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Abstract. Strategic classification investigates the interaction between
a decision-maker (modeled as a jury) and individuals (agents) who may
strategically modify their features to obtain favorable outcomes. A key
challenge in this setting is strategic improvement, which focuses on de-
signing incentive mechanisms that encourage individuals to improve their
true qualifications. In real-world scenarios, decision-making often in-
volves multi-dimensional evaluations composed of multiple sub-indicators
and a final comprehensive assessment. However, most existing paradigms
for strategic classification rely on a single decision model, which is in-
adequate for capturing the complexity of such settings. To address this
gap, we introduce the problem of Strategic Improvement with Decision
Interactions (SIDI), a novel setting that incorporates multiple inter-
acting decision models and an overarching evaluation mechanism. We
analyze the influence of decision interactions and reveal how correla-
tions among classifiers can exacerbate manipulative behaviors. Building
on these insights, we propose a decorrelation-based strategic improve-
ment framework that leverages decision interactions to promote authen-
tic qualification enhancements. Extensive experiments on both real-world
and synthetic datasets demonstrate the effectiveness of our framework
in encouraging genuine improvements while maintaining robust accuracy.
Our findings highlight the importance of modeling decision interactions
and provide new directions for strategic machine learning.
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1 Introduction

As machine learning-based decision making becomes increasingly prevalent, strate-
gic classification [23]| has garnered significant attention in recent years. Strate-
gic classification addresses scenarios where individuals intentionally adapt their
features to achieve desirable outcomes from intelligent decision systems. This
phenomenon is evident in various domains such as credit scoring [1], hiring pro-
cesses [41], and academic admissions [20]. In these contexts, individuals often
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Fig.1: An illustration of decision interaction. In traditional classification with-
out strategic behavior, individuals fail to pass the loan application (left). With
strategic behavior only towards a single model, the individual raises their score
on the loan record metric, but it is still insufficient to pass the application (cen-
ter). In decision interaction, the individual influences the loan record outcome
by achieving high scores on other metrics, passing the loan approval (right).

manipulate their attributes to secure more favorable classifications, thereby chal-
lenging the fairness and integrity of these systems. For instance, in credit scoring,
applicants might inflate their income or alter other financial metrics to attain a
higher credit score.

As these strategic behaviors become more widespread, it is essential to under-
stand and mitigate them in order to maintain the reliability of machine learning
systems [37]. Early research primarily focused on developing classifiers that are
robust to manipulation [51,19]. While effective in detecting and resisting ad-
versarial behaviors, such approaches often neglect the incentive structures that
motivate individuals to game the system [36].

To overcome this limitation, the notion of strategic improvement has been
proposed [4]. Instead of merely preventing manipulation, this paradigm aims
to design incentive-compatible systems that encourage individuals to genuinely
improve their underlying qualifications. For example, in college admissions, edu-
cators may wish to promote substantive academic preparation for standardized
tests like the SAT, rather than rewarding superficial score inflation.

Existing studies in strategic machine learning have primarily focused on a
single decision model. However, real-world strategic classification scenarios are
far more diverse and complex. To ensure stability and accuracy, practical de-
cision scenarios typically involve multi-dimensional evaluations of individuals,
encompassing multiple sub-indicators and a final comprehensive assessment [2].
For example, in the financial services domain [33], decision makers deploy mul-
tiple classifiers (sub-classifiers) to evaluate an individual’s creditworthiness,
detect fraud, and approve loans, among other tasks. The final evaluation score
is determined based on the results from these different indicators.

In multi-classifier decision scenarios, classifiers often exhibit significant in-
terdependence [15]. As a result, a favorable outcome in one sub-classifier can
influence the predictions of others. For example, in bank loan assessments, a
positive evaluation of creditworthiness may affect the outcomes of fraud detec-
tion or loan approval components. We refer to this phenomenon as decision
interaction, which creates additional opportunities for strategic manipulation
In particular, decision interaction enables individuals to exploit correlations be-
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tween classifiers, creating shortcut paths to favorable final decisions that do not
require genuine improvement across all relevant dimensions. For instance, indi-
viduals may selectively enhance their scores on sub-classifiers that are relatively
easy to manipulate and less critical to the true outcome, while avoiding im-
provements on harder but more important indicators.

Returning to the bank loan example (see Fig. 1), an applicant who fails to
meet the eligibility threshold—even after directly manipulating their score in the
"loan repayment record" classifier—may still secure a loan. By recognizing the
interdependencies among decision models, the applicant can strategically
improve their scores on other, more manipulable classifiers. These improvements
then propagate through the interaction structure, indirectly boosting their eval-
uation in the loan repayment metric and ultimately leading to approval. We refer
to this form of manipulation, where individuals exploit model interdependencies
to achieve favorable outcomes without genuine qualification enhancement, as
interactive strategic behavior.

Towards such unique strategic behaviors in interacting classifiers, we explore
this new dimension, aiming to uncover the interactions between multiple decision
models in this paper. Our work focuses on addressing two key questions in the
context of decision interaction and interactive strategic behavior:

1. How to model strategic machine learning problems involving decision
interaction in multi-classifier scenarios?

2. How to mitigate the impact of interactive strategic behavior on decision-
making models?

To answer the above-mentioned questions, we contribute a new problem
called Strategic Improvement with Decision Interaction (SIDI). In this context,
multiple sub-classifiers first evaluate different aspects of the individuals. Finally,
a summary decision model, such as a linear model or a neural network block,
integrates the results from multiple sub-classifiers to produce a comprehensive
evaluation. Overall, we summarize our contributions as follows:

1. Introduction of the SIDI problem: We propose the problem of strategic
improvement with decision interaction (SIDI). This novel problem closely
mirrors real-world scenarios and extends the strategic machine learning task
to a broader dimension. We conduct a systematic analysis of decision inter-
actions and interactive strategic behaviors, examining the correlation among
sub-classifiers and the potential impact on system performance.

2. Improvement framework with decorrelation: By investigating the rela-
tionship between the correlations among interactive classifiers and strategic
behaviors, we demonstrate that appropriate decorrelation facilitates genuine
individual improvement. Building on this insight, we propose an effective
decorrelation method and design a novel strategic improvement framework
for decision interactions.
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3. Experimental verification: Our extensive experiments on real-world and
synthetic datasets validate the efficacy and robustness of our method in
decision interaction environments.

2 Related Work

2.1 Strategic Classification

Foundational work in strategic classification [23] commenced by examining how
individuals might manipulate their features to obtain favorable outcomes from
classifiers. Focusing on the adverse consequences of strategic behavior, some
studies aim to develop algorithms that are resilient to such manipulation [9, 44].
Given the complexity of strategic classification, some research attempts to ad-
dress unknown manipulations or limited information [12, 19]. Recent approaches
have proposed stochastic classifiers [43], differentiable optimization-based de-
fenses [34], and graph-based models [14] to improve robustness and handle inter-
agent dependencies. Multi-agent extensions further explore strategic externalities
and interaction effects [27]. Beyond robustness, to avoid disproportionate disad-
vantages for certain demographic groups, ongoing studies have also investigated
fairness in strategic machine learning [50, 17, 29].

2.2 Strategic Improvement

While early research framed strategic behavior as adversarial, an emerging di-
rection views it as an opportunity to promote genuine self-improvement. Strate-
gic improvement [36] introduces a causal framework that aligns agents’ incen-
tives with authentic qualification gains. Building on this idea, several studies
design mechanisms that encourage changes in causal features or improvable fea-
tures, rather than superficial manipulation [25,8,26,45,13,7]. To address feed-
back long-term benefits in dynamic systems, performative prediction [39, 22, 38|
examines how model deployment can influence the distribution of agents over
time. Others explore strategies such as maximizing long-term social welfare [21,
16,46|, aiming to regulate strategic behavior for broader societal benefit 4.

3 Preliminaries

We present the essential background on strategic machine learning and causal
decorrelation methods. Throughout this paper, we denote random variables by
uppercase letters (e.g., X and Y') and their realizations by lowercase letters (e.g.,
x and y). Bold symbols (e.g., x and X) are used for vectors or matrices.

4 More related work is included in Appendix G.
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3.1 Strategic Classification

The strategic classification (SC) problem is commonly formulated as a Stackel-
berg game ® involving two players: a decision maker (modeled as a jury) and
the classified individuals (modeled as agents) [23].

The decision maker defines a classification function f : R? — {0, 1}, mapping
a feature vector x to a binary outcome.

Definition 1 (Strategic Manipulation). Agents may strategically change their
features to X' at a cost ¢(x,x’). Strategic manipulation is given by

X' = b(x) = arg max [ /(') = Ae(x,%)] (1)
where f(x') € {0,1} is the classification result after modification, c(x,x’) is the
manipulation cost, A\ > 0 is a trade-off parameter, and D is the feature space.
Typically, the cost is modeled as the Mahalanobis distance [18].

Definition 2 (Decision Optimization). To mitigate manipulation, the deci-
sion maker optimizes f to maximize expected accuracy against strategic manip-
ulation:

f* € arg r}?‘]}’__{E(&y)ND [1(f(b(X)) = y)], (2)

where F is the set of all feasible classification rules, 1 denotes the indicator
function 1(-) — {=1,1}, and y is the observed label.

Improvement Against Gaming. Traditional strategic classifiers often suffer from
suboptimal accuracy because they cannot effectively distinguish between genuine
improvement and gaming behavior [36, 50]. For example, consider a loan approval
scenario: a model predicts whether a customer will repay a loan. In this case, a
model designer benefits when y = +1, indicating that a borrower will repay the
loan.

Within the strategic improvement framework [8,26], the strategic manipula-
tion of agents can modify their true qualifications. Therefore, if an agent adapts
the feature from z to 2/, with qualification becoming y(z'), it may differ from
y(z). As a result, strategic improvement corresponds to training a classifier f*
that maximizes the following ideal objective:

f* € argmaxE,p [1(f(2') = y(2'))], (3)
fer

where 2/ is the agent’s adapted feature, and y(«’) is the true qualification after
strategic behavior.

® In Stackelberg framework, the interaction unfolds in two stages: (i) the decision
maker publishes its policy (classification rule f); (ii) decision subjects (agents), after
observing the policy, decide whether to modify their features.
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3.2 Decorrelation Method

Decorrelation is a fundamental concept in machine learning, aimed at reducing
or eliminating the correlation between variables to maximize their independence.
This technique plays a crucial role in addressing multicollinearity issues among
variables and minimizing dependencies between features in specific tasks.

Our work aims to propose a decorrelation method applicable to decision

interactions based on the following lemmas ©.

Lemma 1 (Variable Independence [6]). Variables X andY are independent
if B(XF - YY) = E(XF)-E(Y!) holds for all k and | in N with discretization
condition.

Inspired by the sample weighting methods in the causal literature [3, 31], we
investigate the following methods for linear correlation.

Lemma 2 (Independence via Reweighting [32]). Let X, and X, be ran-
dom variables with all existing moments. There exists a reweighting scheme with
weights W such that X, and Xy become independent under the weighted distribu-
tion. The optimal weights W* can be obtained by solving the following moment-
matching objective:

. . o0 o0 2
W :argm&n;;;m[xg-zwxs]—E[XﬁW]E[Xé“-W]HQ’ (4)
o

where Yy denotes the covariance structure under the weighted distribution.

Lemma 3 (Decorrelation via Fourier Transform [49]). By applying the
Fourier transform to map the variables with linear and nonlinear correlations
in the original domain into the frequency domain, the resulting features can be
decorrelated using standard linear decorrelation methods.

4 Problem Statement

4.1 Decision Interaction

In many real-world applications, decision makers rely on multiple sub-classifiers
to evaluate agents based on various criteria. These sub-classifiers are often not
independent: a favorable outcome from one classifier can influence the
results of others, ultimately affecting the final decision. We refer to this
phenomenon as decision interaction.

Definition 3 (Decision Interaction). Let X' denote the population with dis-

tribution D. Suppose there are n interacting classifiers {h1, ha, ..., hy}, i.e., sub-
classifiers, where each classifier produces an outcome according to
Yi = hi(xvyfi)a (5)

% The proofs of these lemmas are included in Appendix A.



Advanced Strategic Improvement with Decision Interactions 7

where y_; denotes the outputs of all classifiers except h;, fori =1,...,n. These
outputs may either be treated as fixed from a previous evaluation or dynamically
updated, depending on the system.

Let Y = (y1,Y2,.--,Yn) be the vector of outputs. The final comprehensive
decision is computed as s = g(Y), where g : R — {—1,+1} is an aggregation
function that maps the sub-classifier outputs to a final decision. The function g
can be implemented as a linear model, a neural network, or a rule-based evalu-
ator.

Remark 1. We say that decision interaction exists if a change in y; (for some ¢)
can directly or indirectly influence the output of another classifier y; (for j # i)
through their functional dependencies, thereby affecting the final decision s.

Under decision interaction, the decision boundaries of classifiers are no longer
isolated. Instead, they form an interdependent structure where a modification in
one feature can propagate through multiple classifiers, amplifying its effect on
the final decision outcome.

4.2 Interactive Strategic Behavior

In a decision interaction environment, agents can exploit dependencies among
multiple classifiers to achieve favorable outcomes at a reduced cost. This phe-
nomenon, which we term interactive strategic behavior, arises when agents co-
ordinate their feature modifications to influence one classifier’s output in a way
that also affects others, thereby amplifying the overall effect of their strategic
actions.

Let x € X be the original feature vector of a agent, and let c¢(z,z’) de-
note the cost of modifying = to z’. Suppose there are n interacting classifiers
{h1,ha,..., hy}, where each classifier’s output may depend not only on x but
also on the outputs of the others.

To isolate the effect of strategic behavior on a particular classifier, we adopt a
freeze-and-optimize framework. First, we compute the outputs y* = (y5,...,y})
on the original input x using a fixed-point evaluation procedure. Then, for a
given index ¢, we freeze all outputs y; for j # i, and allow only the i-th classifier
to respond to modifications in the feature vector.

Definition 4 (Interactive Strategic Behavior). Let y*, = (v1,...,y/_{,
Yir1s---»Yn) denote the frozen outputs of all classifiers except the i-th. The agent
exhibits interactive strategic behavior with respect to the i-th classifier by selecting
a modified feature vector x' according to:

r_ — —_ . ’
x —argglg%{g(hl(x,yfl),..whn(m,yfn)) )\c(gc,a?)}, (6)

where A > 0 is a trade-off parameter. Although the overall decision function g
depends on all classifiers, only the i-th classifier’s output changes in response to
x'; all others remain fized by construction.
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Fig. 2: A loan approval example with interacting decision models. The red arrows
represent decision interactions.

Remark 2. This definition formalizes a targeted form of strategic behavior in
interactive settings. The agents optimize their features to influence a particular
sub-classifier, while accounting for the fixed influence of others. This setup reveals
how local manipulations can leverage inter-classifier dependencies to affect the
final decision, even without directly altering all sub-models.

Ezample 1 (Loan Approval with Interacting Classifiers). As illustrated in Fig. 2,
consider a loan application evaluated by three interacting classifiers: creditwor-
thiness (y1), fraud detection (y2), and indebtedness (ys). Initially, the applicant
is rejected (s = —1), primarily due to a low creditworthiness score (y; = —1).
Under traditional strategic manipulation, the applicant may attempt to improve
yp directly (e.g., by repaying part of a loan), but the effect is limited and in-
sufficient to change the final decision. By recognizing the dependencies among
classifiers, the applicant instead improves ys and ys, which indirectly influence
y1 through decision interactions. As a result, y; increases beyond the approval
threshold, ultimately yielding a favorable final decision (s = +1). This illus-
trates how interactive strategic behavior can leverage inter-model dependencies
to achieve positive outcomes at a lower manipulation cost.

In the context of decision interaction, as illustrated in Example 1, agents
consider the outcomes of multiple decision models when deciding how to ma-
nipulate their features. By leveraging these interdependent relationships, they
can achieve desired results at a reduced cost compared to manipulating each
classifier in isolation.

We define our overarching problem in this multi-classifier environment.

Problem 1 (Strategic Improvement with Decision Interaction). Consider a deci-
sion interaction environment e with a population A'¢ drawn from a distribution
D¢, and n interacting classifiers h{,...,h? producing outcomes Y°. The com-
prehensive evaluation is given by s¢ = g(Y*¢). Our task is to learn an algorithm
A that minimizes interactive strategic behavior and encourages authentic im-
provements.

To solve this novel problem, we provide an incentive improvement framework
for decision interactions and design a novel decorrelation method for interactive
strategic behavior.
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Fig. 3: Schematic of the decision interaction. Y7 and Y5 denote the results of the
sub-classifiers, while S represents the aggregate score. The red arrows signify
interactions between the classifiers.

5 Methods for Strategic Improvement with Decision
Interaction

We argue that interactive strategic behavior arises due to the correlation among
interacting classifiers. In this section, we analyze this correlation and subse-
quently establish a novel framework for strategic improvement under decision
interaction.

5.1 Decorrelation Promoting Improvement

We begin by noting that in SIDI, interacting classifiers exhibit a strong correla-
tion. As depicted in Fig. 3, a change in one classifier (e.g., Y3) can influence the
output of another classifier (e.g., Y1), ultimately affecting the final evaluation
score S. To analyze the relationship between correlation and strategic behavior,
we propose the following hypothesis:

Hypothesis 1 (Correlation Exacerbates Strategic Behavior) In SIDI, cor-
relation among interacting classifiers exacerbates strategic (manipulative) behav-
ior of agents, enabling them to achieve favorable outcomes by modifying their
features without true improvement.

Remark 3. This hypothesis is motivated by the observation that when interac-
tions exist among sub-classifiers, even small modifications to individual features
are amplified through decision interactions, leading to more pronounced changes
in the final decision scores.

We quantify this phenomenon by introducing the local sensitivity.

Definition 5 (Local Sensitivity in Decision Interaction). Let F(x) =
g(hl(x, Y_1),-. .7hn(x7y,n)) be the comprehensive decision function with y; =
hi(x,y—i). The local sensitivity at point x is defined as

(%) = [|[Dg(h(x)) - Vxh(x)]], (7)

where Dg(h(x)) € R'" is the gradient of g at h(x), and Vxh(x) € R™*? is the

Jacobian matriz of h(x) with respect to x 7.

" The specific derivation is in Appendix D.1.
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Remark 4. Local sensitivity v(x) characterizes the impact on the comprehensive
evaluation F'(x) following a change in feature x. A larger value of v(x) indicates
a greater influence.

Consequently, consider a decorrelation transformation @@ € R™*" used to
de-correlate the interacting classifier outputs, i.e.,h(x) = Qh(x) and g(h(x)) =
g(Q_lfl(x)). The decorrelation local sensitivity is denoted as:

3(x) = | D3(Q'R()) - Q7" Vah(x). ®)

We argue that 4(x) < v(x) (see Appendix D.2 for details), which indicates
that decorrelation reduces the utility of strategic behavior.

Proposition 1 (Decorrelation Promotes Improvement 8). In the SIDI
problem, an appropriate decorrelation method that attenuates only the spurious
correlations will diminish the gains from manipulative strategic behavior, thereby
promoting substantive improvement.

5.2 Decorrelation between Interacting Classifiers

Note that in the context of the comprehensive evaluation process, the outcomes
of interacting classifiers are often discrete. Accordingly, we present a decorrela-
tion theorem for SIDI based on Lemma 1.

Theorem 1 (Independence in SIDI). Let Y, and Y be the outcomes of two
interacting classifiers, each taking a finite number of discrete values. For each
positive integer k, denote by Yfk) the k-th order moment of Y;, and similarly
for Yj(-k). Suppose there exists a sequence {e(k)}ren with e(k) > 0 for all k € N
and lime(k) = 0, such that for every k € N the following inequality holds:

HE[(YEM)TYJ(‘M} - E[ng)} ']E{Yj(-k)} Hz < e(k). (9)

Then, the outcomes Y; and Y; can be regarded as approzimately independent °.

Remark 5. In SIDI, both linear and nonlinear correlations coexist. To address
linear and nonlinear correlations more effectively, we transform the decorrelation
problem into a linear one in a high-dimensional space, leveraging the principles
outlined in Lemma 3.

Definition 6 (Fourier Transform in Interacting Classifiers). Let uy(Y;)
denote the Fourier features obtained from a function up € Hprppr. Then, the
Fourier features of Y; are given by:

u(Y;) = (ur(Yi), uz(Yi), -, um(Yi)) € Hrrr. (10)

8 The proof is included in Appendix E.
9 The proof can be found in Appendix B.
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The functions {u1,us, -+ ,um} are sampled from the space of Random Fourier
Features Hrpp:

Hrrr={f:2— V2cos(wr + ¢) | w~ N(0,1), ¢ ~ Uniform(0,2m)}. (11)

where w is sampled from the standard Normal distribution and ¢ is sampled from
the Uniform distribution.

According to Lemma 2, we introduce adaptive weights W to regulate the
correlations between interacting classifiers. Given the Fourier features u(Y;)
and u(Y) for interacting classifiers, we propose the following measure:

A’}\'}LVRFF Z Z H]E[ Y(k) N u(y§k))]

2l (12)
E[u(y®)” Wi B )" W]

where Yw denotes the covariance structure under the weighted distribution.

Remark 6. According to the basic condition for linear independence [24, 48], it
is sufficient to consider only the cases £k =1 and k = 2 in Theorem 1.

Proposition 2 (Adaptive Weight in Decision Interaction '°). In the SIDI
context, given the outcomes Y1,Yo,..., Y, of n interacting classifiers, the cor-
relations among them can be reduced by designing adaptive weights W, which
can be learned via the following objective:

W* = arg max AHRFFIC, where A, ={w & R" w;=n,. (13
ey 447 foemiSm=nb.

5.3 Decision Interaction Improvement Mechanism

Traditional strategic classification methods and improvement mechanisms have
not yet accounted for decision interactions. Based on the outline of the strategic
classification in Subsection 3.1, we propose a new strategic improvement mech-
anism that explicitly addresses the SIDI problem.

Definition 7 (Utility Function in SIDI). Given n interacting classifiers
hi,ha, ..., hy, and a comprehensive evaluator g, the utility function is defined
as:

U(val) :g(ylay27"' ayn) 7>‘C(X7X/)a (14)

where X' is the modified feature vector from strategic behavior, y; is the outcome
of the i-th interacting classifier h;, and c is the cost function.

10 The proof can be found in Appendix F.
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Definition 8 (Strategic Behavior in SIDI). In strategic improvement, a
agent’s strategic behavior is categorized into two types by and byy:

x; = br(x) = argmax U(x,x'), x); = by(x) = argmax U(x,x'), (15)
z,x' €D z,x’' €D
where by represents strategic behaviors that genuinely enhance the agent’s true
qualification, while by; represents strategic behaviors aimed solely at deceiving
the decision model.

Remark 7. We write x = (x7,Xp,Xy), which denotes the categories of fea-
tures:Improvable features (xr), Manipulable features (xpr), and Immutable fea-
tures (xy) L.

Definition 9 (Improvement for Interacting Classifier). A new objective
function can be introduced for each interacting classifier in SIDI.

h} € arg }Ilng%(t Rpr(hi) := kRy(hi) + Ry (hy), (16)

where Ry(h;) = Epp[1(hi(X}, xu,y—:) = +1)] is the improvement objective, re-
warding agents for achieving genwine improvement, while Ra(h;) = Exp[L1(h:(x],
X XU, Y—i) = ¥i)] is the manipulation objective. The parameter k > 0 balances
the two competing objectives.

Definition 10 (Decision Optimization in SIDI). Let y; denote the outcome
of the optimized interacting classifier h. We incorporate adaptive weights into g
to obtain a weighted evaluator gy . We optimize gw wvia the following objective:

g;;V S arg max IE(x,y)ND [1 (gW(yL . 7y1>;) = Strue)] . (17)
gw €G

Remark 8. By employing a comprehensive evaluator with adaptive weights and
integrating an improvement objective through interacting classifiers, we establish
a novel strategic improvement framework in SIDI.

6 Experiment

In this section, we evaluate the efficacy of our method for the new problem, i.e.,
strategic improvement with decision interaction. In this new environment, our
main experiments are divided into four parts:

1. Compare the performance of the single model and the interactive models

across different classification scenarios.

Verify the relationship between decorrelation and strategic improvement

3. Evaluate the performance with three different methods. T'C, traditional
strategic classification ignore the improvement in agents. TI, traditional
strategic improvement, does not consider decision interaction. SIDI, our
method, focuses on strategic improvement with decision interaction,

4. Ablation studies on the number of interacting classifiers.

N

11 The method for feature classification is included in Appendix C.
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Fig. 4: Performance comparison in the SIDI problem under different degrees of
decorrelation across small-scale and large-scale datasets.

6.1 Setup

Dataset. We utilized six real datasets and one synthetic dataset to validate the
efficacy of our method. Credit, a dataset contains individual credit information,
including credit history, loan purpose, loan amount, employment duration, and
personal information [47]. Student Performance, a dataset includes student
performance data in mathematics and Portuguese language courses [11]. Adult, a
census-based dataset for predicting adult annual incomes [5]. PhiUSIIL, a sub-
stantial dataset comprising 134,850 legitimate and 100,945 phishing URLs [40].
German, a dataset to assess credit risk in loans from the UCI ML Reposi-
tory [30]. Synthetic [35], a synthetic dataset generated using the PaySim sim-
ulator, which mimics mobile financial transactions and fraud patterns based on
real-world data.

Metric. In addition to accuracy, we introduce the improvement and cheat-
ment rates to assess the effects of strategic behavior. Improvement rate is
defined as the proportion of the population initially facing rejection but sub-
sequently being accepted following incentive adaptation. Cheatment rate is
defined as the proportion of the population initially facing rejection, but sub-
sequently being accepted by exploiting strategic behavior without genuine im-
provement.

To verify the effect of correlation, when linear and nonlinear decorrelation to-
gether, the adaptive weight W is trained with Eq (13). If only linear correlation,
the adaptive weight W is trained with the following objective:

W' = argn‘lﬂi]n (Aw(1) + Aw(2)), (18)

where we set:

Aw(t) = 303 [EIVE)T - s - ) —EIY )T W) B )WL 1)

i=1 j#i

6.2 Implementation Details

All experiments are conducted on a single NVIDIA TITAN V 12GB GPU. The
adaptive weights used in our decorrelation method are optimized via the Adam
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Table 1: Performance comparison between single model and interacting models

Datasets

Credit  Student Adult German PhiUSIIL Synthetic

Metrics Methods

Non-strategic

Single Model 71.83+1.65 77.4241.30 82.1241.05 91.284+1.35 64.8241.10 81.35+1.20
Interacting TILOdelS 74~23i1A81 79.85i1A50 83.45i120 91-17i1A60 65.15i1,25 85.73i1A35

Accuracy

Strategic

Single model 69.52i2,70 73.15:&2‘13 79.23:&1,30 88.13;&1,80 63.53i1,60 73‘75:&1‘90
Interacting models 71.2241 .97 76.78+1.85 81.56+1.13 90.61+1 54 64.2941 02 80.66+1 58

Single model 38.5345.30 34.9343.80 35.52+3.30 34.85+4.50 30.83+4.10 27.931+4.20
Interacting models 47.13+4.78 39.7443.60 42.29+4.12 43.0543.67 36.41+2.91 38.5413 30

Accuracy

Imp. rate

Note: “Non-strategic” indicates that the models do not take into account agents’ strategic
behaviors during both training and inference, whereas "Strategic" means that the model in-
tegrates these strategic behaviors. “Single Model" comes from the collection of existing meth-
ods [19, 10,8, 28]. “Interacting models" are designed with decision interaction. “Imp. rate" is
short for the improvement rate.

Table 2: Performance comparison of different methods in SIDI.

Datasets
Credit Student Adult German  PhiUSIIL Synthetic

Accuracy  70.894277 76.504+2.06 81.6141.20 89.3641.87 63.8141.71 74.08+1.82
TC [19, 87, 42,10] Imp. rate 32.1444.54 28.674+348 30.724320 29.35+3.01 24.56+2.56 25.66+3.68
Cheatment 30.8842.76 23.7141.89 25.3042.12 24.354+1.83 22.7241.54 28.5342.68

Accuracy 68.43i1_89 74-50i2.27 79~10i1.63 87.5412_14 61.5011.42 72.62i1_93
TI /21, 36, 8, 28/ Imp. rate 40'71i5.54 37.65i3_00 39~36i3.36 38.35i4_75 32'53i4.03 33~27i4.09
Chcatmont 23.68i2_57 20~24i1.96 22~1Oi2.35 20~53i2.19 18'33i1.62 20~33i2.52

Accuracy 71.6612,27 77-21i2,15 82.00i1,43 90.57i2(04 64.7311,32 81.10i1,38
SIDI(O’U,T‘S) Imp. rate 48.0515,93 41-59i4,75 43-21i5.27 42.97i3(82 36-33i4.06 38.59i3,45
Cheatment 19.6811,31 16.24i1‘57 18.10i1,51 16-50i1A72 15-24i1.51 16.33i2,05

Methods Metrics

optimizer (learning rate 0.0005), with softmax normalization applied per mini-
batch. The weighting scheme converges stably within 128 steps in our experi-
ments. For the decorrelation computation, we use 32-dimensional random Fourier
features. Each sub-classifier h; is instantiated as a logistic regression model. The
final aggregator g is implemented as a linear model !2. The full model is trained
using Adam (learning rate 0.0001) with early stopping.

6.3 Results and Analysis

Table 1 shows that, across various datasets, models using decision interactions
outperform single-model decisions in both non-strategic and strategic environ-
ments. Under strategic conditions, interacting models achieve a significantly

12 We also consider different interaction types. The details and results are included in
Appendix H.
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Fig. 5: Effect of the number of interactive classifiers on performance in the SIDI
problem.

higher improvement rate, suggesting that decision interactions more effectively
motivate agents to enhance their qualifications.

Table 2 validates our framework on multiple datasets in a decision interaction
context. Our method outperforms existing strategic classification and improve-
ment approaches in accuracy, improvement rate, and cheatment rate, the latter
reduction attributed to adaptive weight decorrelation mitigating strategic be-
havior, while the higher improvement rate indicates more genuine qualification
enhancements.

Fig. 4 compares results on datasets of varying scales using adaptive weights
in both linear and nonlinear decorrelation settings. Both decorrelation types sig-
nificantly affect accuracy and improvement rate, reducing the impact of strategic
behavior in the SIDI problem and encouraging qualification improvements.

Fig. 5 examines the effect of the number of interactive classifiers in both
strategic and non-strategic settings. The accuracy and improvement rate initially
rise with more classifiers, though an excessive number causes a slight decline in
accuracy, while the cheatment rate remains stable. These findings imply that an
optimal number of classifiers enhances overall performance.

7 Conclusion

In this work, we introduce a novel problem in strategic machine learning: Strategic
Improvement with Decision Interaction (SIDI). We frame the problem and un-
cover novel strategic behaviors among agents in decision interaction. By analyz-
ing the correlations among interacting classifiers, we introduce a comprehensive
decorrelation method and propose a new strategic improvement framework. In
future work, we aim to incorporate fairness considerations into our framework.
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