer to 64 and 128 as middle dimensions for
visual DT and textual DT, respectively. The output size of both DTs is raised
to b× 512, depending on learnable token length b.

After that, the first element-wise addition is conducted between the text
embedding with a specific class, which has the highest similarity identified by the
frozen CLIP, and the image embedding. Next, a second element-wise addition is
performed between the modified embedding and P r to generate the knowledge-
based learnable tokens P kr. Subsequently, P kr and Pu are combined as P =
[P kr, Pu]. Finally, P undergoes the process outlined in Eqs. 2 and 3.
Entropy-Regulation. As discussed in [15], the direction of modality conver-
sion in learnable tokens affects generalization performance, likely due to infor-
mation loss. Therefore, we propose a module, namely Entropy-Regulation (ER),
to mitigate the information loss and balance the generalization performance be-
tween the directions. In specific, both before and after the projection function,
we employ the Fast Fourier Transform (FFT) on learnable tokens, Then the
entropy of the learnable token is calculated as

Entropy(qi) = −
∑512

i=1qi log2 (qi + ϵ) , (7)

serving as the information recorder IR. Here, the input qi represents the proba-
bility of occurrence of the i-th elements of each learnable token after the opera-
tion of FFT. ϵ is a small positive number. To account for the entropy gap between
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before and after the conversion for every learnable token involved, including the
unrestricted and restricted learnable tokens in each transformer layer, we have

LER = IRbefore − IRafter. (8)

Self-generated Proxy Alignment. Self-generated Proxy Alignment (SPA)
mechanism is introduced to generate a proxy representation by transforming the
frozen CLIP knowledge into cross-modal space for the training. Specifically, the
text embedding W frozen from frozen CLIP is mapped into the image modality
space by the Cross-modal Dimension Transformation (CDT), which has the same
structure as DT with different settings in terms of the dimensions. Note that, the
mapped embedding from text modality space potentially remains independent
of image modality-specific information. The alignment between the mapped em-
bedding and the prompted image embedding Xp manages to develop a robust
representation for Xp, facilitating the improvement of generalization capability.
This operation is referred to as Domain Resistance (DR).

In addition, SPA generates sufficient embedding samples from the frozen
CLIP knowledge in image modality space to address the insufficient training
process on text learnable prompts that occurred in existing methods. Such an
operation is referred to as Prompt Argumentation (PA). The prompted text
embedding W p is mapped into the image modality space by the CDT . Then
the alignment between the resulting embedding and image embeddings Xfrozen

from frozen CLIP provides sufficient training for W p.
Moreover, SPA employs the Euclidean distance (i.e. non-contrastive loss) on

training to reduce the intra-modal gap and consequently enhance the general-
ization performance further. Thus, to account for the distribution gap in the
alignment of both DR and PA can be calculated as

LDR =
∥∥CDT (W frozen)−Xp

∥∥2
2
, (9)

LPA =
∥∥CDT (W p)−Xfrozen

∥∥2
2
, (10)

to prompt the synergy from the marriage of transforming frozen knowledge in
a cross-modal manner and non-contrastive loss. Here, CDT (·) performs cross-
modal dimension transformation. Finally, we have the total loss as

LTotal = LCE + LER + λ1LDR + λ2LPA, (11)

where λ1 and λ2 refer to the weighting factors associated with corresponding
loss and are set to 5 and 7, respectively. Consequently, SPA empowers SCP to
tap the potential of CLIP, conducive to superior generalization capability.

4 Experiments

In this section, we first assess our SCP effectiveness in generalization capabil-
ity. In specific, we compare our proposed SCP with thirteen well-known prompt
tuning methods on four benchmarks widely used in previous studies, including



Self-generated Cross-modal Prompt Tuning 9

Base-to-New class generalization, Cross-Dataset generalization, Domain-Shift
generalization and Few-Shot classification. Then, the extended experiments are
conducted to analyse the effectiveness of modules used in our SCP.

Table 1. Comparison of the Base-to-New generalization with 13 existing ap-
proaches. ‘Uni’, ‘Multi’, ‘FC’ denotes the ‘uni-modal prompt tuning’, ‘multi-
modal prompt tuning’ and ‘frozen CLIP knowledge’, respectively. ∆ refers to
the gap between our proposed SCP and TCP.
Datasets Sets CLIP CoOp CoCoOp DAPT ProGrad ProDA KgCoOp RPO PLOT MaPLe DePT PromptSRC TCP SCP ∆

(IJCV22) (CVPR22) (ICCV23) (ICCV23) (CVPR22) (CVPR23) (ICCV23) (ICLR23) (ICCV23) (CVPR23) (CVPR24) (ICCV23) (CVPR24)

- Uni Uni+FC Multi Uni+FC Uni Uni+FC Multi Uni Multi Uni Multi+FC Uni+FC Multi+FC

Average
Base 69.34 82.38 80.47 83.18 82.48 81.56 80.73 81.13 83.98 82.28 83.62 84.12 84.13 86.48 +2.35
New 74.22 67.96 71.69 69.27 70.75 72.30 73.60 75.00 71.72 75.14 75.04 75.02 75.36 76.11 +0.75
HM 71.70 74.48 75.83 75.59 76.16 76.65 77.00 77.78 77.37 78.55 79.10 79.31 79.51 80.97 +1.46

ImageNet
Base 72.43 76.46 75.98 76.83 77.02 75.40 75.83 76.60 77.30 76.66 77.03 77.75 77.27 82.34 +5.07
New 68.14 66.31 70.43 69.27 66.66 70.23 69.96 71.57 69.87 70.54 70.13 70.70 69.87 76.91 +7.04
HM 70.22 71.02 73.10 72.85 71.46 72.72 72.78 74.00 73.40 73.47 73.42 74.06 73.38 79.53 +6.15

Caltech101
Base 96.84 97.80 97.96 97.83 98.02 98.27 97.72 97.97 98.53 97.74 98.30 98.13 98.23 97.42 -0.81
New 94.00 93.27 93.81 93.07 93.89 93.23 94.39 94.37 92.80 94.36 94.60 93.90 94.67 89.85 -4.82
HM 95.40 95.48 95.84 95.39 95.91 95.68 96.03 96.03 95.58 96.02 96.41 95.97 96.42 93.48 -2.94

Oxford
Pets

Base 91.17 94.47 95.20 95.00 95.07 95.43 94.65 94.63 94.50 95.43 94.33 95.50 94.67 98.11 +3.44
New 97.26 96.00 97.69 95.83 97.63 97.83 97.76 97.50 96.83 97.76 97.23 97.40 97.20 99.40 +2.20
HM 94.12 95.23 96.43 95.41 96.33 96.62 96.18 96.05 95.65 96.58 95.76 96.44 95.92 98.75 +2.83

Standford
Cars

Base 63.37 75.67 70.49 75.80 77.68 74.70 71.76 73.87 79.07 72.94 79.13 78.40 80.80 78.72 -2.08
New 74.89 67.53 73.59 63.93 68.63 71.20 75.04 75.53 74.80 74.00 75.47 74.73 74.13 68.83 -5.30
HM 68.65 71.37 72.01 69.36 72.88 72.91 73.36 74.69 76.88 73.47 77.26 75.52 77.32 73.44 -3.88

Flowers
Base 72.08 97.27 94.87 96.97 95.54 97.70 95.00 94.13 97.93 95.92 98.00 97.90 97.73 95.35 -2.38
New 77.80 67.13 71.75 60.90 71.87 68.68 74.73 76.67 73.53 72.46 76.37 76.77 75.57 77.49 +1.92
HM 74.83 79.44 81.71 74.81 82.03 80.66 83.65 84.50 83.99 82.56 85.84 86.06 85.23 85.50 +0.27

Food101
Base 90.10 89.37 90.70 90.37 90.37 90.30 90.50 90.33 89.80 90.71 90.50 90.63 90.57 98.93 +8.36
New 91.22 88.77 91.29 91.30 89.59 88.57 91.70 90.83 91.37 92.05 91.60 91.50 91.37 98.43 +7.06
HM 90.66 89.07 90.99 90.83 89.98 89.43 91.09 90.58 90.58 91.38 91.05 91.06 90.97 98.68 +7.71

FGVC
Aircraft

Base 27.19 39.67 33.41 39.97 40.54 36.90 36.21 37.33 42.13 37.44 43.20 42.30 41.97 41.40 -0.57
New 36.29 31.23 23.71 29.80 27.57 34.13 33.55 34.20 33.73 35.61 34.83 36.97 34.43 34.87 +0.44
HM 31.09 34.95 27.74 34.14 32.82 35.46 34.83 35.70 37.46 36.50 38.57 39.46 37.83 37.86 +0.03

SUN397
Base 69.36 80.85 79.74 80.97 81.26 78.67 80.29 80.60 82.20 80.82 82.33 82.83 82.63 90.73 +8.10
New 75.35 68.34 76.86 76.97 74.17 76.93 76.53 77.80 73.63 78.70 77.80 79.00 78.20 85.43 +7.23
HM 72.23 74.07 78.27 78.92 77.55 77.79 78.36 79.18 77.68 79.75 80.00 80.87 80.35 88.00 +7.65

DTD
Base 53.24 79.97 77.01 82.23 77.35 80.67 77.55 76.70 81.97 80.36 82.20 82.60 82.77 84.76 +1.99
New 59.90 48.60 56.00 54.23 52.35 56.48 54.99 62.13 43.80 59.18 59.13 57.50 58.07 64.41 +6.34
HM 56.37 60.46 64.85 65.36 62.45 66.44 64.35 68.61 57.09 68.16 68.78 67.80 68.25 73.20 +4.95

EuroSAT
Base 56.48 90.10 87.49 94.73 90.11 83.90 85.64 86.63 93.70 94.07 89.03 92.40 91.63 95.35 +3.72
New 64.05 53.00 60.04 50.33 60.89 66.00 64.34 68.97 62.67 73.23 71.07 68.43 74.73 62.20 -12.53
HM 60.03 66.74 71.21 65.74 72.67 73.88 73.48 76.79 75.11 82.30 79.04 78.63 82.32 75.29 -7.03

UCF101
Base 70.53 84.53 82.33 84.3 84.33 85.23 82.89 83.67 86.60 83.00 85.80 86.93 87.13 88.20 +1.07
New 77.50 67.37 73.45 76.33 74.94 71.97 76.67 75.43 75.90 78.66 77.23 78.33 80.77 79.39 -1.38
HM 73.85 74.98 77.67 80.12 79.35 78.04 79.65 79.34 80.90 80.77 81.29 82.41 83.83 83.56 -0.27

4.1 Experiment Setup

Datasets. To implement the comparisons, as same as the well-known meth-
ods [43, 42, 15, 9, 41], eleven image datasets are used in Base-to-New class gener-
alization, Cross-Dataset generalization and Few-Shot classification. Specifically,
FGVCAircraft [24], Flowers102 [25], Food101 [1], OxfordPets [26] and Stanford-
Cars [18] refer to fine-grained image datasets; Caltech101 [7] and ImageNet [5]
refer to generic-object; DTD [4] refers to texture and EuroSAT [11] refers to satel-
lite. While SUN397 [35] refers to the scene recognition task and UCF101 [31]
refers to the action recognition task. As for Domain-Shift generalization, another
four datasets from the ImageNet family with the shifted domain are included, i.e.
ImageNet-Sketch [33], ImageNet-V2 [30], ImageNet-A [13] and ImageNet-R [12].
Baseline. In this paper, thirteen well-known prompt tuning methods are in-
volved as the baseline, all of which do not leverage the external model but the



10 G Cao et al.

original CLIP as frozen knowledge. The thirteen well-known baselines with val-
idated results are CLIP, CoOp, CoCoOp, DAPT, ProGrad, ProDA, KgCoOp,
RPO, PLOT, MaPLe, DePT, PromptSRC, and TCP.
Training and Evaluation. In the comparisons, we use the CLIP with the
backbone of ViT-B/16 in a 16-shot learning manner. The length b of both P r

and Pu learnable tokens is set to 2. Both P r and Pu are first initialized with “a
photo of Class" in the text modality space. The deep transformer layer depth J
is set to 8. Besides, the SGD optimizer is used for training with a batch size of
4, a learning rate of 3.5e-3, and 30 training epochs. The evaluation metric is the
average accuracy over 3 runs (random seeds 1, 2, and 3). Note that, in Cross-
Dataset and Domain-Shift generalization, we train SCP with J modified to 3,
training epoch set to 2, and a learning rate of 2.6e-3 to reduce computational
cost. Similarly, in ablation experiments, we optimize the training epoch to 5.

4.2 Base-to-New Class Generalization

In the Base-to-New class generalization, every single dataset is divided into two
groups (base and new). Each group contains mutually exclusive classes for train-
ing and evaluation, respectively. Then, this evaluation could assess if, after learn-
ing from the base group, the model could transfer the knowledge to the new group
within one dataset. Thus, the evaluation metrics for generalization performance
include the accuracies of both groups and their Harmonic Mean (HM). Note
that, it can be seen from Tab. 1 that the recent significant progress in general-
ization performance occurred in methods that apply multi-modal prompt tuning
and frozen CLIP knowledge in the training stage (i.e. PromptSRC and TCP).
Thus, we compare our proposed SCP with the well-known baselines from the
perspectives regarding these two prompt tuning mechanisms in the sequel.
Multi-Modal Prompt Tuning. It can be observed in Tab. 1 that the best
average performances among the 4 multi-modal prompt tuning baselines are
84.12% (PromptSRC), 75.12% (MaPLe), and 79.31% (PromptSRC) for Base,
New, and HM, respectively. In comparison, our proposed SCP achieves 86.48%,
76.11%, and 80.97%, respectively. The result represents a significant improve-
ment of 2.36%, 0.99%, and 1.66%, respectively, surpassing the best generalization
performance provided by the multi-modal prompt tuning baselines.
Prompt Tuning with frozen CLIP knowledge. For prompt tuning that
leverages frozen CLIP knowledge, Tab. 1 clearly demonstrates that the TCP
performs the best among the 5 baselines (CoCoOp, ProGrad, KgCoOp, Prompt-
SRC, and TCP), achieving 84.13%, 75.36% and 79.51% for Base, New and HM
metrics, respectively. In fact, it can be clearly seen that TCP outperforms all
the other 12 listed baselines. In contrast, our proposed SCP achieves 86.48%,
76.11%, and 80.97%, respectively, representing an improvement of 2.35%, 0.75%
and 1.46%, respectively. Note that, for all three metrics, our proposed SCP ob-
tains the best generalization performance in 5/11 datasets (ImageNet, DTD,
Food101, OxfordPets and SUN397). Furthermore, in Food101 and OxfordPets
datasets, SCP achieves outstanding generalization performance. For example, in
terms of HM, Food101 and OxfordPets achieve 98.68% and 98.75%, respectively,
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indicating a significant improvement of 7.30% and 2.13% over the best baseline
performance of 91.38% (MaPLe) and 96.62% (ProDA) for these specific datasets.

Overall, through the extensive comparison of the Base-to-New class general-
ization in Tab. 1, it is clearly illustrated our SCP consistently outperforms the
thirteen baselines regarding the generalization performance. It shows that, with
the aid of frozen CLIP knowledge in a cross-modal manner, SCP shows superior
generalization capability in a wide range of image recognition downstream tasks.

4.3 Cross-Dataset Generalization

Table 2. Comparison of Cross-Dataset generalization. ∆ refers to the gap
between our proposed SCP and TCP.

Source Target

ImageNet Caltech Pets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF Avg.

CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
PromptSRC 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
TCP 69.88 94.25 90.46 65.24 71.88 86.78 24.99 67.12 45.00 44.67 68.10 65.85

SCP 87.97 93.67 93.21 60.74 70.51 96.93 27.75 82.98 52.88 50.05 70.52 69.93
∆ +18.09 -0.58 +2.75 -4.50 -1.37 +10.15 +2.76 +15.86 +7.88 +5.38 +2.42 +4.08

For Cross-Dataset generalization, the model is trained on ImageNet as the
source dataset and evaluated on 10 target datasets that potentially contain het-
erogeneous images not presented in ImageNet. Compared to the Base-to-New
class generalization, this evaluation imposes stricter standards for the general-
ization capability regarding domain generalization. However, it can be seen from
Tab.2 that SCP consistently outperforms the baselines regarding the general-
ization performance. Note that these baselines excel in the Base-to-New class
generalization. Specifically, significant performance advantages are achieved on
the source dataset (ImageNet) and 7 out of 10 target datasets. Notably, it can
be calculated that SCP obtains significant improvements of 16.46%, 10.15%,
15.62%, and 6.01% over existing best results on the source dataset and target
datasets (Food, SUN and DTD), respectively. Clearly, this analysis indicates
that SCP achieves a significant generalization performance improvement for the
scenario containing heterogeneous images that are not present in the training.

4.4 Domain-Shift Generalization

In the Domain-Shift generalization, in contrast to Cross-Dataset generalization,
the model is still trained on ImageNet but evaluated on the dataset with the
shifted domain from ImageNet. Note that, this evaluation focuses on assessing
the domain generalization capability of the model while all classes have been
included in the training. As shown in Tab.3, SCP significantly outperforms the
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Table 3. Comparison of Domain-Shift generalization. ∆ refers to the
performance gap between our proposed SCP and TCP.

Source Target

ImageNet -V2 -Sketch -A -R Average

CoOp 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.91
MaPLe 70.72 64.07 49.15 50.90 76.98 60.28
PromptSRC 71.27 64.35 49.55 50.90 77.80 60.65
TCP 69.88 63.14 48.39 50.22 76.22 59.49

SCP 87.97 64.25 61.73 70.28 93.18 72.36
∆ +18.10 +1.12 +13.34 +20.07 +16.95 +12.87

existing best baseline in 3 out of 4 target datasets and is only marginally inferior
to the best result in the remaining one (ImageNet-V2). Table. 3 clearly shows the
superiority of the SCP on Domain-Shift generalization. Significantly, the striking
improvement suggests that SCP offer a novel pathway to advance prompt tuning
for recognizing heterogeneous images in the downstream application.

Table 4. Comparison of Few-Shot classification with 4-shot samples. ∆ refers to
the gap between our proposed SCP and TCP.

Datasets CoOp CoCoOp ProGrad KgCoOp MaPLe DAPT PLOT PromptSRC TCP SCP ∆

ImageNet 69.37 70.55 70.21 70.19 70.67 70.80 70.40 70.80 70.48 84.32 +13.84
Caltech101 94.44 94.98 94.93 94.65 94.30 94.23 95.13 94.77 95.00 94.62 -0.38
OxfordPets 91.30 93.01 93.21 93.20 92.05 92.17 92.55 93.23 91.90 96.38 +4.48
StandfordCars 72.73 69.10 71.75 71.98 68.70 74.40 74.93 71.83 76.30 74.58 -1.72
Flowers 91.14 82.56 89.98 90.69 80.80 92.37 92.93 91.31 94.40 84.46 -9.94
Food101 82.58 86.64 85.77 86.59 86.90 83.60 86.46 86.06 85.30 98.49 +13.19
FGVCAircraft 33.18 30.87 32.93 32.47 29.03 32.47 35.29 32.80 36.20 38.64 +2.44
SUN397 70.13 70.50 71.17 71.79 71.47 72.20 70.42 72.80 72.11 85.84 +13.73
DTD 58.57 54.79 57.72 58.31 54.73 61.37 62.43 60.64 63.97 66.19 +2.22
EuroSAT 68.62 63.83 70.84 71.06 54.87 72.73 80.70 75.02 77.43 80.40 +2.97
UCF101 77.41 74.99 77.82 78.40 73.70 79.40 79.76 79.35 80.83 83.12 +2.29

Avg. 73.59 71.98 74.21 74.48 70.66 75.07 76.45 75.33 76.72 80.64 +3.92

4.5 Few-shot Classification

Having evaluated the generalization capability of our proposed SCP with 16-shot
training, Tab. 4 presents a similar evaluation for a more challenging scenario
where fewer samples are available. In specific, the models are trained on 11
datasets with a 4-shot labelled source image and evaluation is conducted within
the same class space. It can be observed that the proposed SCP outperforms all
the baselines in average performance, and significantly so in 7 out of 11 datasets.
This clearly indicates that SCP also enjoys superb generalization capability for
image recognition downstream tasks with few-shot learning conditions.
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4.6 Ablation analysis

In ablation analysis, we evaluate the effectiveness of various modules introduced
by the proposed SCP regarding the performance in Base-to-New class general-
ization.

Fig. 4. Analysis of Cascade Propagation Prompt Initialization.

Effect of Cascade Propagation Prompt Initialization (CPPI). Fig. 4
examines the impact of CPPI on 4 datasets (ImageNet, Food101, SUN397 and
DTD) and average performance across 11 datasets. For instance, the average
Base, New and HM results with CPPI module improve the performance from
80.73%, 69.98% and 74.97% to 83.81%, 76.87% and 80.19%, respectively. This
result clearly suggests that CPPI effectively embeds the frozen CLIP knowledge
into the learnable prompts, addressing overfitting to the training data.

Table 5. Analysis on Entropy-Regulation. ∆ refers to the gap between different
directions of modality conversion within the same model.

Model Prompt Proj. ImageNet Caltech101 OxfordPets StandfordCars Flowers Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

1. MaPLe
P → P̃ 72.63 96.12 96.67 72.82 81.55 90.83 29.79 79.03 61.90 80.93 80.40
P̃ → P 73.23 96.01 96.68 72.87 82.45 91.08 35.96 79.21 65.74 63.30 81.16
|∆| 0.60 0.11 0.01 0.05 0.90 0.25 6.17 0.18 3.84 17.63 0.76 2.77

2. MaPLe
w/ ER

P → P̃ 72.58 96.58 96.67 72.31 81.98 91.13 29.16 78.90 61.42 80.60 80.59
P̃ → P 73.30 95.95 96.57 72.59 82.00 91.25 29.46 79.46 66.87 61.07 80.18
|∆| 0.72 0.63 0.10 0.28 0.02 0.12 0.30 0.56 5.45 19.53 0.41 2.56

3. SCP
w/o ER

P → P̃ 90.53 90.12 97.82 70.23 80.57 98.80 37.81 89.66 67.86 72.70 82.96
P̃ → P 89.26 92.35 97.03 70.61 84.32 96.13 37.28 90.87 70.30 75.32 81.62
|∆| 1.27 2.23 0.79 0.38 3.75 2.67 0.53 1.21 2.44 2.62 1.34 1.75

4. SCP
P → P̃ 90.02 91.49 97.53 70.70 82.05 99.21 37.81 89.82 68.41 74.46 82.74
P̃ → P 90.13 91.70 97.70 70.99 81.63 98.51 34.92 90.92 71.50 72.16 80.93
|∆| 0.11 0.21 0.17 0.29 0.42 0.70 2.89 1.10 3.09 2.30 1.81 1.19

Effect of Entropy-Regulation Module. To verify the effectiveness of the
Entropy-Regulation (ER) for modality conversion, we disentangle the ER in our
SCP and leverage it on an existing multi-modal method, MaPLe. A modified
SCP and MaPLe are employed in this study to minimize the effect of the script.
In Tab. 5, The absolute value, |∆|, demonstrates the performance gap between
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converting text to image and the reverse process. The average value across 11
datasets indicates that the groups employing the ER exhibit a reduced disparity
across different directions of modality conversion for both the SCP and MaPLe.
Besides, we compare ER with a non-ER group and a modified energy-based
regulation version instead of entropy-based as illustrated in Tab. 6. The results
shows that entropy-based ER effectively enhances generalization performance.

Table 6: Analysis on ER for var-
ious mechanisms.

Regulation Base New HM

w/o ER 83.91 76.95 80.28
Energy-based 54.13 52.73 53.42
Entropy-based 84.41 77.45 80.78

Table 7: Analysis on Self-generated Proxy
Alignment.
Domain Resist. Prompt Augment. Base New HM

- - 81.91 73.04 77.22
✓ - 83.46 77.11 80.16
- ✓ 81.19 72.08 76.37
✓ ✓ 83.81 76.87 80.19

Effect of Self-generated Proxy Alignment. Table. 7 explore all four combi-
nations in terms of the adoption of two modules (Domain Resistance and Prompt
Augmentation). It can be clearly seen that solely employing the DR appears to
enhance generalization capability, in contrast to the less favourable performance
of only using PA. However, the combination of both DR and PA achieves higher
generalization performance in the Base and HM than others.

Table 8. Analysis on the initialization templates.
Templates Base New HM

“a photo of a" 83.81 76.87 80.19

“this is a picture of” 83.89 76.94 80.26

“X X X X" 84.79 78.67 81.62

Effect of different initialization templates. We analyze the effect of the ini-
tialization template for learnable tokens by comparing three different templates,
“a photo of a {}", “this is a picture of {}" and random initialization template
“X X X X {}". Table. 8 shows a marginal difference between the two hand-
crafted templates. More importantly, the random initialization template further
empowers SCP to achieve superior generalizability, although it necessitates much
stricter standards for the training of learnable prompts. This analysis indicates
that SCP is robust against the effect associated with the initialization template.
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SCP: ImageNet-R TCP: ImageNet-R SCP: SUN397 TCP: SUN397

Fig. 5. t-SNE plots of image embeddings in SCP and TCP.

5 Visualization

To facilitate understanding of the superior generalization performance achieved
by SCP, in Fig. 5, the image embeddings prepended with the learnable token from
our proposed SCP and TCP are visualized in t-SNE, while colours differentiate
classes in the dataset. SCP display more distinct discriminative clustering than
those from TCP in both Cross-Dataset and Domain-Shift Generalization.

6 Conclusion

Prompt tuning effectively adapts fundamental vision-language models to the im-
age recognition downstream tasks. However, prompt tuning methods suffer from
overfitting to training data, limiting the potential improvement of generalization
capability, significantly so for heterogeneous images that differ from the training
data. In this study, we address this challenge from the perspective of finding
a robust representation of learnable prompts. To obtain such a representation,
we propose to train the learnable prompt by aligning pseudo prompts generated
from self-knowledge in a cross-modal manner. The resulting representation is
able to adapt to various textual classes and visual characteristics, consequently
enhancing the generalization capability. Extensive experiments on four bench-
marks clearly show that SCP outperforms well-known baselines in generalization
performance. In particular, our proposed SCP achieves a striking improvement
of generalization performance on Cross-Dataset and Domain-Shift generaliza-
tion, revealing its superiority of generalization capability across a wide range of
scenarios where the heterogeneous images are not present in the training data.
Crucially, this paper provides a new avenue for expanding the applicability of
prompt tuning to a broader spectrum of downstream applications.
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