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Abstract. Predicting the diversity of words and multi-words (n-grams)
in a text corpus and their frequency distributions is important in NLP
and language modeling, and is becoming critical to enable the design
of modern applications, namely Large Language Models, e.g. for guid-
ing tokenization and corpus analysis for pre-training. This requires the
ability to model the very large scale corpora behaviour, the handling
of multi-words as subwords or phrases, and the distribution of n-grams
across different frequency ranges, namely the low occurrence n-grams.
We present a scalable model to predict the number of distinct n-grams
and their frequency distributions targeting an extended range of corpora
sizes, from hundreds of million words to hundreds of billion words (a
1000 times factor). This led us to a novel approach for explicitly incor-
porating into the model the parameter dependency behaviour regarding
the extended corpora size range.
In the presence of such extended range of corpora sizes, the model esti-
mates the cumulative numbers of distinct n-grams (1 ≤ n ≤ 6) greater
or equal to a given frequency k ≥ 1, in a corpus, and the numbers of
n-grams with equal-frequencies, in a given language corpus. Unlike most
approaches that assume an open, potentially infinite, language word vo-
cabulary, this model relies on the vocabulary finiteness. The model en-
sures very low and stable average relative errors (circa 2%), for the low
frequencies starting with singletons, from 1-grams to 6-grams, across the
above very large range of corpora sizes, in English and German.

Keywords: Scalable Prediction Model · Large Text Corpora · n-gram
Frequency Distribution.

1 Introduction

A word n-gram is a sequence of n consecutive words. Knowledge on the statistical
n-gram frequency distributions in text corpora is useful in applications, e.g.
indexing, extracting relevant terms, compression, cache design, and translation.
In large language modelling, understanding n-gram distributions as a function
of corpus size is useful for: a) Guiding Tokenization Strategies, as tokenizers
can be tuned to produce subwords or phrases that approximate frequent n-
gram patterns; besides, the balance of distinct 1-grams (words) versus higher
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order n-grams (multi-words) in different frequency ranges can help determine
the appropriate tokenization granularity; b) Corpus Analysis for pre-training,
where knowing the number of distinct n-grams across frequency ranges serves as
a proxy for a corpus linguistic diversity; a corpus with n-grams spanning a broad
range of frequencies likely captures richer patterns, important for pre-training
deep language models; however, if the numbers of distinct n-grams stabilise
beyond a certain corpus size, it suggests diminishing returns when adding more
data, guiding the selection of an optimal corpus size for pre-training or fine-
tuning.

Most traditional frequency distribution models consider moderate size cor-
pora (from thousands to several million words (Mw)) and only apply to single
words (1-grams). However, larger corpora have impact upon n-gram frequency
distributions, as shown by the emergence of Big Data. Also, multi-word n-grams
(n ≥ 2) reveal the language phrase/subphrase structure and express semantic
specificity, and are becoming more relevant in an increasingly number of appli-
cations. Furthermore, most of the semantic content words and multi-words, e.g.
important for topic mining, appear in the low frequency range, occurring 1,2,3...
times, and they represent the majority of the distinct n-grams in each given
corpus. In [11] a language-independent model is proposed for words and multi-
words (from 1-grams to 6-grams) of low occurrence frequencies. It predicts the
cumulative number of distinct n-grams, D(k;C), with frequencies greater than
or equal to k, for k ≥ 1, in a corpus of size C, (D(C) = D(1, C) is the total
number of distinct n-grams), as well as the sizes, W (k,C), of groups of n-grams
with equal frequencies, as a function of corpus size. The principles underlying
the model have a great potential for applications mainly when considering ex-
tremely large corpora sizes, handling words and multi-words, and low-frequency
n-grams. All the above motivates the overall goal of this paper, that is to further
explore the rationale behind the above model – that we denote as the baseline
model – and evaluate its adequacy to predict D(C), D(k,C) and W (k,C) vari-
ables, in a wider range (spanning a 1×1000 factor) of very large corpora, namely
going into the hundred billion words (Gw) scale. The main contributions of this
paper are the achievement of very low and stable average relative errors (around
2%) in the prediction of the above variables, encompassing 1-grams to 6-grams,
and for the low frequencies starting with singletons, across the above very large
range of corpora sizes, in English and German. This was achieved by considering
the dependence of the model parameters on corpus size and their fine tuning,
enforcing a sound estimation methodology relying on the separations of the train-
ing/validation and testing corpora, and by proposing a well-founded method for
identifying the frequency limits of the model validity. This is in contrast to the
baseline approach, which exhibits a critical issue when assuming the constancy
of the model parameters versus C, and whose usage for corpora well beyond the
8.6Gw largest corpus size in [11], revealed its inadequacy for large scale corpora,
having led to significant deviations from real data. Besides, the usage of the
same corpora sets in the baseline, both for training and testing purposes, is in-
adequate. We present the background of this work, the new proposed approach,
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experimental results and conclusions. A guide for the model reproducibility is
found at https://github.com/OurName1234/ngrams .

2 Background and Related Work

Several influential word frequency distribution models were proposed [9], includ-
ing the empirical Zipf's Law [13], showing the word frequency distribution as an
approximated power law, but deviating from real data for high and low frequen-
cies, and also theoretical models, e.g. based on preferential attachment [12]. How-
ever, firstly, most models only consider word frequencies, ignoring multi-words,
although language modeling benefits from the knowledge on n-gram frequency
patterns [6, 4, 5, 10, 11]. Secondly, the model predictions often show deviations
from the real corpora data, in the high and low occurrence frequencies. Often,
they ignore the low-frequency words, or are unable to accurately model the large
set of less frequent, content words in a corpus, being important in many applica-
tions. Thirdly, most models have been tested only with small and moderate size
corpora (up to several million words). However, the emergence of BigData and
Web-based very large corpora and/or n-gram frequency data [2, 3] triggered the
development of large-scale applications [2], posing new challenges.

We address a challenge posed by large text corpora concerning the growth
of the available corpora sizes and their effect upon the numbers of distinct n-
grams and their frequency distributions, for evaluating the models/applications.
The evolution of the number of distinct words (D) wrt to the corpus size (C),
is modeled by Herdan's and Heaps'empirical law [1], assuming an infinite word
language vocabulary and stating that D would always keeps growing with in-
creasing corpus sizes, as a power law with a constant exponent, but empirical
evidence from large corpora shows that such exponent depends on the corpus
size [1], suggesting that D will eventually saturate as C tends to infinity. This
saturation of D occurs in word frequency distributions in languages with limited
word vocabularies, eg. Chinese, Japanese, Korean [8]. There is a lack of models
predicting how the corpus size, for a wide range of large corpora sizes, explic-
itly influences the D(C), W (k,C) and D(k,C) distributions for multi-words,
namely considering the low occurrence n-grams and the model validation with
real large corpora from different languages. This is useful to predict the impact
of corpus growth upon application time and space complexities, thus supporting
application design. Only a few models [5, 10, 11] address the above issues by uni-
fied approaches. However, only [11] relies on a principled model – the baseline
model –, reflecting to the best of our knowledge, the state of the art of unified
approaches for predicting the effect of corpus size upon the n-gram frequency
distributions, for low frequencies and a wide range of large corpora sizes.

3 The Proposed Approach

Brief Review of the Baseline Model. The baseline [11] model assumes
that for a fixed temporal epoch, there is an n-gram language L vocabulary
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with size V (L, n). D(k,C;L, n) is the number of distinct n-grams of size n,
occurring at least k times in a corpus of size C of language L, also denoted
D(k,C) when L and n are implicit. For k = 1, D(k,C;L, n) is denoted as
D(C;L, n) or D(C) if L and n are implicit. Under a continuum approximation,
the growth rate of D(k,C;L, n) wrt C, with k ≥ 1, is modeled by the derivative
dD(k,C;L, n)/dC, influenced by two factors: one is inspired by a cumulative
form of preferential attachment, such that, when the corpus size C grows by
a given amount, each D(k,C;L, n) tends to increase at a rate proportional to
D(k,C;L, n)/C, its current relative size in the corpus; another is due to the
finiteness of the n-gram language vocabulary V (L, n), reflecting a slowdown
effect defined by the proportion of remaining n-grams still having a frequency
below k, regardless of whether they appear in the current corpus or are unseen
n-grams: (V (L, n)−D(k,C;L, n))/V (L, n). For k = 1, this is the proportion of
the finite vocabulary n-grams still unseen in the current corpus of size C. Thus,
dD(k,C;L,n)

dC is given by:

dD(k,C)

dC
= gk

D(k,C)

C

V −D(k,C)

V
(1)

where V and gk simplify V (L, n) and the proportionality factor gk(L, n) respec-
tively. Indeed, V =

∑k=kmax
k=1 W (k,C) where W (k,C) is the number of distinct

n-grams with frequency k and kmax is the highest frequency in the corpus, for
each n. The solution of equation (1) is (hk standing for an integration constant):

D(k,C;L, n) =
V (L, n)

1 + (hk(L, n)C)−gk(L,n)
. (2)

From (2), W (k,C;L, n), the number of equal-frequency (k) distinct n-grams of
size n, is predicted by the subtraction of the cumulative numbers D(k,C;L, n)
and D(k + 1, C;L, n) for two frequency consecutive values, k and k + 1.

3.1 An Approach to Large-scale Corpora

The baseline model [11] was trained for English with corpora up to 8.6Gw and
would be able to predict D(k,C;L, n) and W (k,C;L, n) values for any corpus
size with average relative errors around 3%. However, for the purpose of eval-
uating that model (as available at "http://bit.ly/3gqM6rS") for extended large
corpora ranges, we experimented with large scale English corpora reaching hun-
dreds of billion words, and the obtained predictions show significant deviations
from the empirical values, reflecting relative errors with modules much larger
than 3% (generally over 20%). This led us to a new approach considering the
dependency of the model parameters gk(L, n) and hk(L, n) on the corpus size C.
Indeed, by considering the above dependencies, we achieved significantly lower
errors in the model predictions compared to the baseline. Timewise, this involves
typical n-gram counting in large corpora – which is computationally heavy, re-
quiring the use of a parallel computing infrastructure – but is done only once,
for model parameter estimation, while model utilisation for prediction purposes
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only needs a fast formula calculation (2). The errors obtained by the new ap-
proach kept stable across a much wider range of large corpora sizes, spanning
a 1 × 1000 factor, for English, and reaching 373 billion words – a comparison
of the relative errors when assuming the gk(L, n) and hk(L, n) constancy [11],
versus when considering their dependency on C is presented on Sect. 5.

 1

 2

 3

 4

 5

 6

 7

 8

 19  20  21  22  23  24  25  26  27

ln
(V

(’
e

n
’,
1

)/
D

(k
,C

;’
e

n
’,
1

) 
- 

1
)

ln(C)

(a)   ln(V(’en’,1)/D(1,C;’en’,1) - 1) vs ln(C)
straight line

(b)   ln(V(’en’,1)/D(2,C;’en’,1) - 1) vs ln(C)
straight line

Fig. 1: Dependency of ln( V (L,n)
D(k,C;L,n)−1) versus ln(C) for empirical 1-gram counts

in English corpora (solid lines). Dashed lines refer to constancy assumption.

The Parameters Constancy Assumption in the Baseline Model. From
the baseline model (2), the curve for ln( V (L,n)

D(k,C;L,n)−1)= ln((hk(L, n)C)
−gk(L,n))=

−gk(L, n) ln(hk(L, n)) − gk(L, n) ln(C) is a straight line with slope −gk(L, n)
when drawn as function of ln(C), because the constancy of gk(L, n) and hk(L, n)
versus C is assumed. However, the experimental curves of ln( V (L,n)

D(k,C;L,n) − 1)

versus ln(C), for the empirical D(k,C;L, n) values (for English 1-grams and
k ∈ {1, 2}), show noticeable deviations from straight lines (in Fig. 1 the exper-
imental curves are solid and straight lines are dashed): this visual perception
is consistent with the large numeric values of the relative errors obtained when
using the baseline model, as reported in Sect. 5, tables 1, 2, 3, 4, 5. Note that this
figure covers an extended corpora range of test corpora (beyond the range consid-
ered in the baseline): 366Mw, 11.3Gw, 31.5Gw, 82.7Gw, 172Gw and 373Gw.
In this experiment, we considered an estimated English 1-gram vocabulary of
V (′en′, 1) = 2.95e9 – as discussed in Sect. 3.2. Thus, we model D(k,C;L, n) and
W (k,C;L, n) with the explicit dependency gk(C;L, n) and hk(C;L, n):

D(k,C;L, n) =
V (L, n)

1 + (hk(C;L, n) · C)−gk(C;L,n)
. (3)
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W (k,C;L, n) = D(k,C;L, n)−D(k + 1, C;L, n) (4)

3.2 Estimating the Model Parameters

We present the method for estimating the model parameters – for each (L, n)
–, considering the dependence on C: V (L, n), gk(C;L, n) and hk(C;L, n). We
use a set of training corpora to estimate the parameters, and a separate set of
testing corpora to evaluate the results, with corpora up to hundreds of billion
words. Overall, this method involves estimating: i) the vocabulary size V (L, n);
ii) the parameters gk(C;L, n) and hk(C;L, n) with the training corpora; iii)
the dependency behavior of gk(C;L, n) and hk(C;L, n) for general test corpora.
Concerning i), we estimate the vocabulary size to ensure the lowest average rel-
ative errors of model D(k,C;L, n) (3) for each k. To avoid the computational
complexity of an exhaustive search – which would be O(S2N+1), S being the
number of considered candidate values for each parameter (V (L, n), gk(C;L, n),
hk(C;L, n)) and N the number of training corpora –, in choosing the best pa-
rameter combination, we first estimate V (L, n). Concerning ii), given the esti-
mated V (L, n), we estimate the pairs (gk(C;L, n), hk(C;L, n)) for each training
corpus C. Concerning iii), given the collection of the above estimated pairs
(gk(C;L, n), hk(C;L, n)), we rely on regression using splines [7] (outperforming
piecewise linear methods), thus enabling the estimation of values of gk(C;L, n)
and hk(C;L, n) for any general corpora.

i) Estimating the vocabulary size. If we draw a secant line connecting two
points (i and j) on one of the curves (a) or (b) of Fig. 1, whose corresponding
corpora size values are ln(Ci) and ln(Cj), then the slope defined by this secant
corresponds to a value of gk(C;L, n) that is valid for both corpora. So, there is
a gk(C;L, n) = gki,j that can fit both corpora Ci and Cj . Let hki and hkj be the
hk parameter values corresponding, in (3), respectively, to the corpora Ci and
Cj . Let V , Dki and Dkj abbreviate V (L, n), D(k,Ci;L, n) and D(k,Cj ;L, n).
Under the assumption gk(C;L, n) = gki,j , we obtain gki,j from (3), the left-side
equation in (5). Also, under the approximation of assuming a common value,
hki,j , for hki ≈ hkj (discussed below), we obtain the right-side equation in (5).

gki,j = ln(
(V −Dki)Dkj

(V −Dkj )Dki

)/ ln(
hkj Cj

hki Ci
) hki,j =

1

Cj((V/Dkj )− 1)(1/gki,j
)

(5)
When using D(k,C;L, n) (3) for several values of k, there must be a V (L, n)

value that leads to the model predictions minimizing the average relative er-
rors for the training corpora set. We consider a range of k values from 1 to
kmax (kmax set to 212, explained in Sect. 5.2), and pairs of values (gk(C;L, n),
hk(C;L, n)), drawn from two distinct candidates ranges: one for gk(C;L, n) vary-
ing around an initial ginit value, and another range for hk(C;L, n), varying
around an initial hinit. So, to find the initial values ginit and hinit, to be used
as starting points for the above search, we apply (5) to obtain ginit= gki,j and
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hinit = hki,j . Thus, let Cmin and Cmax be the smallest and the largest cor-
pora from the training set. In Eq. (5) we instantiate Ci = Cmin, Cj = Cmax
and the corresponding empirical (Demp) values of Dki = Demp(k,Cmin;L, n),
Dkj =Demp(k,Cmax;L, n). Assuming that, since hki and hkj are relatively close
(though not equal) we approximate hki ≈ hkj (5). This simplification allows
to compute ginit and hinit using only the empirical values and the estimated
V (L, n).

Then, we find the V (L, n) value yielding the lowest average relative error
by considering all pairs constructed from the mentioned candidate ranges: for
each (gk(C;L, n), hk(C;L, n)), the error in D(k,Ci;L, n) is calculated for each
Ci from the training set; this is performed for each value of k.

ii) Estimating Parameters gk(C;L, n) and hk(C;L, n). Following Sect.
(3.1), for each value of k, although the values of gk(C;L, n) are relatively close for
several corpora, they are not equal. Thus, gk(C;L, n) must be fine-tuned for each
corpus size C in order to achieve accurate D(k,Ci;L, n) predictions on a wide
range of large corpora sizes. The same applies to hk(C;L, n). Given the estimated
V (L, n), the values of gk(C;L, n) and hk(C;L, n) for each training corpus Ctr are
obtained in two phases: Phase i) Finding initial points (ginit(Ctr), hinit(Ctr)) for
this search: we apply (5) to obtain ginit(Ctr)= gki,j and hinit(Ctr)=hki,j , with
Ci and Dki instantiated to Ctr and Demp(k,Ctr;L, n) respectively, and Cj and
Dkj instantiated to the largest training corpus Cmax and Demp(k,Cmax;L, n).
Assuming that, since hkj and hkj are relatively close (though not equal) we
approximate hki ≈hkj , thus quickly finding ginit(Ctr) and hinit(Ctr); Phase ii)
Searching around ginit(Ctr) and hinit(Ctr) to find (gk(Ctr;L, n), hk(Ctr;L, n))
minimizing the D(k,Ctr;L, n) relative error.

iii) Estimating the Dependency Behavior of gk(C;L, n) and hk(C;L, n)
for General Test corpora. To model the dependencies of gk(C;L, n) and
hk(C;L, n) on C, for each k, allowing to calculate D(k,C;L, n) (3) for each
test corpus, we use splines, based on the training learned values. The spline im-
plementation uses two hyperparameters, degree (dg) and smoothing level (s),
denoted (dgg, sg) and (dgh, sh), respectively, for gk(C;L, n) and hk(C;L, n),
tuned by cross-validation. Thus, to choose the quadruple that leads to the most
accurate D(k,C;L, n) predictions, a set of quadruple values (dgg, sg, dgh, sh)
is generated such that dgg, dgh ∈ {3, 4, 5} and sg, sh ∈ {0, 0.5, 1, 1.5 . . . 7}. For
each quadruple, leave-one-out cross-validation is employed: for each of N itera-
tions (where N is the size of the training set, now used as cross-validation set),
one corpus is used for validation, and the remaining N−1 corpora are used for
training. Each iteration uses a different validation corpus.

In further detail, the training part of the cross-validation uses the specific
values of gk(C;L, n) and hk(C;L, n) obtained for each corpus, and builds the
splines for modeling gk(C;L, n) and for hk(C;L, n) vs C. These splines are then
used to interpolate values of gk(Cval;L, n) and hk(Cval;L, n), where Cval is the
out-of-one corpus for validation in each iteration of the cross-validation. Firstly,
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gk(Cval;L, n) and hk(Cval;L, n) are used to obtain D(k,Cval;L, n) prediction
(using (3)) and the corresponding relative error. Secondly, we calculate the root
mean square of the relative errors (in absolute values), considering all iterations
of the cross-validation for the quadruple. Finally, the quadruple that shows the
lowest error is chosen to model the dependencies of gk(C;L, n) and hk(C;L, n)
on C using the full cross-validation set as training corpora. Then, gk(C;L, n)
and hk(C;L, n) can be obtained from the splines for test corpora.

4 Maxima k values for Reliable W (k,C;L, n) Predictions

To assess the predictions accuracy of W (k,C;L, n) using the corpora test set,
the range of k must allow reliable predictions. Due to the stochastic variability
of empirical D(k,C;L, n) and D(k + 1, C;L, n), they can deviate from their
means. Since W (k,C;L, n) =D(k,C;L, n)−D(k + 1, C;L, n), such variations
may significantly affect the empirical W (k,C;L, n) values, specially when the
means of D(k,C;L, n) and D(k + 1, C;L, n) are too close. For the empirical
W (k,C;L, n) to be reliable, the means ofD(k,C;L, n) andD(k+1, C;L, n)must
be sufficiently distant to reduce the probability of the corresponding empirical
values being close. While the exact means are unknown, we use the empirical
values from corpora as approximations. This introduces some risk, but obtaining
large corpora to estimate these means is impractical. The results support this
assumption (Sect. 5). Thus, let Dk and Dk+1 follow Poisson distributions with
λk =D(k,C;L, n) and λk+1 = D(k + 1, C;L, n) as their means, reflecting the
values for corpora with equal C, given L and n. Then, Wk =Dk−Dk+1, with
variances Var(Dk)=k and Var(Dk+1)=k+1. Since λk and λk+1 are large enough,
Normal distribution can be used. Hence,Wk ∼ N (µ, σ2) where µ=λk−λk+1 and
σ2=λk+λk+1. Thus, for Wk to be reliable we state that the relative deviation of
Wk from µ should be smaller than a threshold ε (a small positive number) with
a confidence probability P . Using the Cumulative Distribution Function (Φ())
of the Normal distribution, we express the probability as: P =2Φ

(
εµ
σ

)
−1 leading

to ε= σ
µΦ
−1(P+1

2

)
. Thus, for reliability, the relative deviation ε should satisfy:

ε >

√
λk+λk+1

λk−λk+1
Φ−1

(
P + 1

2

)
. (6)

As k increases, Dk and Dk+1 tend to become closer, leading to a maximum k
value: the k-threshold forWk reliability. As the difference between Dk and Dk+1

increases with corpus size, larger corpora tend to have larger k-thresholds.
In summary, for a given P =0.95 and σ=0.03, the k-threshold of a corpus of

size C, is the maximum k such that 0.03 >
√
λk+λk+1

λk−λk+1
Φ−1

(
0.95+1

2

)
where λk and

λk+1 are the empirical D(k,C;L, n) and D(k + 1, C;L, n) values, respectively.
This represents the maximum k for which the relative error of the prediction
W (k,C;L, n) using Eq. (4) is reliable, as it requires the empirical W (k,C;L, n)
value to be measured. The k-threshold values are in Sect. 5.
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5 Results

5.1 The Corpora sets

We extracted files from oscar-project (https://oscar-project.org/) in order to
build separate sample corpora collections: one in English and one in German.
Files were randomly selected obtaining a collection of English corpora with the
following sizes: 299Mw, 365Mw, 366Mw, 5.48Gw, 7.31Gw, 11.3Gw, 15.0Gw,
20.5Gw, 31.5Gw, 40.6Gw, 66.3Gw, 82.7Gw, 84.5Gw, 101Gw, 172Gw and
373Gw. For German, the following corpora collection was formed: 170Mw,
281Mw, 307Mw, 1.23Gw, 2.46Gw, 4, 93Gw, 9.85Gw, 19.4Gw, 24.3Gw, 27.1Gw,
39.1Gw, 48.9Gw and 52.2Gw. To ensure that the test corpora sets covered sizes
ranging from the magnitude of the smallest corpus to the magnitude of the
largest one for each language, without sacrificing the size of the training sets,
we selected corpora of the following sizes from the English collection: 366Mw,
11.3Gw, 31, 5Gw and 82.7Gw, 172Gw and 373Gw, and from the German col-
lection: 307Mw, 4.93Gw, 24.3Gw and 48.9Gw. The remaining corpora were
assigned to training or to cross-validation sets, depending on the needs.

To ensure fair counts while preserving text semantics, a space was added
next to each of the following characters: {’:’, ’;’, ’,’, ’(’, ’)’, ’[’, ’]’, ’<’, ’ >’, ’"’,
’ !’, ’?’}. Inflected forms are counted as distinct words in corpora, affecting the
estimated vocabulary sizes for each n-gram size. For all the corpora in those
collections, n-gram counts (1≤n≤6) were performed for each corpus, except for
the 172Gw and 373Gw English corpora, for which, due to the long computation
times required, only the 1-gram counts are reported in this paper.

5.2 Experimental Results

The estimated vocabulary sizes for each n-gram size are: 2.95×109, 1.995×1010,
3.335 × 1010, 1.51 × 1011, 2.48 × 1011 and 7, 2 × 1011, for English 1-grams, 2-
grams,...,6-grams, respectively, and 1.80 × 109, 6.76 × 109, 2.48 × 1010, 7.30 ×
1010, 2.20 × 1011 and 7.25 × 1011, for German 1-grams, 2-grams,..., 6-grams,
respectively. Note that these estimated vocabulary values are affected by the
inclusion of all word inflections in the n-gram counting. The following values
give an insight of the magnitude of the numbers of distinct n-grams: 3 579 008,
1 461 558 and 266 894 for the 1-gram of the 366Mw English corpus, for k = 1,
k=2 and k=15, respectively, and 7 560 504 911, 2 624 427 472, 317 955 329 for the
3-gram of the 82.7Gw English corpus, for k=1, k=2 and k=15, respectively.

Metrics for Evaluation For a language L and an n-gram size, let Dpred(k,C)
to be a prediction value obtained from D(k,C;L, n), and Demp(k,C) to be the
corresponding empirical value. Let RED(k,C)=

∣∣∣Dpred(k,C)−Demp(k,C)
Demp(k,C)

∣∣∣ represent
the module of the Relative Error of that prediction. Similarly, REW (k,C)=∣∣∣Wpred(k,C)−Wemp(k,C)

Wemp(k,C)

∣∣∣ gives the module of the Relative Error of a W (k,C;L, n)

prediction. The mean of RED(k,C) for a given frequency k across a set of C
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values is denoted as MRED(k). The mean of RED(k,C) for a given corpus size
C over a set of k values is denoted as MRED(C). Similarly, MREW (k) and
MREW (C) are used for REW (k,C). Also, SRED(k)=

√
1
|C|
∑
C∈C RED(k,C)2

represents the Root Mean Square of the Relative Error of theD(k,C) predictions
given k, across a set of C values. This measures the stability of RED(k,C) wrt
a given k along the set C; the closer SRED(k) is to MRED(k), the more stable
RED(k,C) is for that specific k value. Also, SRED(C)=

√
1
|K|
∑
k∈KRED(k,C)2

measures the stability of RED(k,C) wrt C across a set of k values, where K
is the set of k values used. Likewise, to measure the stability of REW (k,C)

for a specific value of k or C, we define SREW (k)=
√

1
|C|
∑
C∈C REW (k,C)2

and SREW (C)=
√

1
|K|
∑
k∈KREW (k,C)2 , respectively. Metric abbreviations are

defined in the table captions.

Evaluating the Approaches Besides the proposed functions D(k,C;L, n)
and W (k,C;L, n), we refer to the baseline model [11] as Db(k,C;L, n) and
Wb(k,C;L, n) (b denotes baseline). Also, to assess the isolated effect of the
constancy assumption of gk(C;L, n) and hk(C;L, n) wrt the corpus size, we
considered another approach denoted as Dc(k,C;L, n) and Wc(k,C;L, n), for
evaluating the baseline model using cross-validation, instead of using the same
corpora for training and testing as in [11]. Table 1 shows the mean relative
errors, MRED(k), for k ∈KD= {1, 2, 3 . . . , 16} ∪ {25, 26, 27, 28, 29, 210, 211, 212}.
The MD column shows that the relative errors for D(k,C;L, n) predictions are
low across the entire range of k, with global means of 0.7%, 0.6% and 3.3% for
1-grams, 3-grams and 6-grams, respectively. Generally, for each k, MD and SD
are relatively close, as the relative error remains stable across the different cor-
pora. However, two outliers appear for 6-grams: 13.6% and 11.6% for k = 210 and
k = 212, respectively. This is due to the relatively low empirical values for higher
n-gram sizes and larger k values, becoming more sensitive to small variations.

By comparison, the significantly higher values in MD
b show that the baseline

is not able to handle such a large range of corpora sizes, as global means surpass
30% for these n-gram sizes. The baseline [11] does not present Db(k,C;L, n) val-
ues for k > 16. The MD

c column shows that, after modifying the baseline to use
cross-validation, while maintaining the assumption of constancy of gk(C;L, n)
and hk(C;L, n) wrt C, the global means of the relative errors are still higher
(reaching 16.8% for 6-grams) than those obtained by our approach (MD). This
highlights that the high relative errors of the baseline in a wide range of cor-
pora are due to two issues: the inadequate estimation based on the same corpora
set for both training and testing, and the constancy assumption of gk(C;L, n)
and hk(C;L, n) wrt corpora sizes. Although not shown, 2-grams, 4-grams and
5-grams exhibit similar values.

Table 2 shows mean relative errors, MRED(C) for the English corpora. For
each case, all the k ∈ KD were used. The values of MD and SD are relatively
close, showing that the D(k,C;L, n) predictions have low relative errors and
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Table 1: Mean relative errors, MRED(k), for each k, denoted MD, MD
b and

MD
c , respectively, for modelsD(k,C;L, n),Db(k,C;L, n) [11] andDc(k,C;L, n).

SRED(k) is represented by SD. A global mean (GM) for each column (except
SD) is shown. Values shown for English test set (in percentage).

English
1-grams 3-grams 6-grams

k MD SD MD
b MD

c MD SD MD
b MD

c MD SD MD
b MD

c

1 1.0 1.3 87.4 4.5 0.8 1.0 20.6 6.0 1.4 1.6 27.6 1.7
2 1.0 1.1 72.0 3.3 1.1 1.3 35.0 0.4 3.5 4.2 46.0 2.7
3 0.6 0.7 67.7 3.2 0.3 0.4 35.3 1.0 2.0 2.5 40.1 5.2
4 0.6 0.9 64.1 3.0 0.2 0.3 35.3 1.0 2.0 2.5 40.1 5.2
5 0.6 0.8 61.3 2.9 0.1 0.1 35.7 1.3 1.9 2.3 38.2 5.6
6 0.6 0.8 57.9 2.8 0.0 0.1 35.7 1.8 1.9 2.2 37.1 4.3
7 0.6 0.7 56.6 2.7 0.1 0.6 36.6 2.6 1.6 1.8 34.5 2.7
8 0.4 0.5 54.1 2.6 0.4 0.6 35.6 3.2 1.3 1.5 33.5 5.1
9 0.6 0.7 53.0 2.4 0.3 0.4 35.7 4.2 0.9 1.2 30.5 10.0
10 0.5 0.6 52.1 2.3 0.3 0.4 35.3 5.0 1.1 1.2 29.2 13.5
11 0.4 0.6 51.4 2.2 0.2 0.3 35.2 5.9 1.7 1.8 31.9 18.0
12 0.4 0.6 50.1 2.2 0.2 0.3 35.2 6.5 1.8 2.0 33.5 20.7
13 0.4 0.6 49.5 2.2 0.4 0.5 35.2 7.0 1.4 1.9 35.0 22.6
14 0.4 0.6 48.3 2.1 0.4 0.6 35.3 7.5 1.6 2.1 36.1 25.1
15 0.5 0.6 47.5 2.1 0.4 0.5 35.3 8.1 2.0 2.6 38.4 28.7
16 0.5 0.6 46.6 2.1 0.5 0.5 35.5 8.5 2.1 2.8 39.6 30.1
25 0.7 0.8 2.1 0.5 0.6 12.4 3.9 5.3 37.1
26 1.1 1.7 2.5 1.8 2.7 12.2 4.5 5.4 21.8
27 0.7 0.8 3.7 1.2 1.5 12.9 6.8 9.5 17.8
28 0.7 0.9 4.5 1.2 1.2 14.2 3.7 6.2 32.8
29 0.6 0.8 4.8 0.6 0.9 16.7 2.9 3.5 46.7
210 0.8 1.2 4.1 0.9 1.4 17.9 13.6 15.5 26.1
211 1.1 2.0 3.6 0.9 1.2 19.3 5.1 6.3 9.2
212 1.2 2.0 4.2 2.5 4.6 19.4 11.6 17.2 10.7

GM 0.7 57.5 3.2 0.6 34.5 8.1 3.3 35.8 16.8
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are stable for each corpus across the values of k. This is true for all n-gram
sizes (1≤n≤6). The GM values range from 0.4% (2-grams) to 3.3% (6-grams).
In comparison, the errors in MD

b show significant errors for the baseline across
the various test corpora and n-gram sizes, with GM values ranging from 18.0%
(2-grams) to 57.5% (1-grams). The values of MD

c show that the constancy as-
sumption of gk(C;L, n) and hk(C;L, n) wrt C exhibits significant relative errors,
namely for the smaller corpora in this large range set, reaching 54.7% (6-grams).
For corpora sizes 172Gw and 373Gw, only 1-gram results are shown (Sect. 5.1).

Table 3 shows mean relative errors, MRED(C), for each of the German cor-
pora set. Db(k,C;L, n) results for German are not included, since German is not
reported in the baseline [11]. Again, D(k,C;L, n) predictions generally show low
values for the relative errors (MD, SD, and GM), similar to those obtained for
English. Although for the smallest corpus (308Mw), the error value is 8.2% (5-
gram) and 9.7% (6-grams). Likely, these outliers could disappear if the training
set were larger. In comparison to D(k,C;L, n), for this corpus (308Mw), the
MD
c approach reaches errors of 47.9% (5-grams) and 61.9% (6-grams).

Table 2: Mean relative errors, MRED(C), for each corpus C, denoted MD,
MD
b and MD

c , respectively, for models D(k,C;L, n), Db(k,C;L, n) [11] and
Dc(k,C;L, n). SRED(C) represented by SD. A global mean (GM) for each col-
umn (except SD) is shown. Values shown for English test set (in percentage).

English
1-grams 2-grams 3-grams

C MD SD MD
b MD

c MD SD MD
b MD

c MD SD MD
b MD

c

366Mw 1.2 1.4 31.0 8.5 0.9 1.2 34.7 13.6 1.2 2.2 43.3 26.7
11.3Gw 0.5 0.6 61.7 2.0 0.5 0.8 18.4 1.3 0.8 1.4 36.7 2.4
31.5Gw 0.3 0.4 66.4 2.0 0.1 0.2 12.6 1.2 0.3 0.4 31.8 2.6
82.7Gw 0.3 0.5 66.0 0.4 0.4 0.4 6.2 0.3 0.3 0.4 26.1 0.6
172Gw 0.7 0.8 62.5 2.1
172Gw 1.2 1.7 57.1 4.4

GM 0.7 57.5 3.2 0.4 18.0 4.1 0.9 33.5 8.1

4-grams 5-grams 6-grams
366Mw 2.5 5.6 32.4 36.7 3.9 7.9 22.3 47.3 4.6 9.0 24.4 54.7
11.3Mw 1.0 1.5 41.2 3.5 4.9 5.8 35.6 6.1 3.3 4.1 35.8 6.3
31.5Mw 0.8 1.7 40.2 3.5 1.4 2.5 39.9 3.0 1.7 2.9 39.7 4.7
82.7Mw 0.4 0.7 38.5 0.8 2.7 4.1 41.5 0.9 3.8 5.9 43.3 1.4

GM 1.2 38.1 11.1 3.2 34.8 14.3 3.3 35.8 16.8

From Sect. 4, the reliability of W (k,C;L, n) evaluation imposes restrictions
on the k value. So, for each k for which gk(C;L, n) and hk(C;L, n) are trained,
all training corpora should be used. Since W (k,C;L, n) predictions should not
apply to k > k-threshold, the k-threshold value for evaluating W (k,C;L, n) is
determined by the corpus with the smallest k-threshold, typically the smallest
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corpus. The k-threshold values, given by (6), found for each n-gram size in each
training set, are: 9, 16, 15, 15, 15, 15 for English 1-grams,. . . ,6-grams, respec-
tively, and 9, 15, 23, 17, 17, 17 for German 1-grams,. . . , 6-grams, respectively.

Table 3: Mean relative errors, MRED(C), for each corpus C, denoted MD and
MD
c , respectively, for models D(k,C;L, n) and Dc(k,C;L, n). SRED(C) rep-

resented by SD. A global mean (GM) for each column (except SD) is shown.
Values shown for the German test set (in percentage).

German
1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

C MD SDMD
c MD SD MD

c MD SD MD
c MD SD MD

c MD SD MD
c MD SD MD

c

(Gw)
.308 2.3 2.6 6.8 2.3 2.6 15.3 3.2 3.6 22.8 5.8 6.5 30.3 8.2 9.6 47.9 9.7 11.4 61.9
4.93 0.3 0.5 1.4 0.8 1.3 2.1 1.4 2.6 2.4 2.0 3.3 1.8 3.1 4.4 4.4 3.6 4.9 3.9
24.3 0.2 0.2 0.0 0.2 0.2 0.1 0.2 0.4 0.2 0.3 0.6 0.3 0.6 1.0 0.5 0.5 0.8 1.8
48.9 0.1 0.1 0.0 0.1 0.4 0.0 0.2 0.5 0.0 0.3 0.7 0.0 0.6 1.4 0.2 0.5 0.7 0.3
GM 0.7 2.1 0.9 4.4 1.3 6.4 2.1 8.1 3.1 13.2 3.6 17.0

Table 4 shows the mean relative errors, MREW (k), for k ≤ k-threshold for
each n-gram size. MW and SW values, and their relative proximity, show, for all
n-gram sizes,W (k,C;L, n) predictions with low relative errors, stable for each k
across the corpora set, with GM from 0.9% to 3.8%. In contrast, Wb(k,C;L, n)
predictions (MW

b ) show much higher relative errors: GM from 15.8% to 72.5%
(1-grams). The 1-grams evaluation, by including the largest corpora, 172Gw and
373Gw, stresses the ability to handle large corpora scales. The high errors for 1-
grams, by standing out from the other errors, highlight the baseline limitations.

For each English test corpus Table 5 shows the mean relative errorsMREW(C)
for k ≤ k-threshold and each n-gram size. MW and SW values, being relatively
close, indicate stableW (k,C;L, n) predictions across the k values, for all n-gram
sizes, with GM from 0.9% to 3.8%. In contrast, MW

b shows Wb(k,C;L, n) pre-
dictions with much higher relative errors, GM reaching 72.5% for 1-grams. For
German corpora set, Table 6 shows similar values for the W (k,C;L, n) predic-
tions relative errors. However, the outliers inMW for 5-grams and 6-grams (9.1%
and 12.2%) suggest that a larger training set could likely eliminate them.

Figure 2a compares D(k,C;L, n) prediction curves with corresponding em-
pirical values for the English corpora test set, for 2-grams and 3-grams. The
curves overlap illustrates the low relative errors. Figure 2b shows W (k,C;L, n)
predictions, for 1-grams, and the corresponding empirical values, for the same
test set, from 366Mw to 373Gw, for k ≤ k-threshold. The curve overlap for each
corpus reveals the low relative errors of the W (k,C;L, n) predictions.
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Table 4: Mean relative errors, MREW (k), for each k, denoted MW and MW
b ,

respectively, for models W (k,C;L, n) and Wb(k,C;L, n) [11]. SREW (k) is rep-
resented by SW . A global mean (GM) for each column (except SW ) is shown.
Values shown for the English test set (in percentage).

English
1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

k MW SWMW
b MW SWMW

b MW SWMW
b MW SWMW

b MD SWMW
b MW SWMW

b

1 1.4 1.9 97.8 1.6 2.1 29.5 1.3 1.9 13.8 2.0 2.4 22.9 2.2 2.7 27.5 2.2 2.5 23.9
2 1.9 2.4 79.8 2.9 4.1 9.4 2.1 2.4 34.5 2.3 3.2 44.7 4.5 6.3 49.1 5.0 6.2 49.2
3 0.5 0.6 80.8 0.6 0.9 9.8 0.6 0.8 34.2 1.1 1.4 44.0 2.0 2.7 46.3 2.0 2.2 44.3
4 1.1 1.5 76.8 0.7 0.8 12.2 0.9 1.2 35.8 1.1 1.5 45.2 2.9 3.5 47.1 3.0 3.6 44.7
5 0.6 0.8 82.8 0.3 0.4 12.3 0.3 0.4 34.6 0.6 0.9 44.0 2.1 2.7 45.3 1.9 2.5 41.8
6 1.4 1.7 67.2 0.5 0.8 16.8 0.5 0.7 37.9 1.0 1.5 47.2 2.7 3.4 48.9 2.7 3.7 46.0
7 1.8 2.3 79.7 1.0 1.4 13.5 1.5 2.6 34.6 2.8 5.3 42.6 4.8 8.3 42.0 6.8 10.6 38.0
8 1.3 1.9 65.8 0.8 1.3 18.3 1.0 1.5 37.7 1.7 2.6 46.2 2.2 3.4 47.0 4.6 5.4 44.5
9 1.2 1.6 63.2 0.3 0.4 15.9 0.3 0.5 35.3 0.5 0.6 41.3 0.9 1.2 38.7 2.5 3.0 34.9

10 63.2 0.5 0.7 17.3 0.7 1.2 35.8 1.3 2.1 43.1 2.7 3.3 41.2 5.0 5.4 39.5
11 70.2 0.3 0.3 15.8 0.3 0.4 33.5 2.9 3.4 38.6 1.8 2.0 33.2 3.7 3.9 30.3
12 60.5 0.9 1.2 17.9 1.5 2.0 35.3 6.2 7.7 40.8 4.8 7.3 36.6 7.0 9.9 35.7
13 70.5 0.5 0.6 14.8 0.5 0.5 33.3 1.0 1.1 36.5 2.0 2.2 28.7 2.7 3.2 27.0
14 63.1 1.1 1.3 16.8 1.9 2.4 33.6 3.7 5.0 38.3 4.9 8.1 32.6 6.8 10.9 33.5
15 66.9 0.6 0.6 16.8 0.8 0.9 32.7 1.3 1.4 35.8 1.9 1.9 26.1 1.3 1.8 25.4
16 1.0 1.2

GM 1.2 72.5 0.9 15.8 1.0 33.5 2.0 40.7 2.8 39.4 3.8 37.2

Table 5: Mean relative errors, MREW (C), for each corpus C, denoted MW and
MW
b , respectively, for models W (k,C;L, n) and Wb(k,C;L, n) [11]. SREW (C)

represented by SW . A global mean (GM) for each column (except SW ) is shown.
Values shown for the English test set (in percentage).

English
1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

C MW SWMW
b MW SWMW

b MW SWMW
b MW SWMW

b MW SWMW
b MW SW MW

b

(Gw)
.366 2.3 2.8 43.5 1.7 2.3 32.6 1.9 2.4 47.9 4.1 5.6 45.55.6 7.7 38.5 7.2 10.0 34.2
11.3 1.1 1.7 82.7 1.0 1.6 14.3 1.2 1.6 33.8 2.1 2.6 40.52.8 4.1 36.3 3.6 4.5 34.0
31.5 0.4 0.5 86.4 0.3 0.4 10.2 0.4 0.6 29.1 0.6 0.8 39.70.7 1.0 40.1 0.9 1.2 38.4
82.7 0.6 0.8 83.4 0.4 0.5 6.1 0.3 0.5 23.3 1.1 2.1 37.42.2 2.4 41.9 3.6 3.7 42.5
172 1.2 1.5 75.6
373 1.8 2.1 63.5
GM 1.2 72.5 0.9 15.8 0.9 33.5 2.0 40.72.8 39.4 3.8 37.2
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Table 6: Mean relative errors, MREW (C), for each corpus C, denoted MW for
model W (k,C;L, n). SREW (C) represented by SW . A global mean (GM) for
column MW is shown. Values shown for the German test set (in percentage).

German
1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

C MW SW MW SW MW SW MW SW MW SW MW SW

(Gw)

.308 2.4 3.0 3.6 4.4 4.5 5.9 6.3 8.9 9.1 12.7 12.2 16.0
4.93 0.9 1.1 0.8 0.9 1.8 2.4 1.1 1.6 2.4 4.6 7.3 20.7
24.3 0.4 0.4 0.2 0.2 0.2 0.4 0.2 0.2 0.3 0.4 0.5 0.7
48.9 0.1 0.2 0.1 0.1 0.5 1.0 0.1 0.2 0.3 0.6 1.0 2.1
GM 1.0 1.2 1.8 1.9 3.0 5.2
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Fig. 2: (a) Predicted and empirical values, D(k,C;L, n) and Demp(k,C;L, n)
versus C, for 2-grams and 3-grams, and k ∈ {1, 2}, in the English test corpora set.
(b) Predicted and empirical values, W (k,C;L, n) and Wemp(k,C;L, n) versus
k, for the 1-grams in the English test corpora set.
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6 Conclusions

We aim to address the scalability issues raised by the need to predict the effect of
the corpus size on n-gram frequency distributions when wide range of large natu-
ral language corpora are considered, encompassing sizes from hundreds of million
words to hundreds of billion words. We propose a novel approach to handle the
dependence of the model parameters on the corpora sizes. This was supported
by a sound methodology for estimating the proposed model parameters, based
on a state-of-the art for corpora training and testing, with cross-validation and
generalisation through spline-based regression. Our goal is to achieve very low
relative errors in the model predictions, and keeping them stable across the entire
corpora size range. We focus on a prediction model applying uniformly to multi-
words of different sizes, from 1-grams to 6-grams, considering the distribution of
n-grams with low occurrence frequencies. In contrast to an approach assuming
the parameter constancy wrt the corpora sizes, the conducted experimentation
showed that the proposed approach led to very low relative errors (circa 2%) for
the predictions of n-grams frequency distributions (1 ≤ n ≤ 6) in the range of
low occurrence frequencies starting from 1 (singletons), and kept stable across
a significant wide range of corpora sizes (from several hundred millions up to a
maximum of 373 billion words in English), in two languages. This suggests that
the proposed approach is promising to address the challenges posed by very large
scale corpora sizes, and opens possibilities for handling relevant low occurrence
multi-words in emerging and compelling applications, namely based on LLM.
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