MEAN: Multi-Expert Adaptive Network For
Customer Lifetime Value Prediction

Kelin Liu!2, Yao Zhou! (<), Bin Liu?, Hanjing Su!, and Shouzhi Chen!

! WeChat Pay Research and Development Department, Tencent, China
{clingliu, yaozzhou, justinsu, easychen}@tencent.com
2 Key Laboratory of Data Engineering and Visual Computing, Chongqing University
of Posts and Telecommunications, China
Cling798as@gamil.com, liubin@cqupt.edu.cn

Abstract. Customer Lifetime Value (CLTV) is a crucial metric for eval-
uating the economic value that users bring to a business over their en-
tire service cycle. Accurately predicting CLTV is essential for resource
optimization, improving user retention, and maximizing return on in-
vestment (ROI). However, predicting CLTV remains challenging due to
the inherent sparsity and long-tail distribution of customer spending be-
havior, particularly in payment scenarios where user decisions are highly
dynamic and influenced by external factors. Existing methods attempt
to alleviate these issues but struggle with embedding quality and distri-
bution selection, limiting their effectiveness in capturing complex user
behaviors. To address these challenges, we propose the Multi-Expert
Adaptive Network (MEAN), a novel CLTV prediction framework that
improves embedding representations and mitigates distribution-related
errors. MEAN integrates a Multi-View Feature Express (MVFE) mod-
ule to optimize multi-view representations through expert-driven feature
extraction and a Distribution Adaptive Module (DAM) for soft distri-
bution assignment, preventing error amplification from incorrect sub-
distribution choice. Furthermore, we introduce an alignment mechanism
to synergize MVFE and DAM via bi-directional probability alignment.
Extensive offline experiments and real-world online A/B testing on the
WeChat financial experimental platform demonstrate the effectiveness of
MEAN.
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1 Introduction

The Customer Lifetime Value (CLTV) represents the total economic benefit
that a single user brings to a product or application over their lifetime. As a core
operational metric, assisting service providers in carrying out targeted marketing
to improve customer retention and reduce churn rates [1,13,17,6]. Therefore,
accurate CLTV predictions can effectively enhance resource utilization, such as
advertising costs for user acquisition and personalized service costs. This enables
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the allocation of limited resources among different users to maximize the return
on investment (ROI) [12].

Due to variations in individual behaviors and the inherent characteristics of
customer activity over time, CLTV typically exhibits a long-tail distribution.
Notably, the user attrition rate reaches approximately 90% after initial use, i.e.,
major users do not contribute any revenue after their registration (CLVT=0),
while there are only about 10% of users transition to effective usage within one-
month post-activation ((CLVT> 0)).

To handle the sparsity of non-zero samples in CLTV prediction, previous
works adopt a two-stage cascading architecture to divide users into several groups
and train different models for each group to predict purchase propensity and po-
tential monetary value [15,4]. These methods typically employ ensemble machine
learning models, such as random forests [15] and the XGBoost [4], which require
substantial storage to maintain multiple models and struggle to capture high-
level feature representations. In addtion, the two-stage cascading process can
introduce error accumulation, further affecting prediction accuracy.

In recent years, end-to-end CLTV prediction models have seen significant
advancements. Wang et al. [16] propose the ZILN loss function, which enables
multi-objective optimization by combining purchase probability with log-normal
distribution parameters. Li et al. [8] introduce a multi-expert strategy that de-
composes the skewed distribution into sub-distributions, but this hard parti-
tioning is susceptible to data noise. OptDist [18] adaptively learns optimal sub-
distribution segments, but its hard distribution selection heavily depends on
the accuracy of the sub-distribution assignment. MDAN [9] alleviates data spar-
sity through a channel weighting mechanism and a distance similarity loss to
constrain the hidden-space distribution. While it employs soft distribution as-
signment to mitigate error propagation from sub-distribution selection, its pre-
dictions remain sensitive to scale transformations of CLTV values, particularly
in scenarios with scarce positive samples. Therefore, existing methods can not
properly handle the long-tail CLT'V distribution.

Predicting CLTV in payment scenarios presents additional challenges due
to the inherent complexity of user consumption behavior and the influence of
external disturbances Consumption decisions are primarily driven by subjective
awareness, characterized by high sparsity and dynamic instability [19]. For exam-
ple, WeChat Credit Pay, a consumer credit product that allows users to make
purchases utilizing their predetermined credit limits, has observed that users
predominantly opt for this payment method in limited consumption scenarios.
Moreover, exogenous variables such as promotional activities and scene adapt-
ability interact non-linearly with users’ implicit preferences, making it difficult
to extract high-level features and accurately capture their latent representations.

To tackle these challenges, we propose the Multi-Expert Adaptive Network
(MEAN), a novel framework for CLTV prediction. MEAN effectively mitigates
the limitations of insufficient embedding representation caused by inadequate
adaptation to payment scenarios. Additionally, it addresses the issues of error
propagation in hard distribution selection and the high dependency on labels
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in soft distribution combinations, particularly under atypical long-tail distribu-
tions. The core of MEAN is a framework based on a multi-view expert network,
where Multi-View Feature Express (MVFE) module jointly optimizes multi-
view features and distributions to extract complementary and robust knowl-
edge. Specifically, instead of using the same data samples for all distributions,
we pre-set multiple experts to focus on and extract different prior features of the
distributions. We notice that there is a clear ordinal relationship between the
distributions. Therefore, we use linear attention [20] to amplify the distinctions
between the distributions, to obtain high-quality embedding representations,
thereby reducing the overall complexity of CLTV modeling. To mitigate bias
in MVFE, we introduce a Distribution Adaptive Module (DAM). This differs
from existing methods that use the hard distribution selection criteria, as DAM
can approximate the output distribution to assist MVFE, thereby preventing
error amplification caused by selecting the wrong distribution. However, due
to the differences in the outputs of these two modules, integrating MVFE and
DAM within this framework still presents challenges. Therefore, we propose a
novel alignment mechanism to address this issue, which bi-directionally aligns
the probabilities output of DAM with the attention scores from MVFE. It can
incorporate the distributional knowledge from DAM into MVFE, achieving a soft
combination of distributions without relying on the label scale transformation.
We conduct offline and online experiments on a real CLTV dataset constructed
based on real users from the WeChat Payment Center, and the empirical results
demonstrate the effectiveness of the proposed MEAN. The main contributions
are summarized as follows:

— We propose a novel end-to-end CLTV prediction framework, MEAN, which
effectively addresses the complexity of CLTV prediction and enhances adapt-
ability to payment scenarios by optimizing high-quality embeddings for mul-
tiple candidate probability distributions.

— We design two key modules: MVFE for efficient feature encoding and DAM
for distribution approximation representation. To improve model synergy,
we introduce a dual-module joint optimization strategy that incorporates an
attention score alignment constraint within DAM.

— Extensive offline experiments demonstrate the effectiveness of our approach,
while online A/B testing on the WeChat financial experimental platform
further validates the utility of MEAN in real-world marketing activities.

2 Related Work

Customer Lifetime Value modeling estimates the future revenue that new cus-
tomers are expected to generate based on information about existing customers.
Segmenting customers based on their CLTV and employing different marketing
strategies for each segment is the initial demand of CLTV estimation. Early
CLTYV prediction methods focus on building rule-based or probabilistic models
based on customers’ historical behavior. Pareto/NBD [14] models the future pur-
chase frequency based on customer behaviors through random process modeling,
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and it is typically used in scenarios where customers can make purchases at any
time. Fader and others, based on the hypothesis that users with recent purchases
or relatively high purchase frequency are more likely to make future purchases,
use the RFM framework [5] to group users according to the recency, frequency,
and monetary value of their purchases, to estimate the CLTV of user segments.
Pfeifer et at. [11] constructs a transition probability matrix using Markov chains
and estimates CLTV by combining it with the initial value distribution. Machine
learning methods have been widely used to directly estimate CLTV based on user
features. Vanderveld et al. proposed a two-stage modeling approach [15], con-
structing two random forests based on user characteristics to separately predict
the probability and amount of user consumption. User embedding representa-
tions are constructed using Word2Vec [3] to predict CLTV.

In recent years, end-to-end models have emerged. For example, Wang et al.
designed a representative loss function, ZILN [16], based on the data distri-
bution, assuming that the payment amounts follow a log-normal distribution.
It uses a multi-task approach to simultaneously optimize purchase propensity,
distribution mean, and distribution standard deviation. The final prediction of
CLTV is the expected value from the log-normal distribution. Li et al. [8] fo-
cus on different lifecycle sequential dependencies and design the ODMN. They
address distribution imbalance by designing the MDMFE module, which uses
the divide-and-conquer approach to partition the imbalanced distribution into
multiple relatively balanced sub-distributions. This module selects the appro-
priate expert to predict CLTV values within specific ranges. However, this ap-
proach heavily relies on the selection of sub-distributions, and modeling these
sub-distributions remains challenging due to data noise, imbalance, and other
factors. To address label imbalance and sparsity issues, MDAN [9] uses a chan-
nel learning controller and a multi-channel network to mitigate data imbalance
through weighted adjustments, and designs a distance similarity loss to directly
bring the hidden vectors closer to the CLTV value distribution. Unfortunately, it
heavily relies on the scaling of CLTV values, which can easily lead to predicted
values lacking clear distinction. OptDist [18| explores multiple candidate prob-
ability distributions and selects the optimal sub-distribution for each example,
thereby addressing the complex and variable nature of customer lifetime value
distributions. However, the use of hard selection during the inference process
limits the model’s adaptability.

3 Proposed Method

In this section, we introduce a novel CLTV prediction model, Multi-Expert
Adaptive Network(MEAN). The overall framework of our model, as shown in
Figure 1. The model consists of a multi-view feature express network (MVFE)
and a distribution approximation Module (DAM). The shared layer transforms
the original features into dense vectors. MVFE comprises a multi-gate mixture
of experts network (MMOoE) [10] and an attention mechanism, to learn unique
representations of specific distributions and amplify the differences between dis-
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Fig. 1. The overall structure of our proposed MEAN

tributions, respectively. At the same time, our label’s distribution division cri-
terion is to set CLTV values within a certain range as a distribution, with the
ranges being adjustable as needed. Zero values are considered a separate dis-
tribution. The DAM includes a distribution approximation network designed to
capture the user’s original distribution tendencies. Then, we describe the align-
ment mechanism between modules to optimize our model.

3.1 Problem Definition

Given a user group U and predict the total revenue that user v will bring to the
product/service over some fixed lifecycle (e.g., 365 days). During this period the
user’s CLTYV is marked as 0 if no consumption behaviour occurs, and CLTV is
marked as the sum of multiple consumptions if multiple consumption behaviours
occur. The training dataset D = {(zy,¥s) | v € U, y, € [0,400)} contains each
sample input feature z, and the CLTV label y, > 0. In general, we train the
model F'(+) to predict CLTV, which can be expressed as follows:

where 4, is the predicted CLTV, © denotes the parameters of the model.

3.2 MEAN Framework

Multi-View Feature Express Module Specifically, we assume that the over-
all complex distribution of CLTV comprises several sub-distributions, and each
user belongs to one of these sub-distributions. The diversity of input features
is strongly correlated with the biased distribution of data. Noticing the varying
importance of features across different CLTV distributions or segments, we ob-
served that different users exhibit significantly different consumption behaviors
based on CLTV segmentation. To address this issue, we designed a Multi-View
Feature Expression network to learn and focus on the unique expressions of var-
ious distributions for different user groups. Currently, we employ M experts to
represent multiple predefined distributions from different vector spaces, and use
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a gating network to simulate the varying focus on features for each distribu-
tion. Based on the input feature x,, the Multi-View Feature Express Network
generates multiple distribution outputs as shown in the following formula:

M
fi = ZG(a:u)iEj (z4),i€[1,2,...,n] (2)

G (zy); = softmax (Wyx,) (3)

where ¢ is the distribution sequence number, n is the total number of CLTV
distributions, M is the total number of view expert networks, f; is the embedding
of the corresponding distribution output, G (z,); is each gating network, W, €
RN*d i a trainable matrix, d is the feature dimension, and E; (z,,) is each view
expert network.

Then, we use an attention mechanism to generate richer feature represen-
tations. By discarding the hard selection method of distributions, attenion-
weighted aggregation can effectively improve the quality of representations, es-
pecially in scenarios with dispersed multi-distribution information. Using the
attention mechanism, we allow the generation process to focus on different
parts across distributions, rather than encoding the entire input into a fixed-
length sequence. Importantly, we enable the model to learn to focus on what
is relevant based on the existing distribution embeddings. In our setup, the in-
put consists of the stacked representations of multiple distribution embeddings
H = concat [f1, fo, ..., fn]T, where each distribution hidden state is denoted as
h:. There is a clear sequential order among the distributions, treating each distri-
bution as a continuous token. We introduce an attention layer with an attention
matrix A € R"*™ q; is the i-th row of matrix A, where oy is used to capture
the distinctiveness of adjacent distributions. Our implementation of the atten-
tion mechanism is as follows:

g¢' = Tanh (Wyhy + Wihy + by) (4)

ay = softmax (g W, + ba) (5)

where W, and W, represent the weight matrices for the hidden state h:,W, is
the weight matrix for their corresponding nonlinear combination, and b, and b,
are the bias terms.

Each distribution’s attention-focused hidden representation is obtained by a
weighted sum of the embeddings of other distributions and its current distribu-
tion’s embedding similarity a;. This is directly derived using matrix multipli-
cation, where A = concat [a1, ag, ...,an]T. After obtaining all the distribution
similarity embeddings, the final embedding e is achieved by averaging all the
embeddings. This can be expressed as:
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After obtaining the final embedding of the multi-view feature representation, the
CLTYV prediction can be expressed as:

§=FC(e) (7)

where ¢ is the CLTV prediction value, and F'C'is a fully connected layer without
activation. As previously mentioned, the zero-inflated log-normal distribution
[16] was proposed specifically for the CLTV distribution but is prone to extreme
prediction values. However, the MSE loss is overly sensitive to these extreme
values, causing the overall predictions to tend towards the mean. Therefore, we
use Huber Loss to constrain ¢ learning, enhancing discriminability between ¢ and
ensuring ¢ remains within a controllable range. The loss function is expressed
as:

1

2
o1 .

1) <|y —gl - 25) , otherwise

where § is the value that controls the turning point between the two types of
loss functions.

(y—9)°, for |y — gl <=0

ﬁcltv _ (8)

Distribution Approximate Module Previously, we proposed a multi-view
feature representation network, which aims to aggregate more influential final
embeddings from the perspectives of feature and distribution debiasing. However,
the specific distribution lacks clear supervisory signals. Therefore, we propose to
use a bypass to construct a distribution approximation network. By using the
output of such a network to constrain attention learning. The input feature x,,
is projected to a high-dimensional feature vector via a simple shared layer, and
then is used to produce a n dimensional feature k& via MLP network:

k= MLP (ReLU (W, + b)) (9)

Where M LP is a network structure with the last layer outputting a dimension
of n, W, and b; are the parameters of the shared layer. We normalize the n
dimensional feature vector to ZAL ensuring the sum of all its elements to be 1, and
use a multi-class classification loss to guide the learning of b.The formula is as
follows:

. eki—maz(k)
by = Z?:l eki—maz (k) (10)
1 i N
[/buck:ect - _E Z Z Zzlogbz (11>
(zy,z)EB i=1

Where B is the number of samples in a batch,z is the n dimensional one-hot
vector representing the true distribution bucket label, b; is the probability value
of belonging to the i — th bucket.
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Constrained Attention Joint Alignment Mechanism Next, we introduce
a constrained attention joint alignment mechanism in our method, Aiming to
integrate the outputs of the two modules, incorporating distribution informa-
tion into the MVFE module, in order to refine the final embeddings that contain
distribution supervisory signals. We need to optimize the loss function with out-
puts from both modules. To effectively guide the direction of attention learning
and prevent the attention from shifting away from focusing on effective inter-
distribution information, we average the attention scores represented as 0. By
minimizing the Kullback-Leibler (KL) divergence 2] between the normalized n
dimensional feature b and 19, we aim to utilize the outputs of the DAM to guide
the learning of attention, represented as follows:

=1
. n 61
LM =" bilog— (13)
i=1 g

Where A is the attention matrix.

However, we do not want the learning of attention to be entirely guided
by the output of the DAM. We also aim to transfer the information from the
attention module to the DAM. Here, we use a combination of soft and hard labels
through high-temperature distillation. The higher the temperature, the smoother
the output probability distribution of the softmax, facilitating the transfer of
knowledge from our attention module to our distribution approximation network.
This achieves the purpose of mutually constrained joint alignment. The formula
is expressed as follows:

L8 = B (5,0(T = 1) 4y H (o(BiT =7),0(k T =7))  (14)

H(p,q) == pilog(gi + &) (15)
eo,;/T
o(0;T) = W (16)

where ¢ is the softmax function with the temperature parameter T, J is the
output of the attention scores, 5 and «y are coeflicients, £ is a very small constant.
It is worth noting that when T = 1, H (y,o(k; T = 1)) is equivalent to the
distribution multi-classification loss Lpyckect- In summary, the overall loss of
MEAN is defined as:

EME'AN — £cltv _|_£kl +Ldis (17)
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4 Experiments

4.1 Experimental Setup

Dataset The dataset for this experiment is derived from the user growth oper-
ations of WeChat Credit Pay. WeChat Credit Pay is a consumer credit product
that allows users to make purchases using their allocated credit limits. Due to
customers’ autonomy in choosing payment methods and amounts, along with
the significant influence of concurrent marketing activities on most users, the
distribution of CLTV exhibits a high level of complexity. The features of the
data set include user profile data, channel-related information, and transaction
records prior to the activation of the service. In addition, periodic, seasonal, and
social information is also incorporated as part of the features, resulting in a to-
tal of 720-dimensional features. We sample 22 million users as the experimental
dataset. In the dataset, we randomly split them into 7:1:2 as the training, vali-
dation, and test sets, respectively. Labels are defined as the total consumption
amount of new users within one month, one quarter, six months, and one year
after activating the WeChat Credit Pay product. Based on consumption habits
and user attributes before activation by new users, we need to simultaneously
estimate cltvsg,cltvgg,cltvgg,and cltvsgs.

Metrics The Percentile MAPE is an evaluation metric based on Decile MAPE
(DM) [16], used to evaluate the accuracy of CLTV prediction, but with finer
granularity. The Gini coefficient [16] is a commonly used metric for evaluating
CLTYV model performance. This metric serves as a quantitative evaluation stan-
dard for the effectiveness of high-value user identification, and its value is strictly
positively correlated with the model’s discriminative ability: the larger the Gini
coefficient, the more accurately the model distinguishes the value of top users.
Spearman Correlation (SC) [16] quantitatively evaluates the ordinal consistency
of the predicted values of the model, specifically representing the monotonic
preservation ability of the predicted CLTV and the actual CLTV in the user
value ranking. AUC is used to assess the recognition ability of high-value users.
AUC focuses only on the order of relationships and can be used to evaluate the
accuracy of rankings.

Baselines We compared our method with several state-of-the-art CLTV pre-
diction methods, which are summarized as follows:

— DNN-ZILN [16]: A method that unifies binary classification and regression
based on the log-normal distribution.

— MTL-ZILN: Using a multi-task learning paradigm to evaluate different CLTV
periods to assist in long-term prediction.

— ODMN [8]: A multi-distribution multi-expert method for CLTV prediction,
which divides training samples into multiple sub-distributions and buckets,
estimates deviations within buckets to obtain fine-grained CLTV values.
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— MDAN [9]: A method for predicting CLTV using multi-channel learning,
where the final embedding is obtained through weighted summation fusion.

— OptDist [18]:An end-to-end CLTV prediction framework adaptively selects
the optimal sub-distribution for each example by exploring multiple candi-
date probability distributions. The framework includes two modules, DLM
and DSM, designed for learning sub-distributions and making distribution
choices, respectively. Combined with an alignment mechanism, it enables
flexible selection.

Hyperparameter Settings We use a two-layer MLP with ReLU activation
functions as the shared layer. The size of the shared layer was set to [512,256],
[256,128,64] for the MLP. In our main model, there is only one layer followed
by a batch normalization operation. We use Adam [7] as the optimizer for our
model, with a learning rate of le-3. The batch size is set to 1024 and the number
of expert networks is set to 5. We employ an early stopping mechanism, and
the model typically converges within 12 to 15 epochs. We scaled the labels and
truncated them to the range [0, 20]. The parameter 6 of Huber Loss and the
soft label distillation coefficient y are set to 1.0. The parameters 7 of L% is
set to 2.0. We also pre-divided the data into 5 distributions, with zero values
being treated as a separate distribution. Our code is publicly available on an
anonymous GitHub repository 3.

4.2 Performance Comparison

In Table 1, we present the evaluation results of each model on the test set.
Firstly, MTL-ZILN outperforms DNN-ZILN overall because it can aggregate in-
formation from multiple periods through shared experts. Secondly, in the ODMN
method, the error propagation caused by multiple distribution buckets can lead
to significant errors in calculating the CLTV value due to misclassified distribu-
tions and buckets. In particular, We attempted to apply the multi-task predic-
tion method from the baseline to the MTL-MEAN, outputting multiple periods
simultaneously and summing the losses for joint optimization. Although this ap-
proach achieved some positive results, the numerous cascading losses caused the
optimization direction to become unclear, resulting in performance that was not
as good as single-task prediction.

The performance of our proposed MEAN model surpasses all baselines in
the key metric, Percentile Mape. Moreover, it also demonstrates superior perfor-
mance in both GINI and AUC metrics. This indicates that our method effectively
handles imbalanced data, highlighting the robustness of our model. In addition,
observing the Spearman metric, our method shows greater generalization ability
in maintaining the monotonic relationship between predicted and actual values.
At the same time, MDAN outperforms other methods in the Spearman met-
ric for the prediction of cltvygg, indicating that the scaled values of this period
label can be more easily fitted through the RankSim loss. However, this does

3 https://anonymous.4open.science/r/1tv-F54B
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Table 1. The overall performance of different models on all datasets, where the symbol
T({) indicates that the higher (lower) the metric value, the better the performance.

Period  Method  Percentile Mape | GINI T Spearman T AUC 1

DNN-ZILN 0.7552 0.4861 0.3933  0.7295
MTL-ZILN 0.7239 0.4960  0.4075  0.7397
ODMN 0.6503 0.4449  0.4050  0.7395

cltvzo MDAN 0.1658 0.5080  0.4309  0.7428
OptDist 0.3925 0.4918  0.4098  0.7418
MTL-MEAN 0.1630 0.5112  0.4298  0.7518
MEAN 0.1258 0.5127 0.4358 0.7549
DNN-ZILN 0.5755 0.5056  0.4206  0.7361
MTL-ZILN 0.5269 0.5044  0.4233  0.7393
ODMN 0.4855 0.4771 0.4215  0.7388

cltvgo MDAN 0.1332 0.5177  0.4566  0.7501
OptDist 0.1918 0.5098  0.4322  0.7450
MTL-MEAN 0.1033 0.5192  0.4596  0.7536
MEAN 0.0753 0.5275 0.4687 0.7571
DNN-ZILN 0.5262 0.5081 0.4231 0.7300
MTL-ZILN 0.4551 0.5085  0.4292  0.7359
ODMN 0.3591 0.5068  0.4382  0.7417

cltvigo  MDAN 0.1034 0.5239 0.4846  0.7487
OptDist 0.1222 0.5118  0.4562  0.7469
MTL-MEAN 0.1129 0.5244  0.4669  0.7588
MEAN 0.0927 0.5298 0.4805 0.7615
DNN-ZILN 0.3821 0.4968  0.4272  0.7249
MTL-ZILN 0.2890 0.5069  0.4376  0.7313
ODMN 0.1779 0.4988  0.4257  0.7247

cltvses ~ MDAN 0.1206 0.5232  0.4829  0.7587
OptDist 0.1063 0.5072  0.4804  0.7529
MTL-MEAN 0.0972 0.5194  0.4920  0.7597
MEAN 0.0871 0.5292 0.4987 0.7649

not imply generalization capability. This further validates the effectiveness and
generality of our carefully designed model in predicting CLTV.

4.3 Ablation Study

In this section, we conduct ablation experiments to evaluate the effectiveness
of each innovative module of MEAN. We compare the differences in Percentile
Mape and AUC for the four periods of the overall sample across different mod-
ules of MEAN. Percentile Mape and AUC are the primary reference metrics
for distinguishing the capabilities of our model. They represent the accuracy
of the model in predicting CLTV and the precision in identifying top users,
respectively. Main content: (1) Without £* : Remove the KL divergence loss
term from the alignment mechanism; (2) Without the soft label distillation term
L4 . Remove the soft label distillation term from the alignment mechanism;
(3) Without DAM and £9* and £*' : Remove the entire alignment mechanism,
only using the Multi-View Feature Express Network module.
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Table 2. Percentile Mape results of MEAN and its variants for different prediction
periods.

Method Clt?)go CltUgo CltU180 cltv365

MEAN 0.1258 0.0753 0.0927 0.0871
Without — £F' 0.1918 0.1706 0.1162 0.0953
Without — £3* 0.1727 0.1001 0.1228 0.1121

MVFE 0.2317 0.1571 0.1129 0.1279

Table 3. AUC of MEAN and its derivative methods for different prediction periods
on the dataset.

Method cltvgg cltvgg cltvigo cltvsgs

MEAN  0.7549 0.7571 0.7615 0.7649
Without — £FY 0.7514 0.7532 0.7521 0.7588
Without — £3* 0.7523 0.7516 0.7500 0.7558

MVFE 0.7539 0.7531 0.7508 0.7551

Then we summary the results of the ablation experiments in Table 2 and
Table 3. It demonstrates that our alignment mechanism can effectively improve
the accuracy and stability of CLTV prediction. When the soft label distillation
term and KL divergence loss term are not used, the overall performance of CLTV
prediction decreases, indicating that the model’s spontaneous attention focus
cannot be controlled. We further investigated the impact of the two constraint
terms within the alignment mechanism. When only one constraint term is used,
the short-term prediction performance without the KL divergence loss is better
than that without the soft label distillation term, while the long-term prediction
performance shows the opposite trend. This indicates that the two constraint
terms focus on different aspects, potentially leading to excessive guidance in
attention learning. This validates our design of the constrained attention joint
alignment mechanism. Specifically, M VFE enables us to obtain better embedded
representations of features, though it has certain instability. By employing the
constrained attention joint alignment mechanism, the overall performance of the
model is improved, resulting in highly accurate CLTV predictions over both long
and short periods.

4.4 Online A/B Test

To further validate the effectiveness of MEAN on real-world applications, we
perform an A / B test on the financial experiment platform of WeChat Pay. Our
experiment divided users into two groups, those who have activated the feature
and those who have not, to ensure homogeneity among users. We assigned 50% of
the traffic to the control group and 50% to the experimental group. The model
was employed to estimate users’ cltvsgs, and marketing efforts were directed
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towards users with high cltvsgs. To facilitate the observation of experimental
results, the modeling label in the cltvsgs estimation was set as the user’s total
loan amount one year later. The experimental group’s strategy was to target
the top 10% as predicted by the model, while the control group’s strategy was
to randomly target 10%. For each marketing campaign, we separately observed
the online effects after 7 days, 14 days, and 30 days. We then calculated the
activation rate (only for users who had not activated), the loan rate, and the
average daily loan amount during the experiment period.

Table 4. The improvement of various metrics in A/B testing

Method Activation Rate Loan Rate Averge Daily Loan Amounts
Not Activated UPLIFT - 7 1.51% 0.08% 2.20%
Not Activated UPLIFT - 14 2.47% 0.11% 4.31%
Not Activated UPLIFT - 30 4.24% 0.18% 7.01%
Activated UPLIFT - 7 - 0.03% 1.98%
Activated UPLIFT - 14 - 0.06% 2.77%
Activated UPLIFT - 30 - 0.11% 5.56%

To ensure company privacy, Table 4 only presents the improvement values
of our method relative to the control group. Our method demonstrates superior
performance, and due to the large base of traffic, the increase in revenue is also
highly significant. This further validates the effectiveness of our proposed model
and the accuracy in identifying high-value users.

4.5 Hyperparameter Analysis

In this section, we investigate the impact of two key hyperparameters on our
method: the parameter § of Huber Loss and the number of sub-distributions n.
We primarily focus on the evaluation of Percentile MAPE for the overall sample
in practical business scenarios, as this metric reflects the model’s prediction accu-
racy. Additionally, we will use the predictions to guide the allocation of marketing
resources. Therefore, we will discuss the impact of different parameters on the
performance of MEAN with respect to this metric. The parameter § controls the
transition of the CLTV loss. Figure 2 shows the performance of the framework
under different values of 6. As ¢ decreases, L increases, resulting in a smaller
alignment mechanism loss initially, which weakens the constraints. Furthermore,
We change the number of sub-distributions in the set {2,3,4,5,6,7}. Figure 3
shows the model performance under different numbers of sub-distributions. Sim-
ilarly, as the number of sub-distributions is increasing, the overall loss of the
alignment mechanism is increasing, shifting the focus of the overall optimization
of the framework, leading to a decrease in prediction accuracy. In real-world
scenarios, we recommend practitioners search these hyperparameters according
to the key metrics in the corresponding applications.
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Fig.3. The impact of the number
of sub-distributions on model perfor-
mance under different prediction peri-
ods.

Fig. 2. The impact of parameter § on
model performance under different pre-
diction periods.

5 Conclusion

In this paper, we propose a new framework for customer lifetime value prediction
called MEAN. MEAN obtains feature perspective expressions through multiple
expert networks for different CLTV distributions and uses an attention mecha-
nism to amplify the differences between distributions. The aggregated user em-
beddings contain feature diversity and distributional distinctiveness. Addition-
ally, we propose a joint alignment mechanism that uses DAM to approximate
the distribution of the original features, constraining the direction of attention.
At the same time, the attention scores guide the output of DAM, achieving mu-
tual constraints, thereby making the optimization more effective. In this way,
MEAN pays more attention to the differences between different features and
different distributions, making the CLTV prediction capability more intuitive.
Finally, our method has achieved considerable gains in both offline experiments
and online applications on real-world industrial datasets, with consistent results
demonstrating the effectiveness of MEAN.
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