
Scaling multi-label conformal prediction with
label interactions for a large number of labels

Ghassan Najjar, Céline Berthou, and Héléna Vorobieva

Safran Tech, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France
{ghassan.najjar, celine.berthou, helena.vorobieva}@safrangroup.com

Abstract. Multi-label classification is the task where a single instance
may belong to multiple classes simultaneously. The Label Powerset ap-
proach (LP) allows to apply Inductive Conformal Prediction (ICP) on
multi-label classification tasks, by considering each label set as a sin-
gle class and by assigning a non-conformity score to each of them. The
construction of the prediction set C requires selecting all the label sets
–represented as binary vectors– that satisfy a given conformity criterion.
Since the number of possible outputs is exponentially growing with the
number of classes, constructing C by testing the conformity criterion on
all cases is unaffordable. We propose an algorithm that efficiently com-
putes C, even in the difficult case where the non-conformity score involves
label interactions. It is based on a customized partial order relation on
the set of binary vectors coupled with a monotone lower bound of the
non-conformity score. Our tests confirm the algorithm’s efficiency, even
with a high class count.

Keywords: Multi-label Classification · Inductive Conformal Prediction
· Label Powerset · Computational Efficiency · Trees

1 Introduction

In the realm of machine learning, multi-label classification is a complex and
challenging problem, where a single data instance can belong to multiple classes
simultaneously. This scenario is ubiquitous in various real-world applications,
such as text classification and medical diagnosis. For instance, in medical diag-
nosis, the patient may suffer from multiple diseases at the same time. In the case
of multi-label classification with c classes, given an input, the classifier predicts
a set of classes, instead of predicting one single class.
In high-sensitivity tasks and applications requiring certification such as in the
aeronautical or health industries, it is valuable to provide statistically valid un-
certainty quantification. Conformal Prediction [9] tackles this challenge by ex-
tending traditional classification outputs, providing a set of multiple possible
outputs with explicit guarantees under the assumption of data exchangeability.
Within the family of conformal prediction methods, several techniques have been
proposed for multi-label classification, such as Binary Relevance Conformal Pre-
diction (BRCP) [2] and the Label-Powerset Conformal Prediction (LPCP) [5].

2 G. Najjar et al.

BRCP transforms the problem into a binary classification task for each class, but
does not natively account for dependencies between different classes: for a given
α > 0, it applies Conformal Prediction (CP) independently with a significance
level of αc for each label, applying then the union bound gives a significance level
of α for the whole prediction. This method is not adapted for large values of
c because of the α

c fraction. Another approach [8] employs a hierarchical tree
and uses the technique of multiple hypothesis testing to address multi-label con-
formal prediction. However, this method requires to construct a tree with more
than 2c nodes, which is infeasible for very large c.
LPCP modifies the problem into a multi-class mono-label one by treating each
label set as a unique class, and applies classical CP methods for mono-label prob-
lems. LPCP has the advantage of enabling the use of non-conformity scores that
account for label dependencies. We therefore chose to follow the LPCP method
and model each label set as a vector y ∈ {0, 1}c: a 1 coordinate at position i
corresponding to the presence of class i.
By calibration for a chosen threshold α > 0, under exchangeability assumption
of data, ICP [6] returns prediction regions with marginal coverage guarantee of
at least 1 − α. This method needs a preliminary definition of a non-conformity
score, which assigns a real number to each label set. The non-conformity score
introduced in [5] accounts for interactions between labels by penalizing combina-
tions that never simultaneously appeared in the data. This allows to significantly
reduce the size of the conformal prediction sets, as shown in [5] and [4].

The main disadvantage of LPCP is its high computational complexity. The
work [3] solves this problem in the case of a large number of labels (tested up
to c = 90 labels), with an Lp non-conformity score, which does not account for
label interactions.
The present work aims to reduce the computational complexity in the case of
non-conformity scores that account for label interactions, as in [5] and [4]. We
aim to find an algorithm that constructs the prediction set efficiently in the
challenging case of label-interacting non-conformity scores.
For the purpose of certification, it is essential to compute the prediction set
exactly, ensuring that no elements are omitted. The following section recalls
the ICP framework and states the problem. Section 3 gives a first algorithmic
solution (ECP) of the problem of prediction set construction and an optimized
variant (CAECP). In section 4, we present an even more optimized algorithm
(PBECP) based on CAECP.

2 Problem Statement

2.1 Preliminaries

ICP assumes we have a calibration set denoted as (Xi, Yi)i≤n, where Xi and Yi
are inputs and outputs. The Xi and Yi are considered here as random variables
in X × {0, 1}c with X the input space, c, the number of classes and n the
number of data. Let (Xtest, Ytest), denote a test point such that the dataset

Multi-label conformal prediction with a large number of labels 3

((Xi, Yi)i≤n, (Xtest, Ytest)) is exchangeable.
Assume we have a pre-trained model f̂ trained on the set Dpre−trained assumed
independent of the calibration data and test point. The output of f̂ can be seen
as scores assigned to each class:

f̂ : X → [0, 1]c

Then ICP can use this underlying model through a non-conformity score, which
is allowed to depend on Dpre−trained:

s : [0, 1]c × {0, 1}c → R

s(f̂(x), y) is a measure of dissimilarity between the model prediction f̂(x) and
the candidate output y. For each input Xi, we denote by Ŷi := f̂(Xi) ∈ [0, 1]c.
Let α > 0 and let q, be the empirical quantile of order (n+1)(1−α)

n of the calibra-
tion scores s(Ŷi, Yi). This quantile is used to form a prediction set for the new
input Xtest:

C(Xtest) = {y ∈ {0, 1}c|s(Ŷtest, y) ≤ q} (1)

Under exchangeability assumption of all the n+1 samples, the marginal coverage
guarantee holds:

P (Ytest ∈ C(Xtest)) ≥ 1− α (2)
Where the probability is taken over both the calibration data and the test point.
During inference, for a given sample xtest, which is a realization of Xtest, the
prediction set C(xtest) is useful in practice only if Card(C(xtest)) is low. It is
crucial to thoughtfully design the s function to achieve this goal. Thus, we opted
for a non-conformity score that considers label interactions. This approach allows
us to incorporate practical prior knowledge, such as: "if two labels have never
appeared simultaneously in the training data, then it is unlikely that they to
co-occur in the future". The non-conformity score introduced in [5] addresses
the two mentioned requirements:

∀ ŷ ∈ [0, 1]c,∀ y ∈ {0, 1}c, sµ(ŷ, y) =
c∑
i=1

|ŷi − yi|φ + λ
∑

1≤i≤j≤c

µi,jyiyj (3)

Where λ ≥ 0, φ > 0, µi,j = 0 if labels i and j have been simultaneously observed
in the training set, and µi,j = 1 otherwise. This non-conformity score allows the
reduction of the cardinality of the prediction set C(xn+1). However, constructing
C(xn+1) is computationally very demanding: a naive approach would require
generating the 2c vectors y to test whether s(ŷn+1, y) ≤ q.

2.2 Main Contribution and General Setting of the problem

Our work proposes an efficient way to compute exactly the prediction set
C(xn+1) for the non-conformity score (3) and even for a more general one:

sµ(ŷ, y) =

c∑
i=1

ϕ(|ŷi − yi|) +
∑

1≤i≤j≤c

µi,jyiyj (4)

4 G. Najjar et al.

Where the parameters (µi,j)1≤i≤j≤c are arbitrary elements of R+ and ϕ : R+ →
R is an arbitrary increasing function. (µi,j)1≤i≤j≤c can be chosen a priori or can
be the result of a data-based optimization on Dpre−trained.

In order to compute the prediction set, we make the following assumptions.
Firstly, we assume that q has been calibrated and that we are at inference stage.
Given a new input x -or more precisely the underlying classifier’s raw predictions
ŷ- we want to compute:

Cµ,q(ŷ) = {y ∈ {0, 1}c|sµ(ŷ, y) ≤ q} (5)

Fixing ŷ for the rest of the paper, we can simplify the notation and write:

s(y) := sµ(ŷ, y) (6)

Secondly, we assume from now on that the coordinates of the vector ŷ ∈ [0, 1]c

are in decreasing order. To achieve that, one can apply a permutation σ ∈ Sc

such that the coordinates of ŷσ := (ŷσ(i))i are in decreasing order. If we consider
the permuted vector yσ := (yσ(i))i and the new family (µσi,j)i≤j defined by

µσi,j =

{
µσ(i),σ(j) if σ(i) ≤ σ(j)
µσ(j),σ(i) else

(7)

Then we have this permutation invariance property:

Proposition 1.
sµσ (ŷ

σ, yσ) = sµ(ŷ, y) (8)

See proof in appendix.1
Using σ is not constraining: if the coordinates of ŷ are not in a decreasing order,
we solve first the problem with µσ and ŷσ. From the solution Cµσ,q(ŷσ) we then
get the solution of the initial problem Cµ,q(ŷ) applying the permutation σ−1 to
each vector of Cµσ,q(ŷσ).

3 (Children-Anticipating) Efficient Conformal Prediction:
An efficient computation of the prediction set based on
single-root candidate generation

3.1 Definition of an exploration tree of {0, 1}c

Our goal is to construct a tree T whose nodes are the elements of {0, 1}c. This
tree explores these elements in an order which enables pruning and saves time.

1 The key proofs of the paper are presented in the main document, while less critical
proofs are included in the appendix: https://github.com/Ghassan01/appendix_icp/

https://github.com/Ghassan01/appendix_icp/

Multi-label conformal prediction with a large number of labels 5

Definition 1. The max-1-position of a binary vector y ∈ {0, 1}c, denoted as
l(y) is defined the following way:

l(y) =

{
max{i ∈ [[1; c]]|yi = 1} if {i ∈ [[1; c]]|yi = 1} 6= ∅
0 else

(9)

It is the last index of 1-coordinate in y if there exists at least one.

Definition 2. We denote by l0 the max-1-position of the vector (1ŷi>0.5)i.

From the decreasing order assumption of ŷ, l0 is also the number of coordinates
of ŷ that are above 0.5.

Definition 3. We define the binary relation ≤ on {0, 1}c the following way:

∀y, z ∈ {0, 1}c, y ≤ z ⇔ (yi)i≤l(y) = (zi)i≤l(y) (10)

Meaning y ≤ z and y 6= z if and only if z is obtained by replacing at least one of
the right zeros (the zeros at a position greater than l(y)) of y by a 1. We clearly
observe that:

Proposition 2. The binary relation ≤ on {0, 1}c is a partial order relation.

We can now construct the tree T whose nodes are the elements of {0, 1}c, rooted
at the null vector 0 ∈ {0, 1}c, such that y ∈ {0, 1}c is an ascendant of z ∈ {0, 1}c
if and only if y ≤ z. Figure 1 shows T in the case c = 4. The partial order
relation provides a natural and beneficial order of exploration of the elements of
{0, 1}c following this tree. It is clear that:

Proposition 3. The depth l of tree T is composed of binary vectors containing
exactly a number l of 1 coordinates

Fig. 1: T in the case c = 4

Next, we explore the nodes of the tree in a depth-first-search manner to
construct Cµ,q(ŷ) efficiently. At each node y, we choose whether to include it in
Cµ,q(ŷ), and in the next section, we establish a criterion to test whether we can
prune all the descendants of y to exclude them from the search process.

6 G. Najjar et al.

3.2 Lower bound of the non-conformity score

Definition 4. We define the function m defined on {0, 1}c, the following way:

m(y) =

l(y)∑
i=1

ϕ(|ŷi − yi|) +
c∑

i=l(y)+1

ϕ(|ŷi − 1ŷi>0.5|) +
∑

1≤i≤j≤c

µi,jyiyj (11)

Proposition 4. m is a lower bound of s.

Proof. s(y)−m(y) =
∑c
i=l(y)+1 ϕ(|ŷi − yi|)− ϕ(|ŷi − 1ŷi>0.5|).

Since the yi are in {0, 1}, it is clear that ∀i ∈ [[1; c]], |ŷi − 1ŷi>0.5| ≤ |ŷi − yi|.
We conclude using the increasing property of ϕ. �

Remark 1. Given that the higher l(y) is, the closer m(y) is to s(y), we remark
that m is a relatively close lower bound of s. If l0 is the max-1-position of the
vector (1ŷi>0.5)1≤i≤c, the proposition 5 gives a bound of the minoration gap.

Proposition 5.

∀y ∈ {0, 1}c, 0 ≤ s(y)−m(y) ≤ (l0 − l(y))+||ϕ||∞

With the convention 0×∞ = 0 if (l0 − l(y))+ = 0 and ||ϕ||∞ =∞.

Remark 2. (.)+ denotes the positive part function. In particular, if y contains
a 1 coordinate at a position higher than l0, then we have the strong equality
s(y) = m(y). As l0 is often expected to be low in practice, m is a high-quality
lower bound.

The introduced partial order on {0, 1}c and the lower bound m are particularly
significant as m is monotonic:

Proposition 6. The lower bound m is increasing for "≤".

Proof. Let y, z ∈ {0, 1}c such that y ≤ z. Hence, l(y) ≤ l(z) and we obtain

m(z)−m(y) =

l(z)∑
i=l(y)+1

ϕ(|ŷi − zi|)− ϕ(|ŷi − 1ŷi>0.5|)

+
∑

1≤i≤j≤c

µi,j((zi − yi)zj + (zj − yj)yi)

The terms ϕ(|ŷi − zi|)− ϕ(|ŷi − 1ŷi>0.5|) are non-negative since ϕ is increasing.
The terms µi,j((zi−yi)zj+(zj−yj)yi) are also non-negative because l(y) ≤ l(z)
implies that ∀i ∈ [[1; c]], yi ≤ zi. �

This monotonicity implies in T higher values of m for the descendants than for
the father: then, excluding a node y following the criterion m(y) > q allows to
exclude the whole descendance of y.

Multi-label conformal prediction with a large number of labels 7

3.3 A first candidate generation algorithm

In this section, we present Algorithm 1, Efficient Conformal Prediction (ECP),
which generates a reasonable amount of candidates for the prediction set through
a clever node exploration of the tree T . The cornerstone results from:

Proposition 7. If y ∈ {0, 1}c and m(y) > q, then

∀z ∈ {0, 1}c, z ≥ y =⇒ z /∈ Cµ,q(ŷ)

Proof. This follows directly from: 1) m is a lower bound of s, 2) the elements of
Cµ,q(ŷ) satisfy s(y) ≤ q, 3) m is an increasing function. �

Definition 5. We denote by M(r), the descendance of r in the tree, ie.

M(r) = {y ∈ {0, 1}c|r ≤ y} (12)

Remark 3. If m(y) > q, then neither y nor elements of M(y) are in Cµ,q(ŷ).

ECP performs a tree traversal, pruning great parts as it progresses. Importantly,
constructing the entire tree is unnecessary (generating all the 2c nodes is imprac-
tical for large c values). Instead, only the direct children of the current node are
generated, when beneficial, and explored recursively. Using Proposition 7, ECP
efficiently avoids generating many unnecessary nodes.

Algorithm 1 Efficient Conformal Prediction (ECP)
Input: r, ŷ, µ, q
Output: Cµ,q(ŷ) ∩M(r)
1: C ← ∅
2: E ← {r} . Nodes to explore
3: while E 6= ∅ do
4: Let p ∈ E
5: E ← E − {p}
6: if m(p) ≤ q then
7: Generate F , set of children of p
8: E ← E ∪ F
9: if sµ(ŷ, p) ≤ q then C ← C ∪ {p}
10: return C

ECP algorithm iteratively performs pruning at line 6 and generates children at line 7

Algorithm 1 returns Cµ,q(ŷ)∩M(r), given r as input, that is to mean all the
elements of Cµ,q(ŷ) in the descendance of a given node r.

Remark 4. M((0)1≤i≤c) = {0, 1}c, which implies the Proposition 8.

Proposition 8. Algorithm 1, applied with r = 0 solves the problem of
constructing Cµ,q(ŷ).

ECP hence provides a first solution to our problem.

8 G. Najjar et al.

3.4 CAECP: an optimized ECP based on children anticipation

In Algorithm 1, a node is generated if its parent p has been generated and
satisfies m(p) ≤ q. Here we propose an optimization of ECP, which consists in
adding a supplementary condition on p to generate its children. In this section,
we introduce Algorithm 2, Children-Anticipating Efficient Conformal Prediction
(CAECP), which may stop exploring a branch one step earlier than ECP.

Definition 6. Assume that l(p) 6= c, meaning p has a non empty set of children,
then we define Q(p) as:

Q(p) =

l(p)∑
i=1

ϕ(|ŷi − pi|)

+ ϕ(|ŷl(p)+1 − 1|) +
c∑

i=l(p)+2

ϕ(|ŷi − 1ŷi>0.5|)

+
∑

1≤i≤j≤c

µi,jpipj

Proposition 9. If y is a direct child of p, then m(y) ≥ Q(p).

Corollary 1. ∀ p ∈ {0, 1}c : l(p) 6= c, Q(p) > q =⇒ (∀ y > p, y /∈ Cµ,q(ŷ))

Proof. This follows from: if y > p, then there exists a direct child y′ of p such
that y ≥ y′. �

The correctness of CAECP is a direct consequence of corollary 1. Next proposi-

Algorithm 2 Children-Anticipating Efficient Conformal Prediction (CAECP)
Input: root r, ŷ, µ, q
Output: Cµ,q(ŷ) ∩M(r)
1: C ← ∅
2: E ← {r} . Nodes to explore
3: while E 6= ∅ do
4: Let p ∈ E
5: E ← E − {p}
6: if sµ(ŷ, p) ≤ q then C ← C ∪ {p}
7: if l(p) 6= c then
8: if Q(p) ≤ q then . Stronger condition than m(p) ≤ q
9: Generate F , set of children of p
10: E ← E ∪ F
11: return C

CAECP behaves as ECP, with a stronger condition for children generation (line 8)

tion shows that the condition Q(p) ≤ q is stronger than m(p) ≤ q, which proves
that CAECP is an optimization of ECP, generating less useless vectors.

Proposition 10. The condition Q(p) ≤ q is stronger than m(p) ≤ q since:

∀ p ∈ {0, 1}c such that l(p) 6= c, m(p) ≤ Q(p)

Multi-label conformal prediction with a large number of labels 9

Remark 5. The proof of this result (cf. appendix) shows that the introduction
of Q(p) is useful only for those p that satisfy l(p) ≥ l0. Otherwise, Q(p) = m(p).

ECP is conceptually simpler and is sufficient in most cases in practice. Since
CAECP is an optimization of ECP, and takes the same input and returns the
same output, we only mention CAECP until the end of the paper.

4 Prefix-Based ECP (PBECP): An optimized algorithm
based on multi-root candidate generation

Given any root vector r, CAECP returns Cµ,q(ŷ)∩M(r) . To construct Cµ,q(ŷ)
one just needs to apply CAECP with r = 0. Here we expose a new algorithm
which is useful when the parameters (µi,j)1≤i≤j≤c have many zero values.
Preliminary example. Let c = 100 and l0 = 15 (ie. ∀i ∈ [[1; 15]], ŷi > 0.5
since the (ŷi)i are in decreasing order). In that case, the binary vectors composing
Cµ,q(ŷ) are likely to contain many 1 coordinates (approximately 15, for small
q). According to Proposition 3, those vectors are at depth around 15 in T . Let
y ∈ Cµ,q(ŷ), if we apply directly CAECP with root r=(0), all vectors on the
path between (0) and y in T are generated.
We understand on this example that we could have an optimized version if
instead of executing CAECP with root r = (0), we execute CAECP with more
1-containing roots such as (1, 1, 1, 1, 1, 0, ..., 0). The difficulty is to ensure that
we do not forget any of the smaller binary vectors. In this section, to select roots
without exploring all of them, we use a differently built tree with another goal.

4.1 Definitions

Definition 7. Assuming that {k ∈ [[1; l0]]|
∑

1≤i≤j≤k µi,j = 0} 6= ∅, we define

l1 := max{k ∈ [[1; l0]]|
∑

1≤i≤j≤k

µi,j = 0} (13)

This is the maximum integer l1 such that y := (1i≤l1)i≤c has no penalization∑
1≤i≤j≤k µi,jyiyj . We suppose from now on that l1 ≥ 2.

Definition 8. The set of l1-prefixes is defined as

Prefl1 := {y ∈ {0, 1}c|(yi)i>l1 = (0)} ⊂ {0, 1}c (14)

Definition 9. We define the l1-completion of a prefix p ∈ Prefl1 as:

Compl1(p) := {z ∈ {0, 1}c|(zi)i≤l1 = (pi)i≤l1} ⊂ {0, 1}c (15)

Remark 6. For a prefix p ∈ Prefl1 , Compl1(p) ⊂ M(p) but we do not have
mutual inclusion, because we do not necessarily have l1 = l(p).

Remark 7.
⋃
p∈Prefl1

Compl1(p) = {0, 1}c and the union is disjoint.

10 G. Najjar et al.

4.2 Construction of a tree on Prefl1

We start by defining a tree on Prefl1 , to establish a prefix exploration order.

Definition 10. We define the tree Tpref rooted on r = (1i≤l1)i≤c: the only child
of r is (1i≤l1−1)i≤c and given a node p 6= r of Tpref , let’s denote by ifirst0 the
smallest index of a zero coordinate of (pi)i≤l1 .

1. If ifirst0 > 1 then its left child p(left) is obtained from p by exchanging pifirst0
and pifirst0−1 and the right child p(right), by imposing p(right)ifirst0−1 = 0.

2. If ifirst0 = 1 (that is to mean p starts by a 0), then p has no child.

Figure 2 shows Tpref in the case c = 6 and l1 = 4.

Fig. 2: Tpref for c=6 and l1=4. The bar | delimits pre-l1 from post-l1 coordinates

Proposition 11. The set of nodes of Tpref is the whole set Prefl1 .

Hence we do not forget any element of Prefl1 by exploring Tpref .

Proposition 12. Tpref naturally defines a partial order relation ≤pre on its
nodes Prefl1 (p1 ≤pre p2 ⇐⇒ p1 is an ascendant of p2), and the quantity:

g(p) =

l1∑
i=1

ϕ(|ŷi − pi|) +
c∑

i=l1+1

ϕ(|ŷi − 1ŷi>0.5|) (16)

is an increasing function of p for ≤pre and is a lower bound of s. In addition,
for any node p having two children, g(p(left)) ≤ g(p(right)).

Proof. The lower bound property and ≤pre defining a partial order are clear.
The monotonicity of g for ≤pre, and the comparison between both children
follow from l1 ≤ l0 and the decreasing order assumption of ŷi. �

Definition 11. We define the set of selected prefixes SelPrefl1 as:

SelPrefl1 := {p ∈ Prefl1 |g(p) ≤ q} (17)

Multi-label conformal prediction with a large number of labels 11

Remark 8. The non-conformity score s also increases on this tree, but to uphold
Proposition 13, s cannot replace g to construct SelPrefl1 , unless l1 is maximal
(cf. Proposition 15). SelPrefl1 is smaller than Prefl1 : this filtering narrows
down the subparts of T on which to apply CAECP. Proposition 13 guarantees
that this approach suffices to fully construct Cµ,q(ŷ).

We use Proposition 12 to design Algorithm 3: "Efficient Prefix Selection" (EPS).
EPS returns SelPrefl1 efficiently, following the same pruning strategy than the
ECP algorithm, replacing the function m by the function g. Furthermore, we
use the supplementary optimization of generating p(right) only if g(p(left)) ≤ q.

Algorithm 3 Efficient Prefix Selection (EPS)
Input: ŷ, µ, q
Output: SelPrefl1
1: Compute l1 (function of ŷ and µ)
2: r = (1i≤l1)i≤c
3: P ← ∅
4: E ← ∅ . Nodes that are already in P and whose children are to be explored
5: if g(r) ≤ q then E ← {r}, P ← {r}
6: while E 6= ∅ do
7: Let p ∈ E
8: E ← E − {p}
9: if p is the root node and is not a leaf then
10: Generate p′, the only child of p in Tpref
11: if g(p′) ≤ q then E ← E ∪ {p′}, P ← P ∪ {p′}
12: if p is not the root node and is not a leaf then
13: Generate p(left)

14: if g(p(left)) ≤ q then
15: E ← E ∪ {p(left)}, P ← P ∪ {p(left)}
16: Generate p(right)

17: if g(p(right)) ≤ q then E ← E ∪ {p(right)}, P ← P ∪ {p(right)}
18: return P

EPS pre-selects relevant prefixes for CAECP algorithm. Like ECP, EPS applies a prun-
ing framework but limited to prefixes, with another increasing lower bound g and on
another tree Tpref . In addition, we first compute g on the left child before computing g
on the right one.

4.3 PBECP algorithm

In this section, we present the Prefix-Based Efficient Conformal Prediction al-
gorithm (PBECP), using EPS as an upstream component.

Definition 12. We define the first-stage-l1-completion of a prefix p ∈ Prefl1 :

FSCl1(p) := {z ∈ {0, 1}c|(zi)i≤l1 = (pi)i≤l1 and ∃!j > l1, zj = 1} (18)

12 G. Najjar et al.

We use this concept in Proposition 13 which states that the computation of
Cµ,q(ŷ) reduces to multiple calls of CAECP.

Proposition 13. The set Cµ,q(ŷ) is decomposable into a disjoint union of
simpler sets:

Cµ,q(ŷ) =
⋃

p∈SelPrefl1

(Cµ,q(ŷ) ∩ {p}) ∪
⋃

p′∈FSCl1 (p)

Cµ,q(ŷ) ∩M(p′)

The terms Cµ,q(ŷ)∩M(p′) of Proposition 13 can be computed by calling CAECP
with r = p′, and since the unions are all disjoint, PBECP does not explore the
same parts of T twice. We always have SelPrefl1 ⊂ Prefl1 , and our goal is for
SelPrefl1 to be a very smaller subset. This would ensure that PBECP explores
only a fraction of the tree T compared to CAECP, which is the cornerstone of
its efficiency.

The Prefix-Based Efficient Conformal Prediction algorithm (PBECP)
Using Proposition 13, we propose Algorithm 4 (PBECP), which first performs
prefix selection and then calls CAECP on judiciously chosen roots.

Algorithm 4 Prefix-Based Efficient Conformal Prediction (PBECP)
Input: ŷ, µ, q
Output: Cµ,q(ŷ)
1: Compute l1 (function of ŷ and µ)
2: Execute EPS: SelPrefl1 = EPS(l1, ŷ, µ, q)
3: SP ← SelPrefl1
4: C ← ∅
5: while SP 6= ∅ do
6: Let p ∈ SP
7: SP ← SP − {p}
8: if sµ(ŷ, p) ≤ q then C ← C ∪ {p}
9: for p′ ∈ FSCl1(p) do
10: C ← C ∪ CAECP (r = p′) . Calls of CAECP with different roots
11: return C

PBECP is an alternative to directly calling CAECP(r=0), it rather calls CAECP(r)
for multiple judiciously chosen r. At line 10, we call CAECP(r) for r varying in the
first-stage completions of the elements of SP.

Commentary on the optimization For computational efficiency, we must
ensure that the multiple calls of CAECP(r = p′) in Algorithm 4 do not lead to
redundant computations.

Multi-label conformal prediction with a large number of labels 13

Proposition 14. In PBECP, we do not explore the same node of T twice.
More precisely, for two different p′1 and p′2 appearing at line 10 of Algorithm 4 -
corresponding to different stages of the execution- the respective calls CAECP(r=p′1)
and CAECP(r=p′2) explore disjoint sets of vectors.

In the frequent case where l1 = l0, the following proposition explains the opti-
mality of lower bound functions used in PBECP in this case.

Proposition 15. If l1 is maximal (ie. l1 = l0), then:

1. During the execution of EPS at line 2 of Algorithm 4, the lower bound g of
the non-conformity score s is always equal to s.

2. During the execution of CAECP(r = p′) at line 10 of Algorithm 4, the lower
bound m of the non-conformity score s is always equal to s.

Optimal case. If l1 = l0, then PBECP operates as if traversing a virtual tree
Tvirtual defined over all binary vectors. The non-conformity score is an increasing
function on that tree and is directly used for the pruning of the descendants.
Tvirtual is obtained from Tpref with the following steps:

1. Start with Tpref .
2. For each node p of Tpref , let F be its set of children in Tpref , then
F ← F ∪ FSCl1(p). We obtain the tree T ′.

3. For each leaf y of T ′ element of a certain FSCl1(p), we expand it into the
subtree of T rooted at this y.

4. We obtain a tree on the whole set {0, 1}c on which the non-conformity
score is increasing.

This shows the optimality of PBECP in practical cases where l1 is maximal,
which appears when µ is defined as in [5] and where the labels predicted by
(1ŷi>0.5)i have been seen simultaneously pairwise in the training dataset (which
is very common).

For computational complexity computation, we introduce the following:

Definition 13. For a given algorithm A, we denote by G(A) the following set:

G(A) = {y ∈ {0, 1}c| y is generated during execution of A}

Remark 9. The correctness of algorithms 2, 3, and 4 implies that:

Cµ,q(ŷ) ⊂ G(CAECP (r = 0)), SelPrefl1 ⊂ G(EPS), Cµ,q(ŷ) ⊂ G(PBECP)

Remark 10. Card (G(A)) is a measure of the complexity of algorithm A, and we
aim to minimize this value. It is worth noting that, in any case, the naive method
yields a complexity of Card (G(naive)) = 2c.
During execution, many binary vectors are generated, but they are not all kept
in the result Cµ,q(ŷ). Note that since A is an algorithm which computes Cµ,q(ŷ),
we at least generate Card(Cµ,q(ŷ)) vectors: hence Card(Cµ,q(ŷ)) ≤ Card (G(A)).

14 G. Najjar et al.

So Card (G(A)) strongly depends on Card(Cµ,q(ŷ)). To better assess algorithmic
efficiency, it is natural to consider not just the total number of generated vectors,
but the proportion of them that are actually useful. This motivates definition
14, introducing an inverse measure of complexity, called usefulness ratio, which
we aim to maximize.

Definition 14. The usefulness ratio for algorithm A executed on (ŷ, q) inputs,
is defined as:

R(A, ŷ, q) =
Card(Cµ,q(ŷ))

Card(G(A(ŷ, q)))

Remark 11. A usefulness ratio of 0.1 means that 10% of the generated vectors
are useful, and such a value would typically indicate a high level of efficiency,
especially when compared to the naive algorithm. Indeed, the usefulness ratio of
the naive algorithm which generates all the 2c vectors is Card(Cµ,q(ŷ))

2c ∼ 1
2c when

Card(Cµ,q(ŷ)) is low. For instance, for c = 100, and Card(Cµ,q(ŷ)) = 1 we have
R(naive, ŷ, q) ∼ 10−30, and only a proportion of about 10−30 of the generated
vectors is useful.

The following proposition states that in the optimal case where l1 = l0, the
computational complexity of PBECP grows only linearly with c, in contrast to
the exponential complexity of the naive approach.

Proposition 16. If µ and ŷ are such that l1 is maximal (ie. l1 = l0), then we
can ensure that we do not generate too many vectors:

Card(G(PBECP)) ≤ (c− l0 + 3)× Card(Cµ,q(ŷ)) + 1

Stated differently, if Cµ,q(ŷ) 6= ∅, we give a lower bound of the usefulness ratio:

∀ q > 0,
1

c− l0 + 3 + 1
Card(Cµ,q(ŷ))

≤ R(PBECP, ŷ, q)

Remark 12. Hence, since Card(Cµ,q(ŷ)) ≥ 1, we always have

R(naive, ŷ, q) ∼ 1

2c
<<

1

(c− l0 + 4)
≤ R(PBECP, ŷ, q) (19)

5 Experiments

The primary goal of this article is to develop an algorithm capable of efficiently
computing the set Cµ,q(ŷ), given a specific quantile q and an operational vector
ŷ. In this section, we evaluate whether the proposed algorithms can compute
prediction sets within reasonable time frames, even as the number of labels
increases. Additionally, we compare the computational complexities of these al-
gorithms as a supplementary analysis.

Multi-label conformal prediction with a large number of labels 15

To assess performance, we use the usefulness ratio as the main evaluation metric
across various quantile values (q ∈ [qmin, qmax]), noting that a higher usefulness
ratio indicates greater algorithmic efficiency. To conduct these experiments, we
try to compute the set Cµ,q(ŷ) for different values of (µi,j)1≤i≤j≤c (one for each
dataset), for q varying in a range [qmin, qmax] and for a fixed challenging vector
ŷ (one per dataset). To illustrate our algorithms in practical contexts, we select
two real datasets: arxiv_category [7], ASRS [1], and one dummy dataset.

arxiv_category is composed of 203,961 titles and abstracts categorized
into 130 different classes. We used 163,168 samples to construct µ.
ASRS (Aviation Safety Reporting System) database stands out as the most
renowned incident reporting dataset. We used 96,986 incident reports of US
flights from 2000 to 2022 categorized into 63 different classes to construct µ.
We construct a dummy dataset with a large number of classes to explore a
more complicated case: c = 150. It contains N = 65 random training samples
(elements of {0, 1}c) with a maximum of 28 simultaneously observed labels.

For all the experiments, we choose qmin so that Card(Cµ,qmin(ŷ)) = 1 and
qmax so that Card(Cµ,qmax(ŷ)) is very high and beyond any reasonably ex-
ploitable prediction set’s cardinality. Being able to construct very big and con-
cretely unexploitable prediction sets (corresponding to high q) indicates we are
able to construct any exploitable prediction set (for lower q). We used ϕ = (.)2

and constructed (µi,j)i,j following the methodology described in Preliminaries
(see Appendix for visualization). We denote by density(µ) the proportion of
ones in (µi,j)1≤i≤j≤c and gives an indication of Card(Cµ,q(ŷ)).

Table 1 lists important properties of each experiment. One ŷ is chosen so
that its l0 is maximal while its L2-closest binary vector (1ŷi>0.5)i is an element
of dataset (to ensure that l1 = l0). This approach ensures that we focus on
constructing the prediction set for a particularly challenging vector, one with
numerous 1 entries (relatively deep in the tree T). By doing so, we can restrict
our experiments to a single ŷ per dataset. Successfully handling such a difficult
case gives us confidence that the algorithm will also be effective for other, less
complex vectors. Note that having µ and ŷ such that l1 = l0 is very frequent
since in most cases we want to predict labels that already appeared pairwise
simultaneously.

#classes c l0 = ||(1ŷi>0.5)i||1 density(µ) [qmin, qmax] #Cµ,qmax(ŷ)
dummy 150 28 51% [0.4, 3.6] 4 320

arxiv_category 130 4 96% [0.4, 7] 16 712

ASRS 63 13 37% [0.4, 4] 39 254

Table 1: Properties of Datasets and Experiments

16 G. Najjar et al.

Fig. 3: Evolution of R(A, ŷ, q) (left) and evolution of Card(G(A(ŷ, q))) and
Card (Cµ,q(ŷ)) (right) as functions of q.

Figure 3 shows our ability to construct the prediction sets across all ex-
periments. The usefulness ratios indicate that PBECP outperforms CAECP in
this context, and that CAECP remains superior to ECP as theoretically proven.
Higher usefulness ratios for PBECP means that it generates less superfluous vec-
tors, highlighting its efficiency, particularly when l1 is maximal, as described in
Proposition 15. The right-hand side of Figure 3 presents the number of vectors
generated by each algorithm (on a logarithmic scale), alongside the cardinal of
the conformal prediction set. We observe that the algorithms do not generate
too much superfluous vectors since their values of Card(G(A(ŷ, q))) are not too
far from Card (Cµ,q(ŷ)) (especially when compared with the naive algorithm).

Table 2 provides computation times and the associated cardinalities of the
prediction sets for different values of q. While the specific q values are not listed
–since the main interest lies in the actual cardinalities Card (Cµ,q(ŷ))– the results
offer practical insight into the scaling behavior. All measurements were obtained
using a single core of an AMD EPYC 9534 with 16 GB of RAM. Reported com-
putation times are averaged over 10 runs to account for potential variability. The
higher cardinalities already represent quite large prediction sets in practice, sug-

Multi-label conformal prediction with a large number of labels 17

gesting that in typical operational contexts, the computation time would likely
be shorter. Further evaluation in concrete applications would be necessary to
confirm this hypothesis.

In another experiment not related here, we created a new dummy dataset
with c = 1000. It is remarkable that the method remains tractable, produc-
ing sets of a few dozen elements within a few seconds. Nevertheless, practical
limitations begin to emerge for higher dimensions: memory usage and compu-
tational demands for generating high-dimensional vectors become significant,
rendering the approach infeasible for even larger problems. In operational set-

Card (Cµ,q(ŷ)) t(s)

1 0.008
5 0.020
29 0.093
407 0.807
1562 3.44
3683 7.45

Dummy

Card (Cµ,q(ŷ)) t(s)

1 0.013
70 0.049
388 0.099
2280 0.482
7358 2.21
16748 2.55

Arxiv

Card (Cµ,q(ŷ)) t(s)

1 0.019
315 0.089
501 0.096
851 0.256
4903 0.519
21254 1.945

ASRS
Table 2: Computation times (in seconds) for constructing Card (Cµ,q(ŷ)) with
PBECP across datasets (left to right) and q values (top to bottom).

tings, interpreting the prediction set can be challenging, as it consists of multiple
combinations of labels rather than a single outcome. Nevertheless, it offers valu-
able insight by revealing the full range of plausible scenarios. Unlike a simple
list of possible labels, the prediction set captures not only which labels may be
present, but also how they can realistically co-occur, providing a more nuanced
understanding of potential outcomes.

6 Conclusion

In this study, we propose an efficient computation of prediction sets for induc-
tive conformal prediction on multi-label classification using the Label-Powerset
approach with a generic non-conformity score accounting for label interactions.
To address the computational bottlenecks typically associated with the label-
powerset strategy for prediction set generation, we developed ECP: a pruning
algorithm based on a tailored exploration tree combined with a lower bound
function of the non-conformity score.

We further introduced CAECP, an optimization of ECP that imposes an
additional condition for child generation during tree exploration. Building on
this, we presented PBECP, an even more efficient algorithm, which initiates
with a careful selection of roots for CAECP and combines multiple but lighter

18 G. Najjar et al.

calls to CAECP. The experiments demonstrated that we are able to compute
Card (Cµ,q(ŷ)) for problems involving a large number of labels.

However, our work is limited to the scope of inductive conformal prediction
and thus inherits its assumptions and constraints. Additionally, while the label-
powerset approach enables flexible modeling of label interactions, the sets of
label vectors it produces may lack interpretability, which highlights the potential
benefit of employing complementary methods to analyze or better understand
them.

Acknowledgments. Thanks to Dong Quan Vu2 for providing the preprocessed ASRS
data.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Billings, C.E., Reynard, W.D.: Human factors in aircraft incidents: results of a 7-
year study. Aviation, space, and environmental medicine 55(10), 960–965 (1984)

2. Lambrou, A., Papadopoulos, H.: Binary relevance multi-label conformal predictor.
In: Conformal and Probabilistic Prediction with Applications: 5th International
Symposium (COPA), Madrid, Spain, April 20-22. pp. 90–104. Springer (2016)

3. Maltoudoglou, L., Paisios, A., Lenc, L., Martínek, J., Král, P., Papadopoulos, H.:
Well-calibrated confidence measures for multi-label text classification with a large
number of labels. Pattern Recognition 122, 108271 (2022)

4. Paisios, A., Lenc, L., Martínek, J., Král, P., Papadopoulos, H.: A deep neural net-
work conformal predictor for multi-label text classification. In: Proceedings of the
8th Symposium on Conformal and Probabilistic Prediction and Applications. pp.
228–245. PMLR (2019)

5. Papadopoulos, H.: A cross-conformal predictor for multi-label classification. In: 10th
IFIP International Conference on Artificial Intelligence Applications and Innova-
tions (AIAI), Rhodes, Greece. pp. 241–250 (2014)

6. Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A.: Inductive confidence
machines for regression. In: 13th European conference on machine learning (ECML),
Helsinki, Finland. pp. 345–356. Springer (2002)

7. Schopf, T., Blatzheim, A., Machner, N., Matthes, F.: Efficient few-shot learning for
multi-label classification of scientific documents with many classes. In: Proceedings
of the 7th International Conference on Natural Language and Speech Processing
(ICNLSP). pp. 186–198. Association for Computational Linguistics, Trento (2024)

8. Tyagi, C., Guo, W.: Multi-label classification under uncertainty: a tree-based con-
formal prediction approach. In: Conformal and Probabilistic Prediction with Appli-
cations. pp. 488–512. PMLR (2023)

9. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer-Verlag, Berlin, Heidelberg (2005)

2 Safran Tech, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux

	Scaling multi-label conformal prediction with label interactions for a large number of labels

