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Abstract. Graph neural networks (GNNs) have recently advanced in
processing graph-structured data and are increasingly used in recom-
mendation systems. Recently, many studies have incorporated side in-
formation as auxiliary views, such as the user’s social connections and
the item’s knowledge-aware dependencies, to enhance the user-item inter-
action view. However, current works overlook the differences in learning
behavior between auxiliary views and interaction view, and transfer side
information from different views separately, which can lead to a seman-
tic gap and fail to explore the collaborative effect of auxiliary views. To
address this challenge, we propose FiCoRec, a novel fine-grained aug-
mentation method for recommendation, comprising two key enhance-
ment components: Hierarchical Knowledge Transfer (HKT) and Multi-
view Semantic Fusion (MSF). Specifically, HKT designs an interaction
semantic decouple (ISD) method to decouple the interaction view em-
beddings into homogeneous features (hoFs) and heterogeneous features
(heFs). Then a hierarchical contrastive learning framework is used to
fully capture the local and global semantics from the intermediate-layer
to enhance hoFs. MSF explores a collaborative augmentation mechanism
by utilizing meta-learning to enhance the interaction view. Extensive ex-
periments conducted on five datasets against seven baseline methods
demonstrate that our FiCoRec outperforms the state-of-the-art methods
with a margin of 0.33%-2.76%.

Keywords: Heterogeneous graph · Feature decouple · Contrastive learn-
ing · Recommendation system.

1 Introduction

Recommender systems have become an essential tool in various domains, pro-
viding personalized recommendations to users by predicting their preferences
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based on past behavior and interactions. In recent years, with the rapid devel-
opment of Graph Neural Networks (GNNs), many GNN-based methods have
emerged and gained significant traction in capturing complex user-item interac-
tions. Unlike traditional collaborative filtering or matrix factorization methods,
GNNs leverage iterative message-passing mechanisms to effectively encode the
structural relationships between users and items, modeling higher-order connec-
tivity and non-linear relationships [7,26]. Despite the great process, many ex-
isting GNN-based recommendation frameworks primarily focus on homogeneous
graphs without considering the diverse relational patterns in real-world scenarios
which may limit their ability in complex recommendation environments.

To mitigate this limitation, researchers endeavor to exploit heterogeneous
side information as auxiliary views, such as social connections and item-wise
relations, to enrich the semantics of latent representations and augment the
user-item interaction view. GraphRec [4] is the first to utilize GNNs to incor-
porate social influence to enhance recommendation performance. Subsequently,
many studies introduce various techniques to model users’ social relations. For
instance, DiffNet++ [25] proposes a diffusion neural network to model higher-
order social structures, while MHCN [28] leverages hypergraphs to fuse social
relations and mine complex connections between users. Furthermore, HGCL [1]
extends the heterogeneous relations and considers item dependencies cooperat-
ing with users’ social influence to fully exploit side information from limited
data. Additionally, Recdiff [14] and DSL [22] focus on alleviating noise in social
relations by leveraging self-supervised learning (SSL).

Previous approaches primarily focus on extracting informative side informa-
tion from auxiliary views to enrich the interaction view. However, the current
transformation of side information faces two limitations: (1) it provides a coarse-
grained transformation, overlooking the differences in learning behavior between
auxiliary views and the interaction view, and (2) it transfers side information
from different auxiliary views separately, leaving the collaborative effect of multi-
ple auxiliary views insufficiently explored. The first issue arises from the distinct
content of different views. In auxiliary views, GNNs operate on homogeneous
graphs, capturing intra-group relationships or similarities (e.g., user social con-
nections or item-wise relations). In contrast, the interaction view involves het-
erogeneous graphs, where various node types introduce greater complexity and
diverse information. Consequently, the learning behaviors of GNNs are signif-
icantly different between auxiliary views and the interaction view, leading to
a semantic gap in the latent representation space. Thus, blindly utilizing the
embeddings of auxiliary views to augment the interaction view can introduce
unnecessary noise, hindering the utilization of heterogeneous side information.
The second issue lies in the isolated transfer of side information from different
auxiliary views which ignores their potential collaborative effects, and the abil-
ity to jointly provide a more comprehensive understanding of user preferences
and item characteristics. These limitations constrain the recommender system’s
capabilities, ultimately leading to suboptimal performance.
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To tackle the aforementioned challenge, we propose FiCoRec, a novel fine-
grained augmentation method for recommendation. FiCoRec comprises two key
components: hierarchical knowledge transfer (HKT) and multi-view semantic
fusion (MSF). On one hand, HKT bridges the semantic gap between auxiliary
and interaction views by enabling fine-grained side information transfer. Specifi-
cally, as the embeddings of the interaction view aggregate the information about
users’ and items’ characteristics, we initially design interaction semantic decou-
ple (ISD) to decouple them into user-related part and item-related part. For user,
the former aims to preserve the user’s own intrinsic attribution, e.g., personal
information and social relationships. The latter contains information related to
items associated with a user, i.e., the user’s personalized preferences. For items,
the meanings of these parts are reversed. Thus, we denote the two parts as homo-
geneous features (hoFs) and heterogeneous features (heFs). Building upon this
foundation, HKT further designs a hierarchical contrastive learning framework
to make full use of the local and global semantics of heterogeneous relations in
auxiliary views to enhance hoFs. On the other hand, MSF utilizes meta-learning
to consider the collaborative effect of two auxiliary views. It treats heFs as a
bridge to integrate the knowledge of two auxiliary views and generate an adap-
tive mapping by meta-network. Subsequently, the mapping combined with the
enhanced hoFs from HKT, jointly enriches the embeddings of the interaction
view. Finally, the enhanced embeddings are utilized for downstream recommen-
dation tasks.

The key contributions of our work can be summarized as follows:

1. We propose a novel fine-grained heterogeneous relation augmentation frame-
work (FiCoRec) to boost the recommendation performance by exploiting side
information from auxiliary views.

2. We present two customized modules: HKT and MSF. HKT transfers side in-
formation in a fine-grained way by utilizing features decoupling, and enables
the model to learn local and global semantics of heterogeneous relations in
auxiliary views through a hierarchical contrastive learning framework. MSF
simultaneously leverages multiple auxiliary views to provide collaborative
augmentation.

3. FiCoRec is evaluated on several real-world datasets. Experimental results
demonstrate that the FiCoRec framework greatly improves recommendation
performance and achieves state-of-the-art results.

2 Related Work

2.1 Heterogeneous Graph Representation Learning

Heterogeneous networks have been widely used since real-world objects and their
interactions are often multi-typed. In prior research, shallow network embedding
methods leverage single-layer decomposition of certain affinity matrices, e.g.,
metapath2vec [3], Hin2vec [5]. With the development of GNNs, deep network
embedding methods aggregate the information from neighboring nodes to learn
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structural representation, e.g., HAN [24], MAGNN [6]. In recent years, relevant
studies have predominantly explored SSL techniques, incorporating strategies
such as contrastive learning, generative pretraining, and mask reconstruction.
For instance, MuHca [15] separately employs node embeddings from two views
into a contrastive generative adversarial network to implement data augmen-
tation. HGMAE [21] designs two masking strategies and metapath-based edge
reconstruction, target attribute restoration, and positional feature prediction to
capture graph information.

2.2 GNN-based Recommendation Systems

Graph Neural Networks (GNNs) have been widely adopted in recommendation
systems due to their effectiveness in capturing high-order connectivity and user-
item interactions. Early works such as NGCF [23] and LightGCN [11] learn user
and item embeddings by linearly propagating them on the user-item interaction
graph. Subsequent advancements like PinSage [27] introduce an industrial solu-
tion that combines random walks and graph convolutions. Later, many GNN-
based recommendations are develop to model user-user and user-item graphs
via message passing, such as DH-HGCN [10] and GraphRec [4]. Recent efforts
focus on utilizing heterogeneous relational data to enhance GNNs, such as social
connections between users and the knowledge dependencies of items [12,20]. For
example, HGCL [1] transfers heterogeneous relations to the user-item interaction
graph with contrastive learning across different auxiliary views. Besides, RecDiff
[14] and DSL [22] focus on alleviating the noisy effect in the social graph by lever-
aging SSL. However, previous works neglect the differences of learning behavior
between different graphs, which leads to a semantic gap in the latent representa-
tion space and introduces unnecessary noise. Moreover, existing studies transfer
side information across different views separately, ignoring the potential collab-
orative effects. To address the challenges, we design a fine-grained augmentation
method for recommendation.

3 Preliminaries

For the interaction view, we denote the user-item interaction graph as Gui =
{U ,V, Eui}, where U and V represent the sets of users and items, respectively,
Eui ⊆ |U|×|V| represents all the edges in the user-item interaction graph Gui. And
we define the embeddings of the interaction view as Einter. If user i interacts with
an item j, that is, an edge (i, j) exists in Eui. Considering the negative sampling
process, we denote (i, j+, j−) ∈ O as a sample for a user with existing and non-
existing interactions with items, where O represents the set of all samples. Let
Eu and Ei represent the embedding of users and items, respectively. Each user
i ∈ U or item j ∈ V corresponding to a feature vector eui or eij .

For the auxiliary views, we denote the user-user social connection graph
as Guu = {U , Euu}, and item-item knowledge dependency graph is denoted as
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Gii = {V, Eii}. Guu represents the social connection between users, and Gii repre-
sents the item-wise relation. Similarly, the embeddings of the two auxiliary views
are denoted as Eaux, including Euu and Eii. Each user i ∈ U or item j ∈ V corre-
sponding to a vector euui or eiij . The main notations and explanations are shown
in Table 1.

Table 1. Notations and explanations.

Notations Explanations

Einter embedding of interaction view, including Eu and Ei

Eaux embedding of auxiliary view, including Euu and Eii

heF heterogeneous feature decoupled from Einter, including UheF and IheF
UheF/IheF heF for user/item

hoF homogeneous feature decoupled from Einter, including UhoF and IhoF
UhoF/IhoF hoF for user/item

4 Methodology

We develop FiCoRec which utilizes fine-grained representation learning and a
multi-view collaborative augmentation strategy. As shown in Fig. 1, we first
learn embeddings from Gui (interaction view), as well as Guu and Gii (auxiliary
views), using three-layer GNN encoders, where the encoders for Guu and Gii are
incorporated in HKT. Then HKT provides a fine-grained representation learning,
and MSF employs a multi-view collaborative augmentation strategy to enhance
model performance. For HKT in Fig. 1(a), we first decouple Einter through ISD,
which is the foundation of fine-grained representation learning. Furthermore,
HKT employs a hierarchical contrastive learning to transfer side information,
which is able to capture local and global semantics from Eaux. For MSF in
Fig. 1(b), it contains two branches for user embedding and item embedding,
respectively. Each branch utilizes an anchor-neighbor concatenation (ANC) and
a meta-learning framework to aggregate the knowledge from two auxiliary views.

4.1 Interaction Semantic Decouple

The Einter combines the information about user and item characteristics. Intu-
itively, by distinguishing these two parts and enhancing them separately with
side information, the effects of the semantic gap and the discrepancies in GNN
learning behaviors can be alleviated. With this motivation, we design ISD to
decouple the Einter into a user-related part and an item-related part. Then we
exploit corresponding side information to enhance both parts. We define two
categories of features to describe the aforementioned two parts: homogeneous
features (hoFs) and heterogeneous features (heFs), whose meanings are elabo-
rated as follows.
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Fig. 1. The upper of the figure is the overview of our proposed FiCoRec framework,
while the lower part illustrates the HKT and MSF, respectively. ISD is represented by
the green bar in HKT. For ISD, we adopt the same operation for user and item. And
for HKT, we design symmetric structures for the two auxiliary views. For simplicity,
we illustrate them from the perspective of user.

On one hand, for hoF, we anticipate that it can preserve the intrinsic at-
tribution relevant to either user or item, e.g., social relationships for users and
knowledge dependencies for items. Therefore, we define the user-related part of
user embeddings as user homogeneous features (UhoF), and for item, the item-
related part of item embeddings is defined as item homogeneous features (IhoF).
To ensure UhoF and IhoF capture the intrinsic attribution of user and item, we
attempt to utilize the Eaux to employ supervision and augmentation. However,
given that the learning of graph structures heavily relies on a comprehensive
grasp of the local neighborhood nodes, directly minimizing the embeddings of
two individual embeddings proves to be insufficiently effective.

Inspired by previous works [1,22], we introduce contrastive self-supervised
learning to provide more effective supervision. Intuitively, we hope to maximize
the similarity between node pairs corresponding to the same node in Einter and
Eaux, i.e., eUhoF

i and euui (positive pairs), while for the different nodes, i.e.,
eUhoF
i and euuj (negative pairs) are opposite. Here, we adapt InfoNCE loss as

the optimization objective and pose the cross-view contrastive learning as the
task of classifying positive pairs among hoF and Eaux. Then, we denote the
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contrastive objective of users utilizing layer-k Eaux and Einter as

L(k)
UhoF =

∑
i∈U

−log
exp(sim(e

UhoF (k)
i , e

uu(k)
i )/τ)∑

j∈U exp(sim(e
UhoF (k)
i , e

uu(k)
j )/τ)

, (1)

where eUhoF (k) represents the UhoF in layer-k and τ represents the scalar tem-
perature parameter, sim(·) denotes the similarity function. Analogously, the
contrastive loss of items L(k)

IhoF can be formulated in a similar way.
On the other hand, for heF, we anticipate that it represents the user’s per-

sonality or the item’s characteristic. For example, the item-related part for user
embedding represents the knowledge of item associated with the user, which
contains the user’s preferences. Based on this characteristic, we define the item-
related part for user embedding as user heterogeneous features (UheF). Similarly,
the user-related part of the item embedding represents the target audience of an
item, which is defined as item heterogeneous features (IheF). Here, we introduce
the downstream task as supervision. In particular, we follow previous works [1]
and adopt the Bayesian Personalized Ranking (BPR) [18] pair-wise loss function
to constrain heF. Similarly, we consider the case of layer-k, that is,

L(k)
heF =

∑
(i,j+,j−)∈O

−ln(sigmoid(ŷ
heF (k)
i,j+ − ŷ

heF (k)
i,j− )) (2)

where ŷ
heF (k)
i,j = (e

UheF (k)
i )⊤e

IheF (k)
j represents the likelihood of user i interact-

ing with item j. Here, eUheF (k) and eIheF (k) denote the heF for user and item
decoupled from layer-k Einter, respectively.

Meanwhile, hoF and heF represent different parts of features for Einter, re-
spectively. It is vital to minimize the correlation between them to ensure their
independence, mitigating the unnecessary impact introduced by the mutual in-
teraction of hoF and heF. Thus, we employ additional constraints on them uti-
lizing orthogonal regularization, that is,

L(k)
Ureg = ∥(EUhoF (k))⊤EUheF (k) − I∥2F , (3)

where EUhoF (k) and EUheF (k) represent the embedding matrix of UhoF and
UheF in layer-k, respectively, I denotes the identity matrix, ∥ · ∥2F represents
the Frobenius norm. Analogously, the regularization loss of items L(k)

Ireg can be
formulated in a similar way.

4.2 Hierarchical Knowledge Transfer

From the perspective of message-passing mechanism, deeper features generally
contain global semantics, while the low-level features are able to capture local
structural information, both of which are crucial for graph machine learning
tasks. Thus, HKT is designed to transfer side information from the Eaux of
multiple layers. Specifically, we model the HKT component by extending the
ISD from single-layer to multiple-layer.
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For hoF, considering the connection paths between the auxiliary views and
the interaction view, we design a progressive approach to integrate embeddings
from different layers for side information transfer. As shown in Fig. 1(a), in
addition to aligning the same layer’s Eaux and Einter, the deeper Eaux is also
employed to augment the low-level Einter by fusing with low-level Eaux. Here, we
utilize the attention-based fusion method (ABF) introduced in [2] as the fusion
operation, which can adaptively calculate the weight of the fused portions. For
layer-k, the equation 1 can reformulate as

L
′(k)
UhoF =

∑
i∈U

−log
exp(sim(e

UhoF (k)
i , ē

uu(k,L)
i )/τ)∑

j∈U exp(sim(e
UhoF (k)
j , ē

uu(k,L)
j )/τ)

, (4)

where L represents the total number of layers, and ēuu(k,L) = F(e
uu(k)
i , e

uu(k,L)
i )

denotes the combination of the layer-k embedding, while euu(k) and a residual
embedding euu(k,L) containing the information from the layer-k to the last layer.
F(·) represents the fusion operation. Notably, for the layer-L, euu(L,L) is equal
to euu(L). Similarly, the objective of IhoF, L

′(k)
IhoF is defined in a similar way.

From the perspective of the interaction view, the layer-3 Eaux is aggregated
with the layer-2 Eaux to enhance the layer-2 Einter. Therefore, the latter can
learn side information from multiple layers of the auxiliary view, enhancing the
comprehension of local and global semantics. On the other hand, from the per-
spective of the auxiliary views, the layer-3 embedding learns the residual of
the layer-2 embedding, mitigating the over-smoothing problem for GNNs. Thus,
HKT enables the two categories of views to augment themselves in a mutual
manner.

Considering the connection paths solely affect the calculation of hoF loss,
while heF loss and the orthogonal regularization retain their original formulation.
Consequently, the optimization objective of HKT module is defined as:

LUhkt =
1

L

L∑
k=1

(L
′(k)
UhoF + λL(k)

Ureg + L(k)
heF ). (5)

where λ denotes a hyperparameter to determine the weight of the regularization.
LIhkt and LUhkt share the same computation way.

4.3 Multi-view Semantic Fusion

MSF attempts to explore the collaborative augmentation mechanism that in-
tegrates multiple auxiliary views. It bridges two auxiliary views through heF
and employs a meta-learning framework to aggregate knowledge of two views,
generating adaptive mapping from the aggregated knowledge.

For the user side, we involve an aggregate operation to integrate the user-user
embeddings and UheF, that is,

Muu = σ(Φ(euu, eUheF )), (6)
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where σ(·) represents the activation function. Φ actually acts as a projection
that maps the features of the user-user view into a shared semantic space. A
similar projection is utilized for the item side M ii. In particular, to smoothly
merge the two sides’ knowledge Muu and M ii, we design an anchor-neighbor
concatenation (ANC). Specifically, we treat one side as the anchor (e.g., a user
u) and incorporate the neighborhood of the anchor in the interaction view that
belongs to the other side (e.g., the item i ∈ Nu). The aggregated knowledge is
calculated as

Mu = Muu∥
∑
j∈Nu

M ii
j ,M i = M ii∥

∑
j∈Ni

Muu
j , (7)

where Nu and Ni represent the neighborhood of the user u and the item i,
respectively, and ∥ denotes the concatenation operation.

Subsequently, the aggregated knowledge is utilized to generate a parameter-
ized mapping,

Wmeta
u = MLPθ1(M

u)MLPθ2(M
u), (8)

where θ1 and θ2 represent the parameters of MLPs. Wmeta
i is calculated in a

similar way. The parameterized mapping contains the knowledge from both two
auxiliary views, which serve as a knowledge repository. Given a certain user or
item, we can extract the knowledge most relevant to them by applying non-
linear transformation to Wmeta and their intrinsic attribution. Therefore, the
enhanced embedding including aggregated knowledge from both two auxiliary
views is formulated as

Ẽu = σ(Wmeta
u EUhoF ), Ẽi = σ(Wmeta

i EIhoF ). (9)

The final output Ẽu and Ẽi can be seen as the integration of the enhanced hoF
and heF, which is utilized to predict the interaction of user and item. Here, we
also employ BPR loss function to measure the performance of the whole model,
that is,

Lsup =
∑

(i,j+,j−)∈O

−ln(sigmoid(ŷi,j+ , ŷi,j−)), (10)

where ŷi,j = ẽ⊤i ẽj denotes the likelihood of user i interacting with item j calcu-
lated by the enhanced embedding ẽi and ẽu. The final optimization objective of
our model is

Ltotal = Lsup + αLUhkt + (1− α)LIhkt. (11)

where α is a hyperparameter that governs the weight of LUhkt and LIhkt

5 Experiments

In this section, we evaluate the effectiveness of our FiCoRec by exploring the
following questions:

– RQ1: How does the performance of FiCoRec compare to existing approaches?
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– RQ2: How do different components in our model contribute to recommen-
dation performance?

– RQ3: How do key hyperparameters impact model performance?
– RQ4: How does ISD benefit side information transformation?

Table 2. Statistics of experimental datasets

Dataset #User #Item #Interaction Sparsity

Ciao 6776 101415 265308 99.96%
Epinions 15210 233929 630391 99.98%
FilmTrust 441 1853 12190 98.86%
KuaiRec 472 9030 711680 83.70%
LastFM 1427 6113 18092 99.72%

5.1 Experimental Setup

Experimental Datasets. We conduct experiments on five publicly available
datasets: Ciao [17], Epinions [19], FilmTrust [9], KuaiRec [8], LastFM1. The
details of each dataset are presented in Table 2.

Compared Baselines. To verify the effectiveness of our FiCoRec, we compare
it with various baselines. The details of baselines are described as below.

– GraphRec [4] firstly adapts GNNs to model the user-user social network
and the user-item interaction network to capture heterogeneous relations.

– SMIN [16] injects social and knowledge-aware relational structures into the
user-item interaction modeling by self-supervised learning.

– MHCN [28] designs a multi-channel hypergraph convolutional network to
enhance social recommendation by deploying high-order user relations.

– KCGN [13] designs a multi-task learning framework combining item inter-
dependent knowledge and social influence to enhance social recommendation.

– DSL [22] aims to denoise personalized social information, retaining impor-
tant social relationships for modeling user preferences.

– HGCL [1] transfers heterogeneous relational semantics to user-item inter-
action modeling with contrastive learning across different views.

– RecDiff [14] designs a hidden-space diffusion paradigm to alleviate the noisy
effect in compressed and dense representation space.

1 https://grouplens.org/datasets/hetrec-2011/



FiCoRec 11

Implement Details. Following previous works [1], we utilize Hit Ratio (H@K)
and Normalize Discounted Cumulative Gain (N@K) to measure the recommen-
dation accuracy of various methods. Both metrics are employed with K = 10.
In the evaluation setup, one positive (interacted) item and 99 negative (non-
interacted) items are sampled for each user to assess performance. Besides, we
conduct experiments in the PyTorch framework. For all the baselines, we re-
implement them in the aforementioned five datasets, and a single RTX 3090
GPU is used for training and testing. The Adam optimizer is used for model op-
timization, with the learning rate searched from 0.001 to 0.1 and a fixed weight
decay rate of 0.05. As hyperparameters, we use a base configuration of hidden
state dimension d = 32, GNN propagation layers L = 3, batch size = 8192, and
total loss balanced weight α = 0.8 across all datasets. Other hyperparameters
are tuned individually for each dataset based on its scale and structure.

Table 3. Performance comparison of all methods on different datasets in terms of
NDCG and HR. Best and second performances are marked with boldboldbold and underline.
∆avg denotes relative improvements over all baselines on average, and ∆sota indicates
the improvements of FiCoRec compared to state-of-the-art methods.

Datasets CiaoDVD Epinions FilmTrust KuaiRec LastFM
Metric H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

GraphRec 0.6832 0.4679 0.7610 0.5529 0.8125 0.6319 0.6168 0.3524 0.7262 0.5181
SMIN 0.6895 0.4818 0.8079 0.5997 0.8433 0.6797 0.6695 0.3974 0.7387 0.5145
MHCN 0.7034 0.4876 0.8164 0.6056 0.8429 0.6637 0.6428 0.3956 0.7631 0.5529
KCGN 0.6878 0.4792 0.8187 0.6061 0.8705 0.7276 0.6631 0.4096 0.7555 0.5440
DSL 0.6980 0.4898 0.8138 0.5919 0.8795 0.73490.73490.7349 0.6716 0.4103 0.7362 0.5268

HGCL 0.7325 0.5184 0.8226 0.6165 0.8750 0.7095 0.6737 0.4151 0.7875 0.5810
RecDiff 0.7016 0.4934 0.8213 0.6178 0.8763 0.7114 0.6725 0.4029 0.7421 0.5393

FiCoRecFiCoRecFiCoRec 0.73490.73490.7349 0.53190.53190.5319 0.82600.82600.8260 0.63420.63420.6342 0.89770.89770.8977 0.7310 0.69070.69070.6907 0.41750.41750.4175 0.80920.80920.8092 0.67260.67260.6726
∆avg(%) 5.12 9.02 2.47 6.68 4.81 5.58 4.98 5.28 7.98 10.04
∆sota(%) 0.33 2.60 0.41 2.65 2.07 -0.53 2.52 0.58 2.76 2.03

5.2 Overall Performance Comparison(RQ1)

In this section, we conduct experiments over five benchmark datasets and com-
pare our FiCoRec to the state-of-the-art baseline methods. The experimental
results of all baseline methods and our model are reported in Table 3. Based on
the evaluation results, we identify the following key observations:

(1) Our FiCoRec consistently outperforms baseline methods across five datasets.
Notably, FiCoRec achieves the highest average improvement of 7.98% and 10.04%
over seven baselines for the H@10 and N@10 metrics on the LastFM dataset.
We attribute these improvements to the design of interaction semantic decouple,
which provides a fine-grained transformation for side information.
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(2) From the table, we also observe that FiCoRec outperforms the state-of-
the-art model with a margin of 0.33%-2.76% on the H@10. Notably, the improve-
ment of N@10 is more than H@10 on large-scale datasets where the user-item
interaction is sparser. This suggests that FiCoRec effectively enhances the rank-
ing ability and robustness of recommender system, enabling more personalized
and interest-oriented recommendations for users. Conversely, the improvement
on small-scale datasets illustrates an unstable trend. We hypothesize that it is
because user interests are relatively simple in small-scale datasets, making it eas-
ier for models to capture user preferences, thus limiting the performance gains
achieved by FiCoRec.

(3) As can be seen, HGCL leverages side information from both user’s so-
cial connections and item’s knowledge-aware dependencies, achieving remarkable
performance among five datasets. Our FiCoRec not only provides a fine-grained
transformation of side information but also explores the joint influence of both
user and item. The superior performance further demonstrates the effectiveness
of the proposed HKT and MSF module.

5.3 Ablation Study(RQ2)

We conduct ablation studies to assess the significance of customized components
of our methods. Specifically, we disable the two key components and evaluate
the discrepancy in recommendation performance. The experimental results are
shown in Table 4. As can be seen, removing any of the two key components
leads to performance degradation across the evaluated dataset. Furthermore, we
do not include the user-user social connection view or the item-item knowledge-
dependency view to consider their influence. For the influence of components,
removing HKT causes a significant drop in performance. This is because it lever-
ages side information and different-level semantics to enhance the interaction
view. Without HKT, the decoupled hoF and heF fail to fully capture side infor-
mation from the auxiliary views. In addition, for the influence of the auxiliary
view, we can observe that the performance of FiCoRec outperforms the case
where one of the auxiliary views is disabled. This emphasizes the importance
of side information transformation, which is similar to the analysis in HGCL[1].
In particular, the user-user view plays a more essential role in our model, indi-
cating the social connection between users more likely to directly influence the
preference of the user.

5.4 Impact of Hyperparameters(RQ3)

We perform hyperparameter analysis to investigate the impact of hidden state
dimension d, total loss balanced weight α and the total number of propagation
layers L on the CiaoDVD, FilmTrust, and LastFM datasets. The results are
shown in Fig. 2.

For the parameter d, as the value increases from 8 to 32, we can observe a
remarkable improvement on both metrics. This is because the model’s capacity



FiCoRec 13

Table 4. Ablation studies on key components of FiCoRec

Datasets CiaoDVD FilmTrust LastFM
Metric H@10 N@10 H@10 N@10 H@10 N@10

w/o-hkt 0.7137 0.5133 0.8786 0.7163 0.7820 0.5758
w/o-msf 0.7256 0.5209 0.8803 0.7205 0.7836 0.5827
w/o-uu 0.7068 0.5110 0.8709 0.7042 0.7618 0.5640
w/o-ii 0.7178 0.5202 0.8791 0.7192 0.7789 0.5753

FiCoRec 0.7349 0.5319 0.8977 0.7310 0.8092 0.5928

increases as the hidden dimension enlarges. However, excessive enlargement can
degrade performance due to overfitting.

For the parameter α applied to Ltotal, the performance fluctuates as α varies,
suggesting that varying proportions of information transfer between user-user
view and item-item view influence the recommendation performance. When the
proportion of users exceeds 0.8, the model’s performance declines, indicating
that an optimal balance between users and items is crucial for achieving the
best performance.

For the parameter L, as the total number of propagation layers increases, the
performance gradually improves, suggesting that hierarchical knowledge transfer
facilitates the transformation of side information. We can observe that perfor-
mance degrades when the value of L reaches 4, which may be attributed to the
oversmoothing problem for GNNs.

In addition, the model exhibits different sensitivity to hyperparameters, with
smooth performance varying for α but more pronounced variations for L. Thus,
optimizing each hyperparameter is crucial for achieving the best performance in
specific applications.

Fig. 2. Hyperparameter studies of the FiCoRec
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5.5 Deep Analysis of ISD(RQ4)

To further analyze the effect of the ISD, we visualize the heatmaps of the corre-
lations between the original Einter, the decoupled hoF and heF, and the Eaux,
which is shown in Fig. 3. Here, we utilize the user embedding, Eu and Euu on
the LastFM dataset as an example. From Fig. 3(a) and (b), we can observe
that Euu shows moderate correlation with Eu, but Euu correlates more with
UhoF than Eu. This phenomenon indicates two facts: (1) semantic gap exists
between Eaux and Einter, hindering the transformation of side information. (2)
UhoF obtained through Euu can effectively capture the user side information.
Meanwhile, Fig. 3(c) shows a slight correlation between UheF and UhoF. This
suggests that UheF and UhoF learn different feature information, which demon-
strates the effectiveness of ISD. Furthermore, we utilize Eu and UheF to predict
the user-item interaction without any augmentation and visualize the evaluation
results in Fig. 4. As can be seen, the tendency of curves in two figures is com-
parable, which indicates that the UheF can achieve a performance comparable
to the original Eu. Notably, the performance of UheF initially exhibits a signifi-
cant gap compared to Eu, which we hypothesize is attributed to the inability of
UheF to accurately capture user preference information during the early stages
of training. As training progresses, its performance gradually converges to that
of Eu, eventually stabilizing with a slight margin, indicating the ability of UheF
to model user preference.

(a) (b) (c)

Fig. 3. Heatmap of the correlation between Eu, Euu, hoF and heF. The axes de-
note embedding dimensions, and the color intensity reflects similarity magnitude, with
darker shades indicating higher similarity. (a) Euu versus Eu, (b) Euu versus UhoF,
(c) UheF versus UhoF.

6 Conclusion

In this paper, we focus on the semantic gap between different views due to the
differences in learning behavior and explore the collaborative effect of multiple
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Fig. 4. Evaluation utilizing Eu and UheF without any augmentation.

views. Thus, we propose a fine-grained augmentation method for recommenda-
tion, termed as FiCoRec. It comprises two key components: Hierarchical Knowl-
edge Transfer (HKT) cooperating with interaction feature decoupling process
(ISD) and Multi-view Semantic Fusion (MSF). ISD first decouples the interac-
tion view embeddings, and HKT transfers side information knowledge through a
hierarchical contrastive learning framework. Then MSF leverages meta-learning
to consider the collaborative effect of two auxiliary views. Extensive experi-
mental results confirm that our FiCoRec outperforms the state-of-the-arts. For
future work, we aim to explore the enhancement of heterogeneous relationships
in multi-behavior scenarios.
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