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Abstract. We introduce Smooth InfoMax (SIM), a self-supervised rep-
resentation learning method that incorporates interpretability constraints
into the latent representations at different depths of the network. Based
on β-VAEs, SIM’s architecture consists of probabilistic modules opti-
mized locally with the InfoNCE loss to produce Gaussian-distributed rep-
resentations regularized toward the standard normal distribution. This
creates smooth, well-defined, and better-disentangled latent spaces, en-
abling easier post-hoc analysis. Evaluated on speech data, SIM preserves
the large-scale training benefits of Greedy InfoMax while improving the
effectiveness of post-hoc interpretability methods across layers.
Our code is available via GitHub.

Keywords: Self-Supervised Representation Learning · Contrastive Learn-
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1 Introduction

Black-box models, particularly deep neural networks (NNs), have shown remark-
able performance in recent years. However, despite their impressive success, their
lack of interpretability poses a significant challenge, limiting their use in high-
stakes decision environments. Consequently, various post-hoc interpretability
techniques have been explored. Notable contributions include the work of [28],
which aims to find the input image that maximally activates a specific neuron in
the network, and the research by [33], which focuses on highlighting the regions
in the input that a particular neuron is sensitive to.

However, the effectiveness of these post-hoc methods decreases in complex
models due to the large number of neurons that must be analyzed. Additionally,
as argued by [1], the internal semantic concepts learned by these neurons are
typically highly entangled throughout the network. This makes the interpretation
of a neuron particularly difficult, as multiple neurons may work as a whole and
together be sensitive to a given semantic concept while other neurons may not
be contributing anything at all. For these reasons, it is likely impossible to fully
understand these NNs with just the existing post-hoc interpretability techniques.

https://github.com/fdenoodt/Smooth-InfoMax
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In contrast, inherently interpretable models (e.g., logistic regression and decision
trees) offer more transparency but may struggle with complex problems.

Another challenge with NNs is that they are typically trained end-to-end,
which requires significant memory, especially as models grow larger. This can
pose hardware constraints, as training must fit within the available memory
of the device. Additionally, deeper networks can be more susceptible to the
vanishing gradient problem [13].

To address these issues, we propose Smooth-InfoMax, a self-supervised repre-
sentation learning method that integrates two existing paradigms: Greedy Info-
Max (GIM) [18] and β-Variational Autoencoders (β-VAEs) [5]. This integration
improves the post-hoc interpretability of the NN while enabling large-scale dis-
tributed training, combining benefits not achievable by either paradigm alone.

SIM’s learning objective is based on contrastive learning and does not require
labels or a decoder for training. Building upon GIM, SIM splits the architecture
into modules, each trained greedily with a novel loss based on the InfoNCE
bound [25]. As such, we preserve benefits such as large-scale distributed training
of architectures that would otherwise not fit in memory and reduced vanishing
gradients issues [18].

Furthermore, SIM incorporates the latent-space regularization properties of
β-VAEs across various depths in the network. This helps create smooth and
well-structured latent spaces that encourage disentanglement [5, 27, 12]. As a
result, small changes in the latent space correspond to small changes in the input
space, making post-hoc interpretability easier. However, unlike β-VAEs, SIM
does not require a decoder during training, reducing memory usage. Another key
difference is that SIM applies this regularization across different layers, making
it easier to analyze representations throughout the network, rather than β-VAEs
where the regularization typically is only applied at a single layer. A decoder
can then be used as a post-hoc interpretability tool by traversing a latent space
in the network, revealing the information that a particular neuron is sensitive
to. Obtaining meaningful insights with such a procedure would be a lot harder
if the spaces were not as well structured, as is typically the case in conventional
NNs [7, 3].

Our contributions are the following:

1. Introducing SIM, a framework with a novel loss function and probabilistic
architecture for easier interpretable latent spaces, evaluated on sequential
speech data. Although a relatively straightforward integration of existing
methods, this proposed combination provides specific benefits not achievable
by either approach alone.

2. We show, via a decoder, that SIM produces latent spaces that are easier
to analyze. This also leads to a new metric for quantifying the number of
dimensions required for successful reconstructions.

3. Empirically showing that ideas from β-VAE extend to other frameworks and
can be repeated at different depths without significant performance loss.

Reproducibility: Our code and commands to replicate the experiments are all
available via GitHub.

https://github.com/anonymoususerforpeerreview/Smooth-InfoMax
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2 The Starting Point - Greedy InfoMax

Greedy InfoMax (GIM) learns representations from sequential data without the
need for labels by exploiting the assumption of slowly varying data [31]. This
assumption is for instance applicable to speech signals where the conveyed in-
formation at time step t and t + k contains redundancy, such as the speaker’s
identity, the conveyed emotion and the pronounced phonemes [18]. Meanwhile,
this information may not necessarily be shared with random other patches of
speech. An encoder can then be optimized to create representations that max-
imally preserve the shared information between the representations of tempo-
rally nearby patches [18], while at the same time discarding low-level informa-
tion and noise that is more local [25]. It has been shown that such a strategy
creates highly competitive representations for downstream tasks in various do-
mains [11, 25, 18, 29, 24, 19, 4].

The network architecture An audio sequence is split up into patches x1 . . .xT

where each xt is a vector of fixed length, containing for instance 10ms of speech.
Each patch xt is encoded by passing it through a series of M encoder modules:
g1enc(·), g2enc(·), . . . , gMenc(·). An encoder module consists of one or more con-
volution layers. The final representation zMt is then obtained by propagating xt

through each module as follows:

gMenc(. . . g
2
enc(g

1
enc(xt))) = zMt . (1)

As such, each module’s output is the input of the successive module: gmenc(z
m−1
t ) =

zmt . For tasks where context-related information is required, the final module gMenc
can be replaced by an autoregressive module gar(z

M−1
1 . . . zM−1

t ) = ct. The au-
toregressive module can for instance be represented as a Gated Recurrent Unit
(GRU). Both zMt or ct may serve as the representation for downstream tasks
and can be pooled into a single vector if needed.

The loss function Given a representation zmt and a set X = {zm1 , zm2 , . . . } ∪{
zmt+1, . . . , z

m
t+K

}
consisting of random encoded audio patches and K subsequent

samples of zmt , respectively, GIM learns to preserve the information between
temporally nearby representations by learning to discriminate the subsequent
positive samples zmt+k from the negative random samples zmj using a function
fm
k (·) which scores the similarity between two latent representations [18]. This

function is defined as follows:

fm
k (zmt+k, z

m
t ) = exp(zmt+k

TWm
k zmt ), (2)

where Wk is a weight matrix which is learned. Intuitively, due to the slowly
varying data assumption, the similarity score for positive patches should be high
and small for negative patches. The InfoNCE loss, used to optimize an individual
module gmenc(·) and its respective Wm

k is shown below:

Lm
NCE = −

∑
k

E
X

[
log

fm
k (zmt+k, z

m
t )∑

zm
j ∈X fm

k (zmj , zmt )

]
. (3)
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One can prove that minimizing the InfoNCE loss is equivalent to maximizing a
lower bound on the mutual information between zmt and zmt+k [25]:

I(zmt+k; z
m
t ) ≥ log(N)− Lm

NCE. (4)

As a result of GIM’s greedy approach, a conventional neural network archi-
tecture can be divided into modules. These modules can be trained either in
parallel on distributed devices or sequentially, enabling the training of models
larger than device memory and reducing the vanishing gradient problem. In the
following section, we discuss how we can preserve these benefits in SIM, while
also allowing for better interpretability.

3 Smooth InfoMax

While optimizing for the InfoNCE bound, as done in GIM, is remarkably success-
ful for downstream classification, analyzing the learned representations remains
difficult. In what follows we introduce Smooth InfoMax (SIM), maintaining the
computational benefits obtained from optimizing the InfoNCE objective, while
introducing easily traversable latent spaces and better disentangled representa-
tions at different depths in the network due to techniques borrowed from β-VAEs.

3.1 Towards Decoupled Training for Probabilistic Representations

The architecture is again based on modules, where the modules g1enc(·), g2enc(·),
. . . , gMenc(·) are each greedily optimized without gradients flowing between them.
However, rather than producing a single deterministic point zmt , the output from
gmenc(·) is now a multivariate Gaussian distribution q(zmt | zm−1

t ), parameterized
by the mean vector µ and covariance matrix diag(σ). More precisely, we have:

gmenc(z
m−1
t ) = q(zmt | zm−1

t ) = N (µ, diag(σ)), (5)

with µ and σ dependent on zm−1
t . A point zmt is then obtained by sampling

from this distribution, denoted respectively, as follows:

zmt ∼ qm(· | zm−1
t ). (6)

The encoding modules are thus stochastic and obtaining two representations
from the same input will not necessarily produce the same result. This is in
contrast to GIM’s latent representations which remain fixed with respect to the
input.

We obtain these stochastic modules by defining each module gmenc(·) con-
sisting of two blocks. The first block receives as input zm−1

t and predicts the
parameters µ and σ. The second block samples zmt ∼ qm(· | zm−1

t ) from this
distribution and produces an output representation. In practice, sampling from
qm is achieved through a reparameterization trick, as introduced in [16]. The
equation to compute zmt then becomes:

zmt = µ+ σ ⊙ ϵ,
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where ϵ corresponds to a sampled value ϵ ∼ N (0, I) and ⊙ is element-wise mul-
tiplication. The two blocks are depicted in Figure 1. The optional autoregressive
module gar(·) has been untouched, and remains identical as in GIM, resulting
in deterministic representations.

ANN zmt ∼ qm(· | zm−1
t )

zm−1
t

µ

σ

zmt

Fig. 1: A single module.

3.2 The Loss Function

Instead of training the NN’s modules end-to-end with a global loss function, each
module is optimized greedily with its own loss. Through the introduction of the
Smooth-InfoNCE loss, mutual information between temporally nearby represen-
tations is maximized, while regularizing the latent space to be approximate to
the standard Gaussian N (0, I). This loss is defined as follows:

Lm
S-NCE = −

∑
k

E
zmt+k∼qm(·|zm−1

t+k
)

zmt ∼qm(·|zm−1
t )

log
fm
k (zmt+k, zmt )∑

zm
j

∈X fm
k

(zm
j

, zmt )


︸ ︷︷ ︸

Maximize I(zm
t+k

,zmt )

+ β DKL

(
q
m

(· | z
m−1
t ) || N(0, I)

)
︸ ︷︷ ︸

Regularisation

. (7)

Here, m ∈ N refers to the m’th module and k ∈ N the number of follow-up
patches the similarity score fm

k (zmt+k, z
m
t ) must rate. The latent representations

zmt+k and zmt are encoded samples produced by gmenc(z
m−1
t+k ) and gmenc(z

m−1
t ), re-

spectively and X is a set of samples
{
zmt+k, z

m
1 , zm2 , . . .

}
where zmj with j ̸= t+k

are random samples. In practice, the set can be based on the training batch.
The parameter β ≥ 0 is a hyper-parameter indicating the relative importance
between the two terms. When β = 0, SIM is identical to GIM but with an altered
architecture supporting probabilistic representations. The similarity score fm

k (·)
remains identical as in GIM:

fm
k (zmt+k, z

m
t ) = exp(zmt+k

TWm
k zmt ). (8)

Lm
S-NCE consists of two terms. The first term ensures that latent representa-

tions of temporally nearby patches maximally preserve their shared information.
The second pushes the latent representations close to the origin.

The Gradient To estimate the expectation term in LS-NCE, we apply the same
approximation method as in VAEs, achieved through Monte Carlo estimates [16].
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The first term in LS-NCE then becomes:

−
∑
k

1

L

 L∑
l=1

log
fm
k (zmt+k

(l), zmt
(l))∑

zm
j ∈X fm

k (zmj , zmt
(l))

 .

Here, L refers to the number of samples drawn. Each zmt+k
(l) and zmt

(l) are
different samples produced by their respective distributions. However, similar
to [16], we can set L = 1 without significantly hurting performance.

With regards to the second term in LS-NCE, since qm(· | zm−1
t ) is a Gaussian

defined by parameters µ and σ, a closed-form solution exists [16]. The closed-
form equation is the following:

DKL

(
qm(· | zm−1

t ) || N (0, I)
)
=

1

2

D∑
i=1

(
− log σ2

i − 1 + σ2
i + µ2

i

)
.

The variable D refers to the number of dimensions of µ and σ. This term can
thus, be directly computed and does not need to be approximated through Monte
Carlo estimates. The gradient for the two terms can then be computed using
automatic differentiation tools such as PyTorch.

3.3 Properties of the Latent Space

Here, we present two conjectures regarding the structure of the latent space de-
fined by each of SIM’s modules. They will serve as the main argument for why
SIM’s representations are more easily analyzable. Meanwhile, alternative con-
trastive approaches such as GIM lack these benefits.

Conjecture 1. LS-NCE enforces an uninterrupted and well-covered space around
the origin.
In SIM, a latent representation zmt ∈ Zm of a data point zm−1

t ∈ Zm−1 is a
sample from a Gaussian distribution. Thus, encoding the same zm−1

t an infinite
number of times results in a spherical region (around a particular mean µ) in
Zm that is covered by the latent representations corresponding to zm−1

t , with-
out any interruptions in this region. This is different from GIM where a data
point merely covers a single point of the latent space (and not an entire region).
Furthermore, because the KL divergence requires each region to be close to the
origin, the regions are more likely to utilize the limited space efficiently around
the origin, resulting in a lower chance of obtaining gaps between two regions
from different data points.

Conjecture 2. LS-NCE enforces smooth and consistent transitions in the latent
space with respect to the shared information between temporarily nearby patches.
The argument on why this holds true is similar to the argument made for
VAEs [16]. In the case of a VAE, a smooth space implies that a small change to
z should result in a small change to its corresponding reconstruction, such that:

z ≈ z′ =⇒ p(x | z) ≈ p(x | z′). (9)
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Indeed, one can observe that the KL-divergence will encourage the region of
latent points that a data point x can map to to be large. Meanwhile, the recon-
struction error in a VAE encourages all the latent points falling in this region to
be as close as possible to the initial data point x. In SIM, the same argument
can be used to obtain:

zmt ≈ zmt
′ =⇒ f(zmt+k, z

m
t ) ≈ f(zmt+k, z

m
t

′), (10)

resulting in a smooth space with respect to the shared information between
temporally nearby patches. Additionally, if a decoder is trained on SIM’s repre-
sentations, for the same reason, we obtain:

p(xt | zmt ) ≈ p(xt | zmt
′). (11)

Traversability of the space As a result of the smooth and well-defined shape,
one can make small changes to zmt and observe what happens through a decoder
with a much smaller risk of having abrupt changes to the corresponding x, or
obtaining out-of-distribution latent points that correspond to non-meaningful re-
constructions due to gaps in the latent space. This results in an easily traversable
latent space with a predictable structure, which is not guaranteed in conventional
NNs, as they typically do not enforce these additional constraints.

Disentanglement GIM poses no direct constraints on disentanglement risk-
ing having many dimensions of the representation together contribute a small
amount to the contained information of an individual concept. However, as ar-
gued by [12], setting the prior p(z) of the β-VAE’s loss to an isotropic Gaussian
encourages disentanglement in the representations. This results in each dimen-
sion from the encoding to capture a different property of the original data. In
the case of LS-NCE, the prior corresponds to the standard normal N (0, I), and
thus, this theorem is also applicable to SIM, and choosing a large value for β in
LS-NCE applies more pressure for the representations to be better disentangled.

4 Experiments and Evaluation

We evaluate SIM’s latent representations on raw speech data and compare them
against GIM as a baseline. The goal is to measure the impact of β-VAE regular-
ization in terms of raw performance and to analyze how effectively post-hoc inter-
pretability techniques would perform. Since this work uses the well-established
properties of β-VAEs, we do not aim to independently revalidate them. β-VAE’s
disentanglement, in particular, has been extensively confirmed [15, 12, 6] and
benchmarked against other methods in prior work [17].

4.1 Setup

Dataset We use two publicly available speech datasets. The first is an artificial
dataset3 with a known and predictable structure, chosen because it provides a
3 Available at https://github.com/fdenoodt/Artificial-Speech-Dataset.

https://github.com/fdenoodt/Artificial-Speech-Dataset
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clear expectation of what a learning system should capture. The second, following
GIM, is the 100-hour subset of the large-scale LibriSpeech dataset [18, 26]. The
artificial dataset contains 851 fixed-length (640 ms) audio files, sampled at 16
kHz and split into 80% training and 20% test sets. Each file consists of a single
spoken sound composed of alternating consonants and vowels (e.g., “gi-ga-bu”).

Architecture SIM’s architecture consists of three probabilistic CNN-based en-
coder modules and one autoregressive GRU module. Each CNN layer in these
modules has 512 hidden dimensions. In g1enc, two convolutions (kernel: 10, 8;
stride: 5, 4; padding: 2) are followed by parallel µ and σ convolution layers (ker-
nel: 1, stride: 1, no padding). g2enc contains two convolutions (kernel: 4; stride:
2; padding: 2), followed by µ and σ convolutions (kernel: 1, no padding). g3enc
has one convolution (kernel: 4, stride: 2, padding: 1) followed by µ and σ convo-
lutions (kernel: 1, no padding). The final module, gar, is a GRU with an output
of size 64 × 256. ReLU is applied after each convolution except in the µ and
σ layers. The total downsampling factor is 160, producing a feature vector for
every 10 ms of speech. Batch norm is applied to LibriSpeech but not to the arti-
ficial dataset. While it wasn’t strictly necessary for LibriSpeech, it significantly
increased training speed, which is beneficial given the dataset’s large size. All
modules are trained in parallel without gradients flowing between modules.

Training Procedure SIM is trained with the Adam optimizer (learning rate:
2 × 10−4, batch size: 8). The maximum number of patches to predict in the
future K is set to 10, with 1000 epochs on the artificial dataset and 100 on
LibriSpeech. The regularization weight β is set to 0.01 on the artificial dataset to
encourage interpretability and 0.001 on LibriSpeech to balance interpretability
and performance. Implementation details regarding drawing negative samples
for fm

k (·) remain identical to the audio experiment from [18].

4.2 Classification Performance

We evaluate SIM’s representations by training a fully connected linear layer on
top of SIM’s frozen pretrained backbone for classification tasks. Classifiers are
trained on temporally-average-pooled representations for 10 epochs using Cross-
Entropy and the Adam optimizer (lr = 0.001). Tasks include vowel (3 labels)
and syllable (9 labels) classification on the artificial dataset, and phoneme (41
labels) and speaker (251 labels) classification on LibriSpeech.
Results. A known drawback of β-VAE regularization is increased performance
degradation, as greater emphasis is placed on disentanglement through the hy-
perparameter β [15]. Interestingly, Table 1 shows that this trade-off is quite
manageable, especially considering that SIM applies this regularizer across dif-
ferent layers. Both SIM and CPC achieve high accuracy on speaker (96.02%,
98.60%) and vowel (92.58%, 95.24%) classification but perform worse on sylla-
ble (44.53%, 50.00%) and phoneme (60.22%, 61.80%) classification. This suggests
that the InfoNCE objective favors global sequence features while preserving less
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Table 1: Accuracy for classification tasks on the artificial speech and LibriSpeech
datasets. aBaseline results from [18].

Artificial Speech Dataset
Method Vowel Classification (%) Syllable Classification (%)

Supervised 91.19 ± 1.56 83.32 ± 2.06
Random Backbone 32.44 ± 4.44 9.88 ± 2.12
GIM 95.24 ± 0.60 50.0 ± 1.55
SIM 92.58 ± 2.06 44.53 ± 1.77

LibriSpeech Dataset
Method Speaker Classification (%) Phone Classification (%)

Superviseda 98.90 77.70
Random Backbonea 1.90 27.60
GIM 98.60 61.80
SIM 96.02 60.22

local information. Adding a hidden layer improved training accuracy for the
syllable task but did not improve test performance, indicating that consonant
information may no longer be fully retained in the representations. Meanwhile,
the randomly initialized backbone performs poorly across all tasks, confirming
that SIM learns meaningful representations.

4.3 Representation Analysis

Qualitative Assessment of Latent Space Smoothness To gain a notion
of the smoothness of SIM’s latent space, we train a decoder D(z3t ) = x̃t on
the artificial dataset, using representations from g3enc(·) to decode interpolations
between two latent representations. Two audio signals, “bidi” and “baga” are
encoded into their respective latent representations, z3bidi and z3baga (64 × 512).
Interpolated representations z3α = (1− α)z3bidi + αz3baga are decoded for values
of α between 0 and 1.
Results. Fig. 2 shows the decoded signals smoothly transitioning as α varies, with
no abrupt changes or nonsensical outputs. Exploring other interpolated audio
signals than the one presented here, is possible via our demo. When decoding
real samples (non-interpolated), we noted that vowel sounds were consistently
correct, but consonants were often unclear or incorrect, which aligns with our
discussion in 4.2 that consonant information may be less represented.

Quantitative Evaluation of Specific Information Spread To assess how
vowel and speaker information is distributed across latent dimensions, we train
linear classifiers (without bias) on average-pooled representations from g1enc(·),
g2enc(·), and g3enc(·). Classifier weights indicate the relevance of each dimension,
with large magnitudes signifying high importance.
Results. As shown in Fig. 3, SIM concentrates vowel/speaker information in fewer
dimensions, which is beneficial for interpretability. GIM, on the other hand,
spreads this information more broadly thereby requiring a larger number of
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Fig. 2: Interpolated latent representations between two audio signals (“bidi” and
“baga”) using SIM. Each plot shows the decoded signal for different interpolation
factors α. Listen to the decoded audio, among others, on Google Colab.

neurons to be studied. Accuracy for vowel identification in GIM: 95.94%, 92.81%,
94.06%, and in SIM: 87.5%, 93.44%, 91.87%. For speaker identification, GIM:
88.29%, 97.83%, 98.56%, and SIM: 68.36%, 91.76%, 94.32%.

−0.5 0 0.5

0

1

2

3

Weights

D
en

si
ty

Module 1

GIM
SIM

−0.5 0 0.5
Weights

Module 2

−0.5 0 0.5
Weights

Module 3

−0.5 0 0.5
Weights

Module 1

−0.5 0 0.5
Weights

Module 2

−0.5 0 0.5
Weights

Module 3

Fig. 3: Distribution of linear classifier weights for vowel prediction (artificial
dataset, left) and speaker identification (LibriSpeech, right), trained on repre-
sentations from g1enc(·), g2enc(·), g3enc(·). SIM’s classifiers show more weights near
zero, indicating that vowel and speaker information is concentrated in fewer di-
mensions.

Quantitative Evaluation of General Information Spread To further ob-
serve the impact on interpretability through unit analysis and to analyze whether
our representations align with the known disentanglement properties from β-
VAE’s regularizer [12, 6, 15], we introduce a metric to measure how effectively
a decoder D : Zm → X can reconstruct a target signal when only the most rel-
evant latent dimensions are modified. This serves as a proxy for entanglement,
especially given that the artificial dataset has only a few ground truth factors,
requiring far fewer dimensions than the available 512.

For each pair of starting and target representations
(
zmstart, z

m
target

)
, we define

an interpolated representation, zmα=1, where only the N most important dimen-
sions (those with the greatest average difference over 64 time frames) are altered
to match zmtarget. The similarity between the decoded zmα=1 and zmtarget measures

https://colab.research.google.com/drive/1-4PxKfgBcEuPlSdNKE0fu24nV-bvIN2V
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how many dimensions are needed to transform the signal. The relative error is
computed as:

δ =
MAE

(
D(zmtarget), D(zmα=1)

)
MAE (D(zmstart), D(zmα=1))

(12)

Here, δ ranges from 0 (exact match to target) to 1 (no effect from altering
dimensions).
Decoder Details. Each decoder D(zmt ) is trained for 50 epochs on representations
from a specific module gmenc(·), using the MSE loss, a learning rate of 2× 10−4,
and batch size 8. The decoder mirrors the encoder architecture, but for the first
module, two additional layers (kernel size 3, padding 1, stride 1) were added to
improve reconstruction.
Results. Table 2 shows the relative errors. Across all depths, SIM reconstructs
the target signal using fewer dimensions than GIM. For the artificial dataset,
GIM needs at least half of the dimensions for successful reconstruction, whereas
SIM achieves similar results with just 1/8th. Given the limited information in
this dataset, which theoretically requires far fewer than 512 dimensions, multiple
of GIM’s dimensions seem sensitive to similar attributes. This implies a more
entangled representation, which aligns with earlier findings in Fig. 3. For Lib-
riSpeech, SIM consistently requires fewer dimensions, averaging around half the
number used by GIM, showing potential to scale well to more complex datasets.

Table 2: Relative reconstruction error δ (%) when only the N most important
dimensions out of 512 are active. Lower values are preferred. GIM distributes
relevant information across more dimensions than SIM.
Module Method

Artificial Speech Dataset LibriSpeech Dataset

2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512

g1enc

GIM 99.32 98.71 97.6 95.46 91.2 82.35 62.96 24.33 0 95.55 91.77 87.47 81.12 71.65 58.02 39.52 16.8 0
SIM 84.01 62.5 37.42 29.45 23.64 17.96 11.97 5.66 0 88.02 79.83 64.92 36.93 15.55 10.62 6.96 3.53 0

g2enc

GIM 98.86 97.91 96.17 93.07 87.58 77.8 59.81 27.46 0 97.35 94.88 90.82 84.7 76.6 67.02 54.25 31.32 0
SIM 89.89 81.78 65.96 39.26 28.04 20.98 14.0 6.97 0 88.75 82.32 74.74 65.83 49.4 32.47 22.44 12.39 0

g3enc

GIM 99.01 98.16 96.59 93.9 89.29 81.09 65.23 31.76 0 94.37 90.65 85.08 78.1 71.47 65.68 57.0 35.95 0
SIM 92.74 87.44 77.56 59.27 39.89 27.96 17.55 7.73 0 86.76 81.14 75.54 70.96 64.75 52.02 39.23 23.38 0

Qualitative Analysis of Latent Shape To evaluate the structure of SIM’s
latent space, we first compute the representations z3t = g3enc(xt) for each sample
from the test set. For each of their 512 dimensions, we construct a histogram
with 100 bins, showing how all activations of the dataset for an individual di-
mension are spread. Figure 4 displays the histograms for a selected set of di-
mensions. SIM’s activations consistently follow a Gaussian distribution, aligning
with our design goal of regularizing the latent space toward a standard normal
distribution. This predictable structure helps post-hoc interpretability tools by
clearly describing the regions of interest. In contrast, the latent representations
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produced by GIM show greater variation. In particular, dimension 9 for the ar-
tificial dataset, and dimensions 13 and 14 for LibriSpeech are shifted away from
the origin or differ from the other dimensions. Note that in GIM’s current im-
plementation, the latent spaces are implicitly constrained to center around the
origin due to the use of a bias-free discriminator in Eq. 2. If the discriminator
were non-linear or had a bias term, the shape of the latent space could potentially
be even less predictable.
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Fig. 4: Top rows: Artificial Dataset, bottom: LibriSpeech. Distribution of activa-
tions per dimension. SIM’s activations have a consistent shape across dimensions,
whereas GIM enforces no latent space constraints, resulting in greater variation
in certain dimensions. Other dimensions are available here.

5 Related Work

This work uses the benefits of β-VAE’s regularization, applying them across
multiple layers to improve post-hoc analysis of the network.

In terms of interpretability through regularization, various approaches have
been explored. For instance, sparsity regularization in the activations of hidden
representations [30, 2, 10] has been shown to improve the compression of in-
formation into fewer dimensions, reducing the number of neurons to analyze,
yet this does not encourage disentanglement or smoothness. Similarly, [22] im-
proves model interpretability through regularization of activations, modifying
the model’s behavior such that existing explainability methods produce ex-
planations that better align with human perception. Another notable method
involves tree regularization [32], which constrains neural networks to be well-

https://github.com/fdenoodt/Smooth-InfoMax/blob/main/apdx/main.pdf
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approximated by decision trees, thereby improving interpretability. While effec-
tive, its applications are typically limited to simpler tasks where decision trees
can easily be formed. In contrast, SIM relies on post-hoc tools for its analysis
but is able to model complex audio or vision tasks. Regarding disentanglement,
traditional methods have typically focused on regularizing a single layer in the
architecture [12, 6, 15, 14, 9], whereas SIM applies one of these approaches in a
new context and across multiple layers.

For post-hoc interpretability, SIM’s decoder is similar to approaches like [8,
28], which reconstruct inputs from latent representations but rely on gradient
ascent rather than a learned decoder. However, since NNs are not typically bi-
jective, the reconstructions found do not necessarily map to a similar point from
the dataset, resulting in often noisy and unclear reconstructions [8, 28]. To im-
prove intelligibility, recent feature-activation-based methods incorporate human
priors [23, 21, 20], guiding reconstructions toward more interpretable outputs.
Decoders offer an alternative by directly learning to reconstruct inputs, implicitly
encoding priors from the training data. However, they may introduce hallucina-
tions that do not fully reflect the original model. Nonetheless, both gradient-
based and decoder-based approaches could benefit from SIM’s structured latent
spaces due to their encouraged smoothness, better disentanglement, and well-
defined shapes.

6 Discussion

We presented Smooth InfoMax, a self-supervised representation learning ap-
proach that incorporates interpretability requirements into the design of the
model. Our proposal demonstrates how β-VAE regularization can be integrated
into GIM’s contrastive learning framework at various depths in the network. As
such, SIM enjoys GIM’s computational advantages—such as decoder-less train-
ing, large-scale distributed training for architectures that would otherwise not
fit in memory, and reduced vanishing gradients—while also preserving the well-
structured latent space properties of β-VAEs across layers. Remarkably, this is
achieved without significantly compromising performance. SIM enables more ef-
fective post-hoc interpretability, bringing us closer to understanding the internal
workings of these neural networks.
Limitations and Future Work Although the latent space properties of β-
VAEs improve post-hoc interpretability, the overall success still depends on the
faithfulness of the generated explanations and the clarity of the information en-
coded in the representations. Additionally, SIM shows a small performance gap
relative to its baseline, suggesting that integrating recent advances in disentan-
glement could be beneficial. While our evaluation focuses on sequential speech
data (an XAI domain less exhaustively explored than vision), SIM’s InfoNCE-
based architecture is easily adaptable to other modalities, such as vision and
natural language. Finally, SIM could be valuable beyond GIM as its probabilis-
tic architecture and regularization can be integrated into other frameworks too,
including end-to-end NNs as shown in this toy example.

https://github.com/fdenoodt/Smooth-InfoMax/blob/main/apdx/sim_end_to_end_vision/main.ipynb
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