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Abstract. Despite the many recent advances in reinforcement learning
(RL), the question of learning policies that robustly satisfy state con-
straints under unknown disturbances remains open. In this paper, we
offer a new perspective on achieving robust safety by analyzing the inter-
play between two well-established techniques in model-free RL: entropy
regularization, and constraints penalization. We reveal empirically that
entropy regularization in constrained RL inherently biases learning to-
ward maximizing the number of future viable actions, thereby promoting
constraints satisfaction robust to action noise. Furthermore, we show that
by relaxing strict safety constraints through penalties, the constrained RL
problem can be approximated arbitrarily closely by an unconstrained one
and thus solved using standard model-free RL. This reformulation pre-
serves both safety and optimality while empirically improving resilience
to disturbances. Our results indicate that the connection between entropy
regularization and robustness is a promising avenue for further empirical
and theoretical investigation, as it enables robust safety in RL through
simple reward shaping.

1 Introduction

Safety is the ability of a policy to keep the system away from a failure set of
undesirable states. Robustness extends the notion to adversarial or noisy settings;
robust policies remain outside of the failure set in spite of the noise or adversary.
While robust reinforcement learning (RL) may be formulated as a constrained
optimization problem [1], there is a strong appeal in achieving robustly safe
policies through reward shaping alone, given the numerous algorithms available for
unconstrained RL. The purpose of this work is to reveal how robustly safe policies
arise naturally from two common practices in RL; namely, maximum-entropy RL
[2] and failure penalization [3]. Our results support that the maximum-entropy
RL objective together with failure penalties enable safe operation at testing under
action noise stronger than that seen at training; a property we call robustness.



2 P.-F. Massiani, A. von Rohr et al.

(a) = 1

T
T
T
T
T

(b) = 4

T
T
T
T
T

(c) = 8

T
T
T
T
T

(d) Max. ent.

T
T
T
T
T no

rm
. s

of
t-v

alu
e

Fig. 1. Fenced cliff — Robustness as a function of α: An entropy-regularized
policy avoids states with fewer actions available (d). The degree is controlled by the
temperature parameter α. As it increases (a–c), the policy moves away from the
constraints, getting more robust but taking longer to reach the target. The mode of the
policy is shown as a thin blue line.

Since “robustness” is a highly overloaded term in RL, we emphasize the notion
of robustness in this paper differs from those of previous studies [4,5,6]. Indeed,
they guarantee that entropy regularization preserves a high return under changes
in the reward or dynamics. In other words, the return is robust to such changes.
In contrast, we want that safety constraints are still satisfied under changes in
the dynamics (namely, the level of action noise). These two types of objectives
are complementary since safety and optimality are generally separate concerns
in optimal control, where the goal is to act optimally while abiding by safety
constraints. Similarly, the term “entropy-regularized RL” is used in the literature
to refer to various formulations of regularized MDPs [7]. In this paper, we use it
specifically to refer to methods that optimize the soft RL objective (3) as in [8],
which are often referred to as maximum-entropy RL. From here on, we reserve
the term “maximum-entropy” for the special case where the reward is identically
zero and the agent solely maximizes entropy.

Our approach builds on two key contributions. First, we empirically show that
entropy regularization in a constrained environment induces robustness to action
noise. We do this by first showing that agents optimizing the entropy-regularized
objective may sacrifice reward to avoid constraints boundaries, with the degree
of avoidance modulated by the temperature parameter. This is illustrated in
Figure 1, where higher temperatures yield policies whose mode stays farther from
constraints. Then, we provide empirical evidence that this constraints avoidance
translates to robustness to action noise, i.e., policies preserving the long-term
number of viable actions are generally more robust.

This general behavior aligns with the viability-based notion of robustness
(called “safety” therein) introduced by [8,9] (cf. [10]), where the robustness of a
state is quantified by the number of viable actions — those that allow indefinite
constraint satisfaction. We interpret the cumulative discounted entropy of a policy
as a proxy for the long-term number of safe actions it considers, and thus entropy
regularization naturally encourages avoidance of states with few viable options.

Our second contribution shows that this constrained setting can be approxi-
mated arbitrarily well using failure penalties. For penalties above a finite threshold,
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the mode of the resulting policy matches that of the constrained problem, offering
a practical reward-shaping strategy for learning robustly safe policies.

Making this observation relevant to state-of-the-art RL requires relating the
unconstrained and state-constrained optimization problems, as most applications
focus on the former [11]. This is the role of constraints penalization or, more
concisely, of penalties. In the absence of entropy regularization, they are known to
make constraints violations suboptimal, and large enough penalties guarantee that
policies optimal for the penalized problem are also optimal for the constrained
problem [3]. We add entropy regularization to this analysis. Furthermore, penalties
above a finite threshold recover the mode of the constrained policy.

Our observations emphasize a benefit of entropy regularization that differs
from what is commonly mentioned in the literature. Indeed, algorithms such
as soft actor-critic (SAC) [2] are often praised for their excellent exploration
and their robustness to the choice of hyperparameters [2]. Although crucial in
practice, these strengths are relevant during learning. In contrast, we focus on
the optimal policy, that is, on what occurs after successful learning.

Contributions We reveal how robust optimal controllers arise from the combi-
nation of entropy regularization together with sufficient constraints penalties.
Specifically:
1. We identify empirically that constraints repel trajectories of optimal con-

trollers in the presence of entropy regularization, by favoring controllers
maximizing the number of future viable actions.

2. We prove that failure penalties approximate this constrained problem arbi-
trarily closely.

3. Finally, we show that we can extract a safe policy from the optimal solution
to the penalized problem and demonstrate that this policy is robustly safe.

The first contribution strongly supports that the mode of entropy-regularized
policies is robust to action noise, as the most-likely trajectory is “repelled” by the
constraints. We confirm robustness to action noise empirically, and further theo-
retical investigation is a promising avenue for future work. Together, our results
enable achieving reward-shaping-based robustness, and a novel interpretation of
the temperature coefficient in the presence of constraints as a tunable robustness
parameter.

The article is organized as follows. We discuss other approaches to robustness
in RL in Section 2. We then expose necessary preliminaries in Section 3, and
formalize the problem we consider in Section 4. Section 5 contains our theo-
retical results, with first a high-level interpretation of the constrained, entropy-
regularized problem, and our main theorem guaranteeing approximation with
penalties. The empirical evidence on robustness follows in Section 6, together
with further empirical validation of our theoretical results.

A complete version of this paper together with its appendix is available at
this address: www.doi.org/10.48550/arXiv.2506.10871

www.doi.org/10.48550/arXiv.2506.10871
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2 Related work

Viability and safety in RL There is a variety of definitions of safety in RL [11].
We consider the case of avoiding state constraints with certainty (level 3 in [11]).
Such a definition of safety falls into the general problem of viability [10]. Many
specialized algorithms were developed to solve this safe RL problem, both model-
free and model-based [12]. It has been shown in [3] that sufficient failure penalties
enforce equivalence between the unconstrained and safety-constrained problems,
making safe RL amenable to unconstrained algorithms. This idea falls in the
class of penalty methods, a general idea in optimization which has been studied in
the context of optimal control [13,14]; a reformulation of the results of [3] is that
the discounted risk is an exact penalty function. Our results show that it is no
longer the case for entropy-regularized RL, as no finite penalty exactly recovers
the constrained problem. Yet, we show it can be approximated arbitrarily closely.
Regardless, the above works only guarantee safety and neglect robustness. We
extend the analysis and proof methods of [3] to entropy-regularized RL, which
naturally yields robustness in addition to safety.

Robustness in optimal control Robustness is a well-studied topic in optimal con-
trol [15] and consists of preserving viability despite model uncertainties. Classical
approaches consist of robust model predictive control [16,17] and Hamilton-Jacobi
reachability analysis [18]. They provide worst-case guarantees, mainly through
constraints tightening. The robustness of entropy-regularized controllers does
not fit directly in this category, as their full support makes them explore the
whole viability kernel. Instead, they seem to exhibit a form of “expected” con-
straints tightening, which translates into robustness to action noise of the mode,
as we illustrate empirically. Finally, alternative methods such as scenario op-
timization [19] address quantitative uncertainty instead of worst-case, but the
connection to the robustness discussed in this article is still open.

Robustness in RL Achieving robustness for RL policies is an active area of
research [1]. A common formalization is that of a two-player game between the
agent and an adversary [20,21]. This setup is akin to that of Hamilton-Jacobi
reachability analysis, only with a discounted cost. These approaches achieve ro-
bustness through an adversary controlling, for instance, disturbances [21] or action
noise [22], yielding worst-case robustness. However, such adversarially-robust RL
requires specialized algorithms and training the adversary. In contrast, entropy-
regularized RL is a popular framework with many standard implementations,
which, as we show, also yields robustness solely through reward shaping.

The work of [9] introduces a state-dependent safety measure based on the
number of viable actions available in each state. Our work extends this notion to
robust safety of policies. A detailed discussion on the connection with the safety
measure therein is in Appendix C.

We are not the first to report that entropy-regularization leads to robustness.
Some empirical [4,5] and theoretical works [6] highlight the inherent robustness
of entropy-regularized RL. As mentioned above, however, their definition of
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robustness differs: [6] consider robustness of the return to changes in the dynamics,
whereas we are interested in preserving constraints satisfaction.

The observation that action noise during training can lead to more robust
behavior was already made in [23, Example 6.6] on the famous cliff walking grid-
world. There, ε-greedy action selection resulted in more robust behavior for the
case of on-policy learning (SARSA), whereas Q-learning (an off-policy method)
learns to the optimal, non-robust, policy. We take the same example in Fig. 1
and observe that entropy regularization leads to robust behavior in off-policy RL.
Similarly, the G-learning algorithm exhibits the same robust behavior on the cliff
environment [24]. Our results and interpretation provide a general explanation
for this observation.

3 Preliminaries

We introduce concepts to frame the optimization problems and their constraints.
In particular, we address entropy-regularized RL and viability.

3.1 Entropy-regularized RL

We consider finite sets X and A called the state and action spaces, respectively,
and deterministic dynamics f : Q → X , where Q = X × A is the state-action
space. A policy π : Q → [0, 1] is a map whose partial evaluation in any x ∈ X
is a probability mass function on A; we write π(· | x), and Π is the set of all
policies. The state at time t ∈ N from initial state x ∈ X and following π ∈ Π is
X(t;x, π), and the action taken by π at that time is A(t;x, π). If the policy and
initial state are unambiguous, we simply write Xt and At.

We also consider r : Q → R a bounded reward function. The return of π ∈ Π
from initial state x ∈ X is then

G(x, π) =

∞∑
t=0

γtr(Xt, At), (1)

where γ ∈ (0, 1) is the discount factor. A smaller γ disregards delayed rewards, but
can be overcome if the said rewards have large magnitude. The expected return
is Ḡ(x, π) = E[G(x, π)]. With H as the entropy, we introduce the discounted
cumulative entropy of π ∈ Π from x ∈ X as

S(x, π) =

∞∑
t=0

γtH(π(· | Xt)), (2)

and its expectation S̄(x, π) = E[S(x, π)]. The objective of entropy-regularized
RL is then to find an optimal policy, that is, a policy πopt ∈ Π such that

πopt ∈ argmax
π∈Π

Ḡ(x, π) + αS̄(x, π), ∀x ∈ X , (3)
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where α ∈ R≥0 is a design parameter called the temperature. It is known that
there exists an optimal policy [2]. Specifically, one can be computed by leveraging
the optimal soft-Q-value function q : Q → R, which satisfies for all (x, a) ∈ Q
[25]:

q(x, a) = r(x, a) + γα ln

[∑
b∈A

exp

(
1

α
q(x′, b)

)]
, (4)

where we defined the shorthand x′ = f(x, a). An equivalent definition is [25,
Theorem 16]

q(x, a) = max
π∈Π

r(x, a) + γḠ(x′, π) + αγS̄(x′, π). (5)

Once q is known, the softmax policy solves (3):

πopt(a | x) = softmax

[
1

α
q(x, ·)

]
(a) ∀(x, a) ∈ Q. (6)

Finally, for any policy π ∈ Π, its mode is the policy

π̂(a | x) = 1

|argmaxπ(· | x)|
δargmaxπ(·|x)(a), (7)

where |A| is the cardinality and δA(a) is the indicator function of a set A ⊂ A.

3.2 Viability

We consider a set of failure states XC ⊂ X that the system should never visit.
Avoiding XC is a dynamic concern, and some states that are not in XC themselves
may still lead there inevitably. We address this through viability theory [10,
Chapter 2].

Definition 1 (Viability kernel). The viability kernel XV is the set of states
from where XC can be avoided at all times almost surely:

XV = {x ∈ X | ∃π ∈ Π, ∀t ∈ N>0,P[Xt /∈ XC] = 1}.

By definition, any state that is not in the viability kernel leads to XC in finite
time. Such states are called unviable. The viability kernel is therefore the largest
set that enables recursive feasibility of the problem of avoiding transitions into
XC. A closely related concept is the viable set, which is the set of state-action
pairs that preserve viability [8]:

QV = {(x, a) ∈ Q | x ∈ XV ∧ f(x, a) ∈ XV}.

We also define the unviable set QU = Q \ QV, and the critical set Qcrit =
QU ∩ (XV ×A) [26].
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Definition 2. Let π ∈ Π. We say that π is safe from the state x ∈ X if
P[Xt /∈ XC] = 1 for all t ∈ N>0. We say that π is safe if it is safe from any
x ∈ XV. For δ > 0, we say that π is δ-safe if maxQcrit π ≤ δ. We denote
the set of policies safe from the state x by ΠV(x) and that of safe policies by
ΠV =

⋂
x∈XV

ΠV(x).

By definition of the viability kernel, the condition for a safe policy can be replaced
with P[Xt ∈ XV] = 1 for all t ∈ N.

Remark 1. Another meaningful definition of δ-safety could be that the policy
assigns at most δ of probability mass to unviable actions, that is,

∑
a∈Qcrit[x]

π(a |
x) ≤ δ for all x ∈ XV, where Qcrit[x] is the X -slice of Qcrit in x. This is
equivalent to Definition 2 up to the choice of δ, since a δ-safe policy satisfies∑

a∈Qcrit[x]
π(a | x) ≤ δ · |Qcrit[x]|.

In the next section, we consider an RL problem over the set of safe policies
and dual relaxations thereof. To allow for general such relaxations, we introduce
dynamic indicators.

Definition 3 (Dynamic indicator). Let c : Q → R≥0 and the associated
discounted risk

ρ(x, π) =

∞∑
t=0

γtc(Xt, At). (8)

We say that c is a dynamic indicator of XC if, for all x ∈ XV, E[ρ(x, π)] > 0 if,
and only if, π /∈ ΠV(x).

The notion is independent of γ ∈ (0, 1). A simple example is the composition
of the indicator function of XC with the dynamics; it is a dynamic indicator of
XC [3, Lemma 1]. While this one is always available, more elaborate dynamic
indicators help penalize unviable states earlier in the Lagrangian relaxation and
lower required penalties, eventually leading to better conditioning.

Remark 2 (Recovering from constraints violation). Our results hold in the two
settings where visiting XC terminates the episode or not. The second case is
fully consistent with the setup of infinite time-horizon RL that precedes. Then,
actions taken from XC may map back into XV: trajectories leaving XV may only
return there after visiting XC. We even have XC ∩ XV ≠ ∅ in general, and the
intersection is composed of states with actions that map in XV\XC. The first case,
however, is not naturally framed in infinite time-horizon. Indeed, while adding an
absorbing state with null reward and dynamic indicator as in [3] effectively cuts
the sums in G(x, π) and ρ(x, π), the sum in S(x, π) cannot be handled similarly
without additional notation. In the interest of conciseness and clarity, we thus
only introduce formally the case of non-terminal XC. We emphasize that this is
the more challenging case, as forbidding entropy collection after failure effectively
further penalizes failure states.
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4 Problem formulation

We consider a standard constrained RL problem with dynamics f , constraint set
XC, viability kernel XV, return G, and entropy regularization with temperature
α > 0, as defined in Section 3:

max
π∈ΠV

Ḡ(x, π) + αS̄(x, π). (9)

We investigate the following questions:

Question 1. In what sense can we interpret (9) as a robust control problem?

Question 2. Can we make (9) amenable to unconstrained algorithms?

We provide an empirical answer to Question 1 by identifying that the constraints
repel trajectories of optimal controllers to an extent controlled by α, using tools
from viability theory. The higher α, the stronger the repulsion. We then interpret
this repulsion as a form of robustness to action noise, as the mode of the solution
to (9) favors visiting states where adversarial action noise takes longer to bring
the agent to states with constraints. We support this high-level interpretation
with empirical demonstrations on toy examples and standard RL benchmarks.
We then answer Question 2 through constraints penalties: we show that the
solutions of (9) are approximated arbitrarily closely by solving a Lagrangian
relaxation of the constraint π ∈ ΠV. Provided that one can solve the resulting
unconstrained problem in practice (using for instance classical RL algorithms
such as SAC), our results provide a model-free way to approximate robustly-safe
controllers arbitrarily closely with a tunable degree of robustness, as well as a
clear interpretation of the temperature and penalty parameters.

5 Theoretical results

In this section, we explain on a high level why entropy regularization causes
constraints to repel trajectories of optimal controllers and state our theoretical
results on how to approximate (9) with a classical unconstrained problem. The
proofs are in Appendix D.

5.1 Preserving future viable options

Explanation Our starting point to understand the claimed phenomenon is the
observation that, for x ∈ XV, the maximum immediate entropy achievable by a
safe controller is limited by the number of unsafe actions available in x. Specifically,
it follows immediately from properties of H that

∀π ∈ ΠV, H(π(· | x)) ≤ ln|QV[x]|. (10)

Since S̄ is the (expected discounted) sum of the left-hand side of (10) along
trajectories, it is meaningful that entropy-regularized, safe optimal controllers
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avoid states for which this upper bound is low, i.e., where |QV[x]| is low. On the
other hand, completely forbidding actions leading to such states is also harmful,
since it “propagates” the constraints backwards along trajectories, enforcing a
similar upper bound on the immediate entropy obtainable in those previous
states as well. In other words, entropy-regularized controllers limit the probability
of actions that eventually lead to states with a low bound in (10), without
completely avoiding such actions to avoid loss of immediate entropy. The more
steps it takes to reach states with many constraints, the less pronounced this
effect of the constraints is. It follows from this reasoning that trajectories that
go towards states with many constraints generally have lower probability than
trajectories that go away from them.

This discussion supports on a high level that entropy regularization with
constraints promotes constraints avoidance by preserving the long-term number
of future viable options. Next, we identify this behavior as a form of robustness
to action noise of the mode policy. Indeed, the mode policy tends to minimize
the long-term proportion of actions unavailable because of constraints, and thus
the probability that action noise selects such an action is also approximately
minimized. We leave a precise formalization of this idea to future work, and
support it with empirical evidence in Section 6.

A metric of robustness This discussion highlights that, for any π ∈ ΠV and
x ∈ XV, the quantity S̄(x, π) captures the long-term number of viable actions
that π considers from x. A controller achieving a high S̄(x, π) successfully avoids
highly-constrained states. This motivates taking the cumulative entropy as a
quantitative measurement of robustness, which enables comparing the robustness
of controllers.

Definition 4. We say that π1 ∈ ΠV is less S-robust than π2 ∈ ΠV, and write
π1 ⪯ π2, if

S̄(x, π1) ≤ S̄(x, π2), ∀x ∈ XV. (11)

Behavior for increasing temperatures For α = 0, (9) recovers the constrained,
unregularized problem

max
π∈ΠV

Ḡ(x, π). (12)

We are then maximizing the return over viable policies with no concerns about
robustness. As α increases, entropy is more and more prevalent in the objective
of (9), whose solution converges to the maximum entropy policy π⋆

ent

π⋆
ent = arg max

π∈ΠV

S̄(x, π), ∀x ∈ XV. (13)

This is best seen through the soft-value function.

Theorem 1. Consider the soft-Q-value functions Qent and Qα of (13) and (9),
respectively and for all α ∈ R≥0. Then, maxQV

| 1αQα −Qent|→ 0 as α → ∞.

Corollary 1. Denote by π⋆
ent and π⋆

α the solutions of (13) and (9), respectively
and for all α ∈ R≥0. Then, the map α 7→ π⋆

α is monotonic for ⪯ and maxQV
|π⋆

α−
π⋆
ent| → 0 as α → ∞.
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Corollary 1 formalizes that the solution of (9) becomes more S-robust and
approaches that of (13) as α increases. The mode of (9) thus gets robust to
action noise by the preceding explanations and empirical evidence of Section 6.

5.2 Relaxing safety constraints with penalties

A practical consequence of our observation is that solving (9) yields controllers
that preserve a safe distance to the constraints with high probability. An important
drawback, however, is that the problem involves the viable set QV, which is
unknown in model-free situations. We now leverage a Lagrangian relaxation of
these viability constraints to make the problem amenable to model-free algorithms.
The results in this section extend those of [3] to the case of an entropy-regularized
objective.

In this section, we consider c a dynamic indicator function of XC and ρ
the associated discounted risk (Definition 3). We are interested in the following
penalized problem

π⋆
α,p = argmax

π∈Π
Ḡ(x, π) + αS̄(x, π)− pρ(x, π), (14)

where p ∈ R≥0 is a penalty parameter. It is known that in the case α = 0, (14)
and (9) share the same solutions if p is large enough [3, Theorem 2]. Unfortunately,
this result does not directly carry to the case α > 0: from (6), π⋆

α,p(a | x) > 0 for
all (x, a) ∈ Q, and thus in particular π⋆

α,p /∈ ΠV. However, scaling the penalty
remains possible if one accepts to trade viability for δ-safety.

Theorem 2. For any δ > 0, ϵ > 0, and α > 0, there exists p⋆ ∈ R≥0 such that,
for all p > p⋆, the optimal policy of (14) π⋆

α,p is δ-safe and

max
QV

|π⋆
α,p − π⋆

α| < ϵ. (15)

Proof (Sketch of proof). The penalty enforces an upper-bound on the soft Q-value
of state-actions in Qcrit (Lemma 2). Values there thus decrease arbitrarily low
as the penalty increases, while it remains lower-bounded on QV. This, in turn,
shows δ-safety of π⋆

α,p for p large enough. Therefore, the value function of (14)
approximates to that of (9) on QV, and π⋆

α,p gets arbitrarily close to π⋆
α.

5.3 Safe policies from the relaxed problem

It follows from Theorem 2 that the solution π⋆
α,p to the penalized problem (14)

is a δ-safe policy and the mode of π⋆
α,p is safe if the penalty is sufficient.

Corollary 2. Under the same notations as Theorem 2, there exists δ̄ ∈ (0, 1)
such that, if δ ∈ (0, δ̄), then the policy π̂α,p following the mode (7) of π⋆

α,p is safe.

Proof. This directly follows from Theorem 2.

We empirically investigate the robustness of this policy in the next section.
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Conclusion on the questions Finally, we are able to answer Questions 1 and 2
based on the following arguments. Entropy regularization in the presence of
constraints biases the learning problem towards policies that avoid constraints
to preserve a high number of viable options, with the temperature coefficient
monotonically controlling the degree of S-robustness. Furthermore, the viability
constraints of (9) can be relaxed by a Lagrangian formulation at the price of
trading viability for δ-safety. Specifically, the solution of (14) approximates
arbitrarily closely that of (9), provided that the penalty is sufficiently high. In
particular, penalties above a finite threshold recover the mode of (9) exactly
and the policy following that mode is therefore safe. Put together, these results
provide a model-free way to approximate safe and robust controllers with tunable
degrees of robustness.

6 Empirical results

We provide in this section the empirical evidence that entropy regularization with
constraints yields policies whose mode avoids constraints and is robustly safe under
increased action noise, and that penalties enable approximating these constraints.
We start with a discrete grid world, where we can solve the constrained problem
numerically, to showcase how constraints repel trajectories in the presence of
entropy regularization. Second, we introduce failure penalties to reveal how they
recover the constraints. Finally, we illustrate the claimed robustness to increased
action noise on MuJoCo benchmarks3. These experimental results confirm our
interpretation of the two hyperparameters: penalties control the probability of
failure, while the temperature controls the degree of robustness.

6.1 Cliff walking

Our gridworld (Fig. 1) is an adaptation of the cliff environment [23, Example 6.6].
Three states in the middle of the bottom row represent the cliff; the failure set
XC the agent should robustly avoid. The right column represents the target of
escaping the cliff. The failure and target states are invariant under all actions.
Otherwise, the dynamics follow the direction of the chosen action, or map back
into the current state if the agent hits a border. Actions outside of the cliff or
target get a −1 reward.

Interaction of constraints and entropy The constrained version of the
environment — the fenced cliff — only offers three actions to an agent neighboring
the cliff, imposing a lower upper-bound on the entropy in those states as per
(10). This observation is key in understanding why entropy regularization avoids
states with unviable actions, yielding robustness (Fig. 1.d).

3 The code to reproduce results is available at www.github.com/
Data-Science-in-Mechanical-Engineering/entropy_robustness.

www.github.com/Data-Science-in-Mechanical-Engineering/entropy_robustness
www.github.com/Data-Science-in-Mechanical-Engineering/entropy_robustness
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Fig. 2. Unconstrained cliff — Safety and robustness as functions of α and
p: Safety and robustness can be achieved by penalizing (p) the constraints XC and
adjusting the temperature (α).

Indeed, when maximizing entropy only (Fig. 1.d), the optimal policy favors
transitioning away from states neighboring the constraints due to the aforemen-
tioned upper bound on immediate entropy. In turn, the immediate entropy of
the policy in the 2-step neighbors is also reduced since some transitions are less
desirable. The same logic applies recursively “outwards” from states with unviable
actions, and the policy generally pushes trajectory away from the constraints;
that is, towards the top corners. When initialized on the right, the policy aims
at reaching the invariant target states where full entropy is available. When
initialized on the left, the mode of the policy favors the top-left corner to avoid
the low entropy of states close to the constraints, overcoming the long-term
benefit of the target state. This trade-off between short- and long-term entropy
depends on the discount factor γ.

In contrast, finite temperatures (Fig. 1.a–c) further encourage reaching the
goal state to avoid the negative reward. The agent thus takes more risks to collect
rewards while preserving some distance from the constraints. This trade-off
between performance and robustness is controlled by the temperature parameter
α: high values favor entropy (and, thus, robustness by what precedes), whereas
lower ones favor performance. While high robustness may be desirable, it comes
at the price of suboptimality. Too high a temperature may entirely prevent task
completion for the mode policy if the path thereto is inherently risky, leading to
unsuccessful learning outcomes due to poor choice of hyperparameters.

Interaction of penalties and entropy Sufficient penalties enable solving the
constrained problem (Fig. 2), consistently with Theorem 2. The example shows
the robustness–performance trade-off with different temperatures and penalties.
Importantly, entropy and penalties are now competing, and any fixed penalty is
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Fig. 3. Effect of the temperature on the minimum safe penalty pmode (left)
and δ-safety (right) on the cliff: Left: The minimum penalty such that the mode of
the stochastic policy is safe. Right: The minimum δ such that the policy is δ-safe as
functions of p and α. Policies get safer as p increases, but less safe as α does.

eventually overcome by high temperatures, degrading safety (Fig. 3). The penalty
thus needs to scale with the temperature to ensure δ-safety with a low δ.

The minimum sufficient value for the penalty depends not only on α, but
also on other hyperparameters such as the reward function, discount factor, and
dynamic indicator. For instance, if the dynamic indicator is simply the indicator
function of the constraints set, then the minimum penalty scales exponentially
with the longest trajectory contained in X \ (XV ∪XC). Other choices of dynamic
indicators may improve this dependency by incurring the penalty earlier in the
trajectory, but choosing the penalty remains a problem-specific concern. While
theory suggests picking it as high as possible, too high a penalty may introduce
numerical instabilities when combined with value function approximators outside
of tabular methods. We refer to [3] for an extended discussion.

6.2 Reinforcement learning benchmarks

We now illustrate on standard RL benchmarks that this constraints avoidance
translates into increased robustness to action noise. For this, we train entropy-
regularized agents on two popular MuJoCo benchmarks, namely the Pendulum-v1
and the Hopper-v4 environment [27], with various temperatures. We then evaluate
the mode of the learned policy under additional external action noise, whereas
training is noise-free. The action noise is sampled from a uniform distribution
U(−ϵ, ϵ). For each value of the temperature, we evaluate the frequency of successful
constraints avoidance over 100 episodes. Further details on the setup are in
Appendix B and additional results are in Appendix A.

Consistently with our theoretical results, we find that (i) entropy-regularization
decreases the return by avoiding high-value states with many unviable actions;
and (ii) the mode of entropy-regularized policies is more robust to disturbances
as the training temperature increases.
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Fig. 4. Learning robust policies with SAC Top: With a target angle at 40◦ (dashed-
dotted line) the agent learns to stabilize at different angles depending on the training
temperature. For higher temperatures, the agent stabilizes the pendulum further away
from the failure set XC. Bottom: Rate of successful failure avoidance on the disturbed
Pendulum-v1 (left heat map) and Hopper-v4 (right heat map) environments. As the
temperature increases the mode of the stochastic policy is robust to higher levels of
action noise ϵ.

Pendulum We modify the Pendulum-v1 environment as follows to incorporate
robustness concerns: (i) the initial state is the still, upright position; (ii) the
constraints consist of angles with magnitude beyond 90° and the penalty is 90;
and (iii) the reward is the squared angular difference to a target angle of 40°,
which is outside of the viability kernel since the agent exerts bounded torque.

The results are shown in Fig. 4. All policies lean towards the target state
but avoid leaving the viability kernel and reaching the constraints. The sufficient
penalty emulates the boundary of the viability kernel, which reduces the effective
number of available actions when leaning to one side. This pushes entropy-
regularized policies away from the target state, and they learn to stabilize angles
closer to 0 as α increases — the maximum entropy policy keeps the pendulum
upright. The results show a robustness–performance trade-off between staying
upright and leaning as far as possible towards the target, which is controlled
by the temperature α. Furthermore, the mode of the entropy-regularized policy
can cope with significantly higher action disturbances when trained with higher
temperatures.

Hopper We repeat the same experiment as in the previous section for a modified
Hopper-v4 environment [27]. We modify the environment by penalizing the
“unhealthy” states with a penalty of p = 500. The results are shown in Fig. 4.
Increasing the temperature improves the robustness to additional action noise.
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However, the learned gait is slower, hinting at a performance–robustness trade-off
for this environment (see Appendix A.2). Interestingly, as the temperature is
increased, the training finds two distinct robust behaviors: one is the intended
hopping forward; the other is standing still and only collecting the healthy reward,
which is arguably the most robust behaviour.

Our experiments inform hyperparameter settings for RL practitioners: while
entropy regularization leads to robustly safe policies, high temperatures (or
minimum entropy constraints [28]) can make parts of the state space unreachable,
lead to conservative policies, and may even entirely prevent task completion as
seen in the Hopper example.

7 Conclusion

We study the interaction between entropy regularization and state constraints in
RL and reveal empirically that this favors policies that are constraints-avoiding
and robust to increased action noise, as they preserve an expected long-term
number of viable actions. We also show both in theory and in practice how to
approximate the constraints with failure penalties. In particular, the mode of
the policy — which is often what is deployed after training completion — is
recovered exactly by penalties above a finite threshold.

The connection between entropy regularization with constraints and control-
theoretic robustness is novel, to the best of our knowledge. This study identifies
the phenomenon, its relevance for RL, and opens many interesting avenues for
future work. A particularly promising one is the systematic study of the identified
robustness. Indeed, we hypothesize that entropy regularization with constraints
induces a kind of soft constraints tightening ; that is, restricts the optimization
domain to controllers that go away from the constraints with at least some
given probability. Such a result would enable identifying “softly invariant sets”:
subsets of the viability kernel that are control invariant under a robustly safe
controller (but not directly under entropy-regularized controllers, as they have
full action support) and contain the entropy-regularized controller’s trajectory
with high probability. This would draw a clear theoretical bridge between entropy-
regularized constrained RL and robust control through constraints tightening.
An alternative would be identifying a noise model to which the modes of entropy-
regularized, constrained policies are robust. More generally, it would be interesting
to find other regularization terms that promote robustness and that are amenable
to RL beyond the cumulative entropy, following ideas from [7]. Such regularizers
could enable novel robustness properties with rigorous guarantees, and perhaps
help training policies that are less sensitive to the sim-to-real gap.

In the meantime, we expect our findings to inform practitioners when applying
RL algorithms such as SAC. While entropy regularization has mainly been
developed as an exploration mechanism [2], it biases the policy to robustness
to action noise if one uses constraints penalties. This understanding enables
principled decisions when tuning the temperature and penalties, for instance by
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discouraging the common practice of annealing the temperature if robustness is
a concern.
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