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Abstract. The increasing reliance on machine learning in sensitive do-
mains, such as healthcare, has amplified concerns about bias and privacy
in data-driven decision-making. While fairness-aware generative models
aim to mitigate bias, they often depend on labeled data, limiting their
applicability in unsupervised settings. Conversely, differentially private
generative models ensure privacy but may still encode hidden biases.
Existing methods fail to jointly optimize fairness and privacy without
explicit supervision. To address this gap, we propose a hybrid gener-
ative framework that integrates clustering-based Variational Autoen-
coder (VAE) with Wasserstein Generative Adversarial Networks with
Gradient Penalty (WGAN-GP) to generate fair and privacy-preserving
synthetic data. The VAE structures latent representations under zero-
Concentrated Differential Privacy (zCDP) while incorporating K-Means
clustering directly in the latent space. The clustering serves as a factor
to influence the generative process into producing samples that resem-
ble real data in unsupervised settings. These structured representations
along with cluster labels then guide WGAN-GP’s generator toward sam-
ple generation and enhance adversarial debiasing through the Fairness
Critic, which penalizes correlations between synthetic data and sensitive
attributes to ensure fairness. By integrating clustering-based VAEs with
WGAN-GP, our framework enforces fairness while maintaining strong
privacy guarantees. Experimental results demonstrate that it outper-
forms existing generative models by effectively reducing bias, preserving
privacy, and ensuring high data utility across multiple fairness and pri-
vacy metrics.

Keywords: Generative Adversarial Networks · Unsupervised learning ·
Bias mitigation · Privacy preservation.

1 Introduction

Machine learning models are increasingly deployed in critical applications such
as healthcare and finance, where biased and privacy-compromising decisions can
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have serious societal consequences. Models trained on biased datasets risk rein-
forcing societal disparities, leading to discriminatory outcomes that dispropor-
tionately affect marginalized groups [10]. While fairness-aware machine learning
methods attempt to mitigate bias, many rely on labeled data, which are often
scarce, costly to obtain, and may not fully capture the diversity of real-world
populations [15]. When labels are incomplete or unavailable, fairness assessment
becomes more challenging, as bias can manifest in hidden ways within latent rep-
resentations and sampling distributions [12]. At the same time, privacy concerns
in sensitive domains necessitate mechanisms that protect individual data while
enabling meaningful analysis. Differential Privacy [9] has emerged as a strong
privacy-preserving solution, ensuring that synthetic datasets do not reveal infor-
mation about specific individuals. However, privacy-preserving generative mod-
els often fail to address hidden biases in data, as differential privacy constraints
can obscure fairness-related information rather than eliminate it [11]. This trade-
off between fairness and privacy presents a fundamental challenge in generative
modeling, particularly when working with unlabeled data. Generative models,
especially Generative Adversarial Networks (GANs), offer a promising approach
to producing realistic synthetic data that preserves statistical properties of the
original dataset. Fairness-aware GANs introduce debiasing constraints [10], but
their reliance on labeled data limits their utility in unsupervised scenarios. Con-
versely, differentially private GANs prioritize privacy but often fail to mitigate
bias, potentially encoding and perpetuating hidden disparities in generated sam-
ples [11]. This raises a crucial open problem: How can we jointly enforce fairness
and privacy in generative modeling without requiring labeled data?
To address this challenge, we propose a hybrid generative framework that in-
tegrates fairness-aware latent space structuring with privacy-preserving mecha-
nisms, enabling the generation of fair and privacy-preserving synthetic data in
an unsupervised setting. Our approach combines:

– Clustering-based Variational Autoencoder (VAE) with zero-Concentrated
Differential Privacy (zCDP): The clustering based VAE plays a pivotal role
in structuring the latent space while preserving privacy. By incorporating K-
Means clustering directly into the latent representation, the model enforces
the grouping of similar data points, ensuring that downstream generative
processes capture the structured distributions of real data in unsupervised
settings. The cluster labels serve as guiding signals for the subsequent ad-
versarial training phase, enabling controlled sample generation that aligns
with the underlying data structure. The variational inference framework fur-
ther enhances the model’s ability to learn meaningful data representations,
improving the quality of generated representations [21]. To ensure strong
privacy guarantees, we enforce zCDP, which bounds the moments of privacy
loss random variable rather than imposing a fixed limit, making it a more re-
fined and mathematically rigorous privacy mechanism. This approach avoids
the infinite loss scenarios associated with traditional (ϵ, δ)-DP (Differential
Privacy) while offering tighter privacy guarantees [9]. By structuring the
latent space through clustering-based enforcement and mathematically rig-
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orous privacy constraints, our VAE component provides a strong foundation
for generating high-quality, fair, and privacy-compliant synthetic data.

– Adversarially Debiased Wasserstein GAN with Gradient Penaty (WGAN-
GP): While VAE ensures fairness in latent representations and enforces pri-
vacy, it does not directly control fairness at the synthetic data level. To
achieve this, we deploy WGAN-GP which stabilizes training and mitigates
mode collapse challenges that often arises in GANs trained on biased data
[10]. Crucially, the cluster-aware latent representations obtained from the
VAE serve as conditional inputs to the GAN, ensuring that the generator
produces samples that align with the structured distributions discovered in
an unsupervised manner. Additionally, we introduce an adversarial debias-
ing mechanism via the fairness critic, which penalizes unwanted correlations
between generated data and sensitive attributes. This technique has been
shown to be effective in reducing bias in generative models by directly en-
forcing fairness constraints through adversarial optimization [7]. The train-
ing process ensures a tradeoff between data realism and fairness, where the
clustering-based VAE conditions the generator while the fairness critic re-
fines the final output to achieve unbiased data generation.

By explicitly addressing bias in the generative process and incorporating
zCDP, our framework named “Clust-VAE-WGAN-GP” bridges the gap between
fairness-aware and privacy-preserving generative modeling in unsupervised set-
tings. This advancement is valuable for applications where explicit labels are
unavailable, enabling more ethical and reliable synthetic data generation.

2 Related Work

Ensuring fairness in synthetic data generation remains a critical challenge in
machine learning where models trained on biased data can exacerbate societal
inequalities. Bias arises from sources such as covariate shift, selection bias, and
class imbalance, leading to discriminatory outcomes that disproportionately af-
fect certain demographic groups [1]. A major challenge lies in labeled data, as
machine learning models often assume datasets are representative of the popula-
tion—an assumption that rarely holds in real-world applications [15]. Generative
models, such as VAEs and GANs, offer promising solutions for bias mitigation
by learning complex data distributions. However, fairness-aware generative mod-
eling remains challenging, particularly in unsupervised settings where bias can
propagate through latent representations and sampling distributions [3]. Fair-
GAN [7] and its improved version FairGAN+ [8] introduced fairness constraints
to enforce statistical parity across sensitive attributes, ensuring that generated
samples do not disproportionately favor specific demographic groups. TabFair-
GAN [2] extends these techniques to tabular data, leveraging Wasserstein GAN
(WGAN) to create demographically balanced datasets by adjusting sample dis-
tributions. Similarly, conditional GANs (cGANs) [16] aim to reduce bias by
conditioning on fairness-related constraints, thereby promoting balanced repre-
sentations in generated samples. However, these methods rely on explicit class
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labels, making them unsuitable for unsupervised generative modeling, where
such labels are unavailable. Furthermore, fairness evaluation in generative mod-
els is inherently challenging, as even highly accurate sensitive attribute clas-
sifiers introduce measurement errors that can distort fairness assessments [3].
Given the limitations of labeled data, semi-supervised learning has emerged as
a promising approach to enhance fairness by leveraging unlabeled data. [20], for
instance, demonstrated its effectiveness in mitigating class imbalance in fault
detection diagnosis, while in medical AI, it has been shown to improve fairness
by capturing broader data distributions and reducing bias in predictive mod-
els [6]. By compensating for biased labeled datasets, semi-supervised methods
lead to more generalizable and fairer models [15]. Another emerging approach
is Positive-Unlabeled Learning, where models learn from datasets containing
only positive samples and unlabeled data [14]. Observer-GAN [13] introduced
an observer network to generate pseudo-negative samples, allowing the model to
differentiate between groups without explicit labels, thereby improving fairness
and generalization in synthetic data generation. In parallel to fairness-aware
methods, researchers have focused on privacy-preserving generative models to
ensure that synthetic data does not expose sensitive individual information. Dif-
ferentially Private GANs (DPGANs) [4] and PATEGAN [19] integrate differen-
tial privacy (DP) mechanisms to prevent data leakage by injecting noise into
the model’s gradients or outputs. Meanwhile, RDPCGAN [5] leverages Rényi
Differential Privacy (RDP) to achieve even stronger privacy guarantees while
preserving data utility. However, a key limitation of most differentially private
GANs is their exclusive focus on privacy, often neglecting fairness constraints.
As a result, bias can persist in privacy-preserving synthetic datasets, potentially
exacerbating disparities if left unaddressed. Despite progress in fairness-aware
generative modeling, unsupervised approaches remain underexplored. Existing
methods either require labeled data to enforce fairness or focus solely on privacy,
overlooking bias mitigation. This gap highlights the need for a hybrid generative
model that ensures fairness without explicit class labels while preserving privacy,
enabling ethical and reliable synthetic data generation in sensitive domains.

3 Proposed Method

This section introduces our Clust-VAE-WGAN-GP hybrid generative frame-
work, which integrates a Cluster-Based VAE with zCDP and a WGAN-GP
enhanced by a Fairness Critic.

3.1 Overall Architecture

As illustrated in Figure 1, the model operates in two interconnected stages. In the
first stage, the Cluster-Based VAE encodes input data into a continuous latent
space, where K-Means clustering is applied to structure the latent representa-
tions. This clustering mechanism generates cluster embeddings that influence the
generative process, guiding it to produce synthetic samples that closely resemble
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real ones in an unsupervised setting. This is achieved by conditioning the genera-
tor in the second stage on the clustering information, ensuring that the generated
data aligns with the learned latent structure. To enforce privacy, zCDP regu-
lates information leakage through Gaussian noise injection. WGAN-GP utilizes
the resulting clustered latent encodings (i.e., continuous private samples), along
with their assigned cluster labels outputted from the Cluster-Based VAE with
zCDP. The generator is explicitly conditioned on these cluster labels, ensuring
that generated samples preserve the latent structure learned in the unsupervised
setting. This conditioning mechanism helps maintain distributional consistency
across clusters, enhancing data realism. The Fairness Critic further enforces
fairness by evaluating correlations between generated samples and predefined
sensitive attributes, guiding the generator to reduce statistical dependence on
these attributes via adversarial debiasing. The discriminator randomly receives
samples from the generator and the continuous private samples to determine
and tries to distinguish real from fake samples. Its output is regulated through
Wasserstein loss and Gradient penalty for smoother update to the generator. By
integrating structured latent encodings from the VAE with adversarial fairness
constraints in WGAN-GP, our model generates high-fidelity, privacy-preserving,
and bias-free synthetic data, making it suitable for fairness-aware applications
in privacy-sensitive domains. Algorithm 1 presents the Clust-VAE-WGAN-GP
functioning.

Fig. 1: Overall architecture of Clust-VAE-WGAN-GP.

3.2 Detailed Architecture

Let X be the input data space, where each sample x ∈ X is drawn from a
biased dataset. The objective is to learn a synthetic data generator that satis-
fies the following conditions: (i) The generated data preserves privacy by adher-
ing to differential privacy constraints, preventing individual re-identification. (ii)
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The generative process mitigates bias by minimizing correlations between gen-
erated data and predefined sensitive attributes, ensuring fair and representative
sample distributions using fairness critic. (iii) The model learns cluster-aware
latent representations and promotes data realism, making it suitable for unsu-
pervised learning tasks. To ensure these conditions, the components of Clust-
VAE-WGAN-GP are structured as follows.

Clustering-Based VAE with zCDP Figure 2 illustrates the VAE compo-
nent, which integrates probabilistic encoding, clustering, and zCDP to generate
structured, private latent encodings. Given an input sample x, the encoder maps
it to a latent representation z by approximating the posterior distribution [21]:

qϕ(z|x) = N (µϕ(x), σ
2
ϕ(x)) (1)

where µϕ(x) and σϕ(x) are the mean and standard deviation parameters, re-
spectively, learned by the encoder network. The reparameterization trick ensures
continuous and differentiable latent representations. The training objective min-
imizes the KL-divergence (KL-loss) between qϕ(z|x) and the prior p(z), structur-
ing the latent space to align with the original data distribution. p(z) is used to
generate deterministic points x̂ using KL-loss regularization. The decoder recon-
structs the input x̂ into x̂c, while minimizing the reconstruction loss, preserving
essential data properties. To resemble real data in the unsupervised setting, K
cluster centroids ck

K
k=1 are initialized in the latent space x̂, and proximity con-

straints are enforced via K-Means clustering. These will be next given as an
input to the WGAN-GP. For privacy preservation, zCDP is integrated into the
VAE by adding Gaussian noise to gradients during backpropagation, mitigating
the risk of sensitive information leakage. The privacy loss ρ is given by the fol-
lowing equation, where q is the sampling probability, σ is the noise multiplier,
and T is the total number of training iterations [9]:

ρ =
q2σ−2T

2
(2)

The structured latent encodings x̂c and their corresponding cluster labels ck
form the basis for training the second stage of the model, ensuring that the
WGAN-GP component adheres to fairness and privacy constraints.

WGAN-GP with Adversarial Fairness Critic Figure 3 presents the sec-
ond stage of the framework, where a WGAN-GP learns to generate structured
synthetic data while enforcing fairness constraints.

The latent encodings x̄c and cluster labels generated by the VAE serve as
input to the WGAN-GP component, where the labels constitute a condition
for the generator during GAN training. The generator Gθ receives as input a
combination of structured latent noise z̄ ∼ p(z) and cluster label embeddings
ck, producing synthetic samples x̄f that tend to resemble real data and their
assignment to the same cluster. The discriminator Dψ is trained to differentiate
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Fig. 2: Overview of Clustering-Based VAE with zCDP mechanism.

Fig. 3: Overview of WGAN-GP with a Fairness Critic.

between real samples x̄c and synthetic samples x̄f while optimizing the revised
WGAN-GP loss:

LWGAN-GP = E[Dψ(x̄f )]− E[Dψ(x̄c)] + λE[(∥∇x′Dψ(x
′)∥ − 1)2] (3)

where x′ represents interpolated samples between real and generated data,
stabilizing training. The fairness critic Cφ enforces fairness by penalizing de-
pendence to sensitive attributes s from generated samples. Since the generator
is conditioned on structured cluster labels, the Fairness Critic can detect and
penalize correlations between synthetic samples and sensitive attributes, mini-
mizing bias. The generator is updated to reduce statistical dependence on these
attributes via the fairness loss:
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Lfair = E[|Cφ(Gθ(z̄, ck))− s|2] (4)

To ensure trade-off between data realism and fairness constraints, the synthetic
samples x̄f are assigned cluster labels based on precomputed cluster embeddings.
These embeddings, obtained from the Clustering-based VAE, remain fixed dur-
ing WGAN-GP training. This conditioning reinforces both bias mitigation and
structured generation while ensuring consistency in cluster-based representation.

Algorithm 1 The Clust-VAE-WGAN-GP algorithm
Require: Dataset X , learning rates η1, η2, η3, batch size B, number of clusters K,

privacy noise σ, Wasserstein loss weight λ
1: Initialize: Clustering-based VAE Vϕ, WGAN-GP (Gθ, Dψ), Fairness Critic Cφ
2: Compute zCDP privacy parameters (ϵ, δ) using Gaussian mechanism
3: Pre-train VAE: Encode input X into latent space, compute mean and variance,

and apply KL loss
4: Initialize cluster centroids using K-Means on VAE latent representations
5: for each training epoch do
6: for each batch B ⊂ X do
7: Encode B using VAE, inject Gaussian noise N (0, σ2), sample latent repre-

sentations
8: Assign cluster labels based on precomputed cluster embeddings
9: Train WGAN-GP:

10: Sample noise z and cluster embeddings to generate synthetic data
11: Compute Wasserstein loss with gradient penalty
12: Update generator Gθ and discriminator Dψ

13: Train Fairness Critic Cφ:
14: Predict sensitive attributes from generated samples
15: Compute fairness loss and update Gθ to remove bias
16: end for
17: end for
18: Return: Trained models Vϕ, Gθ, Dψ, and Cφ

4 Experimental setup

We investigate the following Research Questions (RQ) using the datasets detailed
in Table 1: (1) RQ1: How can we generate synthetic data that closely resembles
real data while maintaining high fidelity? (RQ2) : How can we balance the trade-
off between privacy and utility in synthetic data generation? (3) RQ3: How
can synthetic data generation effectively mitigate bias? (4) RQ4: How can we
guarantee the trade-off between privacy and fairness? (RQ5): How can we ensure
that synthetic data preserves privacy?

For hyperparameter tuning, the VAE with clustering uses 4 layers in both the
encoder and decoder, while the discriminator and fairness critic use 3 layers, and
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Table 1: Overview of Benchmark Datasets Characteristics.

Dataset # Instances # Features Labels # Numerical # Categorical
Features Features

HIV 8916 22 Unlabeled 3 19
Corporate Stress 3000 45 Binary 37 8

Obesity 2111 17 Binary 8 9
Heart Failure 299 13 Binary 12 1

Diabetes Dataset 253680 22 Binary 21 1
Pediatric 782 58 Binary 19 39

the generator uses 4 layers. The LeakyReLU activation function is applied. We
chose a batch size of 100. The noise multiplier ranges from 0.1 to 0.5. The learning
rate is set to 0.0001. Sensitive attributes, such as Age, Gender, and Ethnicity,
are manually identified for each dataset. A privacy accountant is used to convert
ρ, the privacy loss parameter of zCDP, into (ϵ, δ)-DP for a fair comparison with
baseline methods using (ϵ, δ)-DP. The number of clusters for K-Means is varied
from 10 to 25. Kindly refer to our method’s source code at the following link:
Unsupervised Cluster-based VAE WGAN GP.

To assess synthetic data realism, the quality of synthetic data and its simi-
larity to real data, we used the following metrics [16]:

– Maximum Mean Discrepancy (MMD): Measures the distributional dis-
tance between real and synthetic data, with lower values indicating higher
realism.

– Kolmogorov-Smirnov (KS) Test: The KS test assesses whether real and
synthetic data follow the same distribution by measuring the maximum dif-
ference between their cumulative distribution functions. A lower KS value
indicates stronger similarity. If the p-value is greater than 0.05, the difference
is not statistically significant, suggesting that the synthetic data may follow
the same distribution as the real data.

– Wasserstein Distance (WD): Measures the optimal transport cost re-
quired to match the synthetic data distribution to the real data distribution,
where lower values indicate better alignment.

– Dimension-Wise Probability (DWP) Score: Evaluates the per-feature
distribution similarity between real and synthetic datasets. A score closer to
1 indicates greater similarity, meaning the synthetic data closely follows the
real data’s feature distributions.

– Alpha-Precision: Measures how many synthetic samples lie within the sup-
port of the real data distributions. A value closer to 1 indicates better utility.

– Beta-Recall: Measures how much of the real data distribution is covered
by the synthetic data. A value closer to 1 indicates better utility.

Since explicit labels are unavailable, fairness is evaluated based on how sen-
sitive attributes are represented within clusters in the generated data:

https://github.com/AdouaniMalek/Unsupervised_Cluster_based_VAE_WGAN_GP.git
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– Statistical Parity in Clusters (SP) [18]: Ensures that sensitive attributes
do not influence cluster assignments, promoting fairness.

– Mutual Information (MI) Between Clusters and Sensitive Attributes
[18]: Quantifies the dependency between synthetic cluster assignments and
sensitive attributes. Lower MI values indicate better fairness.

– Cluster Quality and Bias Impact [17]:
• Silhouette Score (SS): Measures how well data points fit within their

assigned clusters, with values closer to 1 indicating well-defined, unbiased
clusters.

• Davies-Bouldin Index (DBI): Evaluates intra-cluster cohesion and
inter-cluster separation, where lower values indicate better clustering
performance.

To evaluate the privacy risks associated with synthetic data, we utilized the
following metrics [16]:

– Epsilon Identifiability Risk: Quantifies the probability that an individual
record can be uniquely identified in synthetic data. A higher epsilon risk
suggests potential re-identification threats.

– Nearest Neighbour Distance Ratio (NNDR): Evaluates how distin-
guishable real data points are from synthetic ones based on nearest-neighbour
distances. A lower NNDR means better privacy preservation.

We compared our Clust-VAE-WGAN-GP method with the following baseline
approaches to assess its potential in mitigating bias and preserving privacy.

– FairGAN [7]: Introduces fairness constraints to enforce statistical parity
across sensitive attributes in generated data.

– TabFairGAN [2]: Extends FairGAN to tabular data using Wasserstein
GAN (WGAN) for demographically balanced datasets.

– DPGAN [4]: Ensures privacy in synthetic data generation by incorporating
differential privacy mechanisms.

– RDPCGAN [5]: Utilizes Rényi Differential Privacy (RDP) to achieve strong
privacy guarantees while maintaining data utility.

5 Results and discussion

5.1 Data realism evaluation

Evaluation under no privacy constraints To address RQ1, Table 2 com-
pares the utility of synthetic data generated by our method against baseline
approaches. The results show that our model consistently outperforms baseline
methods across most datasets and remains highly competitive with TabFair-
GAN. Specifically, it achieves the best performance in four out of six realism
metrics for the Heart and Pediatric datasets. In three other datasets (HIV, Stress,
and Diabetes), our method shares top-performing metrics with TabFairGAN. For
instance, in the Pediatric dataset, our method achieved the lowest MMD and
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WD values (0.0010, 0.238), outperforming TabFairGAN (0.1890, 0.25), FairGAN
(0.2011, 0.49), DPGAN (0.2154, 0.55), and RDP-CGAN (0.7801, 0.30). It also at-
tained the highest DWP score (0.5977), α-precision (0.741), and β-recall (0.712),
clearly surpassing all baselines. In the Heart dataset, our method leads across all
six metrics, with a DWP score of 0.675, α-precision of 0.715, and β-recall of 0.712.
In the HIV dataset, it achieved the best DWP score (0.63) and β-recall (0.749),
while remaining competitive on the other metrics. In Stress and Diabetes, it
shared top performance: achieving the highest DWP scores (0.501, 0.5018) and
the highest α-precision and β-recall in both datasets (Stress: 0.770, 0.509; Di-
abetes: 0.678, 0.888). The superior performance of our method stems from the
integration of variational autoencoders with variational inference, enabling it
to effectively capture feature correlations. Additionally, the novel conditioning
mechanism introduced by K-Means clustering within the latent space guides the
generative process, ensuring that synthetic samples closely resemble real data in
an unsupervised setting. However, TabFairGAN remains a strong competitor,
sharing several top-performing metrics with our method in the HIV, Stress, and
Diabetes datasets and outperforming it in the Obesity dataset. This advantage
can be attributed to its generator architecture, which incorporates ReLU ac-
tivation for numerical attributes and Gumbel-softmax for categorical features,
enhancing its ability to generate mixed-type data—particularly beneficial for the
Obesity dataset.

Evaluation under privacy constraints To answer RQ2, Figure 4 illustrates
MMD trends under varying privacy budgets. Our method, in almost all datasets,
consistently achieves lower MMD values at higher privacy budgets (e.g., 1000 and
∞), demonstrating a strong tradeoff between privacy and utility. However, at
lower privacy budgets, RDP-CGAN shows competitive performance with lower
MMD values. This can be attributed to the stronger privacy bound imposed by
zCDP in our approach, which can introduce more noise at lower privacy bud-
gets. Meanwhile, standard DP mechanisms, used in DP-GAN are vulnerable to
exponential privacy loss accumulation causing decreased utility. Additionally, we
observe instability in MMD values at higher privacy budgets for all models in
the case of the Stress and Diabetes datasets, where MMD values do not exhibit
a descending pattern as the privacy budget increases. This instability arises from
dataset characteristics: the Diabetes dataset’s large size and moderate feature
count make it difficult to balance privacy and utility, as reduced noise can cause
the generator to focus on irrelevant patterns, leading to less reliable results. The
Stress dataset has a moderate size and includes a mix of binary and categorical
workplace stress indicators, contributing to the observed instability in MMD val-
ues. This combination of mixed data types and weakly structured patterns makes
it challenging for the generator to capture meaningful relationships. This results
to the vulnerability of the generator to overfitting noise rather than learning
useful representations increasing instability.



12 M. Adouani and Z. Chelly Dagdia

Table 2: Data Realism Metrics Across Methods under no privacy constraints.
Dataset Method MMD KS-test WD DWPscore α-precision β-recall

HIV Our Method 0.07 0.09 0.43 0.63 0.567 0.749
TabFairGAN 0.0398 0.07 0.057 0.4418 0.692 0.690

FairGAN 0.1461 0.03 0.57 0.4294 0.680 0.680
DPGAN 0.1452 3.50e-46 0.58 0.3481 0.600 0.650

RDP-CGAN 0.9646 1.65e-6 0.30 0.3830 0.510 0.580

Stress Our Method 0.035 0.28 0.28 0.501 0.770 0.509
TabFairGAN 0.0011 0.51 0.036 0.4571 0.690 0.690

FairGAN 0.0030 2.14e-68 0.480 0.3124 0.650 0.670
DPGAN 0.0028 2.17e-56 0.51 0.3578 0.610 0.630

RDP-CGAN 0.8488 3.380e-2 0.35 0.2304 0.530 0.550

Obesity Our Method 0.2013 0.05 0.56 0.43 0.439 0.487
TabFairGAN 0.0213 0.087 0.083 0.4948 0.697 0.581

FairGAN 0.5609 1.19e-86 0.97 0.2457 0.600 0.590
DPGAN 0.0876 1.237e-9 0.97 0.3159 0.570 0.610

RDP-CGAN 1.0431 5.41e-2 0.80 0.1551 0.480 0.520

Heart Our Method 0.227 0.1701 0.227 0.675 0.715 0.712
TabFairGAN 0.2674 0.07 0.19 0.3194 0.690 0.690

FairGAN 0.2300 6.55e-12 0.37 0.2760 0.680 0.690
DPGAN 0.2387 9.34e-5 0.531 0.3576 0.630 0.660

RDP-CGAN 0.7563 7.14e-1 0.34 0.1941 0.500 0.550

Diabetes Our Method 0.0352 0.035 0.285 0.5018 0.678 0.888
TabFairGAN 0.1782 0.09 0.22 0.3750 0.612 0.690

FairGAN 0.1942 5.87e-9 0.51 0.3014 0.620 0.650
DPGAN 0.2083 3.22e-7 0.57 0.2998 0.580 0.600

RDP-CGAN 0.7999 7.22e-4 0.28 0.2554 0.490 0.500

Pediatric Our Method 0.0010 0.03 0.238 0.5977 0.741 0.712
TabFairGAN 0.1890 0.05 0.25 0.3950 0.690 0.690

FairGAN 0.2011 3.21e-8 0.49 0.3198 0.670 0.690
DPGAN 0.2154 2.98e-6 0.55 0.3120 0.630 0.640

RDP-CGAN 0.7801 6.11e-3 0.30 0.2679 0.520 0.560
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(a) HIV dataset. (b) Stress dataset. (c) Obesity dataset.

(d) Heart Failure dataset. (e) Diabetes dataset. (f) Pediatric dataset.

Fig. 4: Mean Maximum Discrepancy (MMD) comparison across different meth-
ods (DPGAN, RDP-CGAN, and our approach) under varying privacy budgets.

5.2 Data fairness evaluation

To investigate RQ3, Table 3 presents the fairness evaluation of our method
in comparison with FairGAN and TabFairGAN, two state-of-the-art genera-
tive models explicitly designed to incorporate fairness mechanisms. The results
demonstrate that our approach consistently achieves superior fairness outcomes.
For instance, in the Pediatric dataset, our method outperformed baseline mod-
els by ensuring evenly spread statistical parity across sensitive attributes and
achieving the lowest MI values (MI-Gender: 0.0010, MI-Age: 0.0006), the high-
est Silhouette Score (0.5297), and the lowest DBI score (0.5025) – FairGAN
exhibited higher MI values (MI-Gender: 0.1341, MI-Age: 0.1428), lower Silhou-
ette Score (0.0153), and a higher DBI Score (2.0988). Across all datasets, our
method consistently attained balanced and evenly spread statistical parity, the
lowest DBI scores, and the highest Silhouette Scores in 5 out of 6 datasets.
These results highlight the effectiveness of the fairness critic, which dynamically
guides the generator to produce bias-free synthetic data by actively penalizing
dependencies between sensitive attributes and the generative process.

5.3 Data privacy evaluation

To respond to RQ(5), we report in Table 4 results of privacy, our method con-
sistently yielded low identifiability risk values, ranging from 0.0100 to 0.0221,
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Table 3: Comprehensive Analysis of Fairness Metrics Across Baseline Methods.
Dataset Method SP(Age) SP(Gender) SP(Ethnicity) MI(Gender) MI(Age) MI(Ethnicity) SS DBI

HIV TabFairGAN - Balanced Unbalanced 0.0000 - 0.0495 0.5778 0.6034
FairGAN - Unbalanced Unbalanced 0.0517 - 0.0948 0.0926 2.2951

Our Method - Balanced Balanced 0.0360 - 0.0656 0.5527 0.5349

Stress TabFairGAN Evenly Spread Balanced - 0.0102 0.0000 - 0.0332 3.8059
FairGAN Evenly Spread Evenly Spread - 0.0922 0.0000 - 0.1531 2.1520

Our Method Balanced Balanced - 0.0009 0.0040 - 0.4508 1.5409

Obesity TabFairGAN Unbalanced Balanced - 0.0039 0.0604 - 0.1974 1.5800
FairGAN Unbalanced Unbalanced - 0.0209 0.0128 - 0.3211 1.7665

Our Method Balanced Balanced - 0.0346 0.2027 - 0.4166 1.1452

Heart Failure TabFairGAN Balanced Balanced - 0.0481 0.2340 - 0.3276 0.6575
FairGAN Balanced Unbalanced - 0.1463 0.4619 - 0.0987 1.4818

Our Method Balanced Balanced - 0.0526 0.0000 - 0.6266 0.5150

Pediatric TabFairGAN Evenly Spread Evenly Spread - 0.0166 0.0492 - 0.0766 2.0979
FairGAN Unbalanced Balanced - 0.1341 0.1428 - 0.0153 2.0988

Our Method Evenly Spread Evenly Spread - 0.0010 0.0006 - 0.5297 0.5025

Diabetes TabFairGAN Evenly Spread Balanced - 0.0601 0.0000 - 0.3320 1.2595
FairGAN Evenly Spread Evenly Spread - 0.1282 0.0000 - 0.0525 2.1114

Our Method Evenly Spread Evenly Spread - 0.0005 0.0028 - 0.5276 0.5003

indicating strong privacy guarantees across all datasets. Additionally, NNDR
scores exceeded 1.0 in five out of six datasets, with higher values (e.g., 3.64 for
Obesity) reflecting that synthetic samples were typically more distant from real
data points, further supporting privacy preservation.

Table 4: Privacy Risk Metrics Across Datasets
Dataset EIR NNDR

HIV 0.0101 2.0998
Stress 0.0102 1.1012
Obesity 0.0101 3.6430
Heart 0.0100 1.0564
Diabetes 0.0221 1.5492
Pediatric 0.0101 0.0561

5.4 The effect of adversarial debiasing training

Table 5 presents a comparative analysis of our full architecture, which integrates
adversarial debiasing (Adv. Deb.), against a variant that excludes this compo-
nent (No Adv. Deb.), allowing us to isolate its impact on fairness. The results
demonstrate that adversarial debiasing consistently improves fairness metrics,
particularly statistical parity and mutual information (MI), as reflected in higher
Silhouette Scores and lower DBI values. For instance, in the HIV dataset, our
method achieves balanced gender parity and a significantly lower MI of 0.0360,
whereas removing adversarial debiasing results in unbalanced parity and a much
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higher MI of 0.0739. These improvements stem from the dynamic fairness en-
forcement of the adversarial debiasing critic, which actively penalizes statistical
dependencies between sensitive attributes and generated data during training.
This ensures that fairness is not a byproduct of data representation but an
explicitly optimized objective, effectively preventing demographic biases from
being learned and propagated.

Table 5: Ablation Study: Impact of Adversarial Debiasing on Fairness.
Dataset Our Method SP(Age) SP(Gender) SP(Ethnicity) MI(Gender) MI(Age) MI(Ethnicity) SS DBI

HIV Adv. Deb. - Balanced Balanced 0.0360 - 0.0453 0.5527 0.5349
No Adv. Deb. - Unbalanced Unbalanced 0.0739 - 0.0587 0.4009 1.2117

Stress Adv. Deb. Balanced Balanced - 0.0020 0.0031 - 0.4318 3.2728
No Adv. Deb. Unbalanced Balanced - 0.0077 0.0320 - 0.0410 3.1810

Obesity Adv. Deb. Balanced Balanced - 0.0346 0.2027 - 0.4166 1.1452
No Adv. Deb. Unbalanced Balanced - 0.0570 0.1591 - 0.1591 1.7886

Heart Failure Adv. Deb. Balanced Balanced - 0.0526 0.0000 - 0.6266 0.5150
No Adv. Deb. Balanced Balanced - 0.0900 0.3022 - 0.3022 1.0797

Pediatric Adv. Deb. Evenly Spread Evenly Spread - 0.0010 0.0006 - 0.5297 0.5025
No Adv. Deb. Evenly Spread Evenly Spread - 0.0186 0.4161 - 0.4161 0.6323

Diabetes Adv. Deb. Evenly Spread Evenly Spread - 0.0008 0.3185 - 0.3185 0.5000
No Adv. Deb. Evenly Spread Evenly Spread - 0.0839 0.3185 - 0.3185 0.7777

5.5 The effect of privacy on fairness

To answer RQ4, we assess the tradeoff between fairness and privacy. We ana-
lyzed the evolution of Silhouette Scores and Davies-Bouldin Index values under
varying privacy budgets and present them in Figure 5. Our results indicate that
as the privacy budget increases, Silhouette Scores improve, reflecting enhanced
cohesion, while DBI values decrease, signifying enhanced fairness. For instance,
in the HIV dataset, the Silhouette Score rises from 0.3953 at ε = 0.1 to 0.7143
at ε = 100, while DBI decreases from 1.3341 to 0.5900, demonstrating improved
fairness level with relaxed privacy constraints. However, certain anomalies sug-
gest that excessive noise can introduce instability in clustering quality. Notably,
in the Stress dataset, DBI spikes from 1.5409 at ε = 10 to 3.2728 at ε = 100, while
the Silhouette Score drops from 0.4508 to 0.4318. Despite leveraging zCDP for
tighter privacy bounds via Rényi divergence, these results highlight the nuanced
sensitivity of tuning the zCDP privacy budget. While zCDP reduces instability
compared to traditional DP, the relationship between privacy strength (ρ) and
fairness remains irregular, highlighting the delicacy of calibrating zCDP. This
behavior is partly influenced by the fairness critic, which guides the model to
generate balanced representations across subgroups. As zCDP introduces noise,
the fairness critic retains more signal to enforce equitable data generation. How-
ever, when the privacy budget is too tight (low ρ), the added noise limits the
critic’s ability to discern and correct subgroup disparities, weakening fairness
enforcement. Conversely, with a looser budget, the critic can more effectively
align distributions across sensitive attributes, leading to lower DBI scores.
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(a) Silhouette Scores across different
privacy budgets. Higher values indi-
cate better-defined clusters, showing the
trade-off between privacy and clustering
quality.

(b) Davies-Bouldin Index (DBI) under
different privacy budgets. Lower values in-
dicate better clustering structure and sep-
aration, highlighting the fairness-privacy
trade-off.

Fig. 5: Comparison of clustering performance under different privacy budgets
using Silhouette Score and Davies-Bouldin Index (DBI). The results illustrate
the impact of privacy constraints on clustering structure and fairness.

5.6 The effect of clustering on data quality

Figure 6 shows that clustering sensitivity to the number of clusters (k) de-
pends on dataset characteristics. HIV, with many categorical features, improves
steadily with k, peaking at 25 clusters, suggesting complex subgroup structures.
Heart, being small and mostly numerical, is highly sensitive—peaking at k = 20
then dropping—indicating the risk of excessive cluster formation, leading to the
loss of meaningful patterns. Stress dataset starts with poor clustering at k = 10
(0.04), but improves significantly by k = 20, suggesting that more clusters are
needed to meaningfully separate complex patterns in the data. The drop in
performance at k = 23 and 25 indicates over-segmentation, where noise may
be mistaken for distinct groups. In contrast, Pediatric and Diabetes, both high-
dimensional and largely numerical, show stable scores across k, indicating consis-
tent group patterns. Obesity shows moderate improvement. Overall, smaller or
more categorical datasets are more sensitive to k, while large numerical datasets
are more robust.

6 Conclusion

We proposed a novel hybrid generative framework that enforces fairness and pri-
vacy in unsupervised synthetic data generation. By integrating a clustering-based
Variational Autoencoder with a Wasserstein GAN with Gradient Penalty, our
approach structures latent representations while ensuring privacy through zero-
Concentrated Differential Privacy. Adversarial debiasing via the Fairness Critic
mitigates bias without requiring explicit labels. Extensive experiments across
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Fig. 6: Silhouette Score Across Six Datasets.

multiple healthcare datasets demonstrate our method’s superiority over existing
fairness-aware and privacy-preserving generative models. By leveraging various
data realism and fairness metrics, we provided a rigorous and interpretable evalu-
ation of generative quality, bias mitigation, and privacy preservation. Our results
highlight the effectiveness of our approach in generating high-quality, fair, and
privacy-compliant synthetic data across varying privacy budgets in unsupervised
settings. As future work, we aim to explore adaptive clustering techniques to dy-
namically adjust cluster formation and contrastive learning to further enhance
bias mitigation.
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