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Abstract. Graph anomaly detection (GAD) aims to identify abnormal
nodes that differ from the majority within a graph and has been widely
applied in real-world applications, where solutions based on graph neu-
ral network (GNN) have recently achieved remarkable success. However,
GNN struggles to adapt to variations in the underlying data distribu-
tions, limiting its practical applicability. Existing efforts either train sep-
arate models for each dataset, rely heavily on source data, or overlook
graph heterogeneity in GAD tasks, leading to challenges in transferabil-
ity and generality. Therefore, how to effectively establish the underly-
ing normal patterns and enable anomaly detection across graphs with
varying feature and structure distributions remains an under-explored
problem. To tackle these challenges, this paper proposes HCT, a general
GAD framework for cross-graph transfer learning. Specifically, we first
introduce node-feature disparity-based ranking and feature mapping to
align anomaly features across graphs. Moreover, we employ a hierar-
chical contrastive learning framework to capture and transfer anomaly
patterns effectively. HCT extracts deep structure information from the
source graph at the node, subgraph, and view levels while employing a
lightweight, trainable network module in the target graph to minimize
cross-graph structure differences via contrastive learning. Besides, we
design a structure-enhanced regularization objective to improve model
adaptation in label-scarce scenarios. Extensive experiments on four real-
world datasets demonstrate the effectiveness of HCT against state-of-
the-art baselines with 1.63%∼8.05% average performance improvement
across both settings, showcasing its strong generality and adaptability.

Keywords: Graph Anomaly Detection · Transfer Learning · Contrastive
Learning.

1 Introduction

Graph anomaly detection (GAD) aims at identifying abnormal nodes that show
significant deviations from the majority of nodes in a graph. It has garnered
considerable research attention due to its broad real-world applications, such
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as fraud detection [1], spam review identification [2] and rumor detection [3].
Thanks to exceptional performance in handing high-dimensional features and
complex interdependent relations on graphs, the Graph Neural Network (GNN)
has recently been introduced into GAD with promising progress [4]. However,
since graphs are non-Euclidean, with diverse structures and node attributes
across different graphs, GNN-based GAD faces challenges when confronted with
substantial variations in the underlying data distributions [5]. Hence, how to
effectively model normal patterns and distinguish anomaly nodes in different
graphs has become an urgent problem.

Existing GNN-based GAD explorations can be divided into supervised and
unsupervised approaches. Supervised GAD methods detect anomaly node pat-
terns through message passing/aggregation optimization [6, 1] or distribution
correlation between graph and high frequency spectral [7, 8], assuming the avail-
ability of sufficient labeled data. In contrast, unsupervised GAD methods rely
on non-label capture graph anomaly patterns through unsupervised learning
techniques such as graph reconstruction [9] and contrastive learning [10, 11].
Unfortunately, existing mainstream solutions require training separate detection
models for each dataset, leading to high training costs and challenges in adapting
to new graphs, which might be impractical for large-scale real-world scenarios.

Recently, the pretrain-finetune paradigm has shown great potential in graph-
based tasks with GNN [12–14]. It leverages unsupervised pre-training to inject
generalizable graph knowledge into GNNs, which can then be fine-tuned for
effective generalization across different graphs without training from scratch.
However, current studies [15] focus on the neighborhood homophily assumption
that a node and its neighborhood nodes share similar labels while graphs typ-
ically exhibit neighborhood heterogeneity in GAD tasks, which may degrade
GAD performance.

How to effectively establish the underlying normal patterns and enable anomaly
detection over different distribution graphs is an under-explored problem, which
is non-trivial due to three main challenges: (1) Cross-graph Feature Alignment:
Different graphs exhibit significant variations in semantic space and feature di-
mensions. Current methods [16, 17] rely on source graphs to provide signals, but
in real-world scenarios, these signals may be inaccessible due to regulatory and
privacy constraints. (2) Anomaly Pattern Learning: Existing transfer learning
methods [12, 18] often neglect the detailed exploration of generic anomaly pat-
terns. Moreover, the structure differences between graphs make it challenging
to effectively mine and transfer these patterns across diverse graphs. (3) Graph
Label Scarcity: GNN-based GAD typically focuses on single-dataset settings,
achieving outstanding performance by relying on sufficient labels in the graphs,
which are not always available in real-world scenarios.

To tackle these challenges, we present HCT, a novel general GAD frame-
work based on hierarchical contrastive learning, which enables effective transfer
across cross-graph domains. For cross-graph feature alignment, we introduce
the node-feature disparity to align feature anomaly semantics and dimensions
across different graphs, enabling transfer without reliance on source graph sig-
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nals. For anomaly detection, hierarchical contrastive learning is employed to
deeply mine and transfer anomaly information. During pre-training, we con-
struct a multi-level contrastive learning network based on graph augmentation,
capturing anomaly information at the node, subgraph, and view levels to en-
hance normal patterns modeling and anomaly patterns understanding. During
fine-tuning, we leverage low-rank adaptation (LoRA) [19] due to its success in
large language model adaptability to transfer anomaly detection by adding a
lightweight and trainable network, while using contrastive learning to shorten
structure differences in different graphs. Additionally, we propose a structure-
enhanced regularization objective that exploits graph neighborhood heterogene-
ity to enhance the model’s adaptability on graphs with scarce labels. Conse-
quently, we find that HCT demonstrates strong detection performance compared
to baselines, with 1.63%∼8.05% average performance improvement across pub-
lic and 10-shot settings. Furthermore, it surpasses training-from-scratch methods
over 10% absolute improvement on some datasets. Generally, the contributions
are as follows:

– We introduce a novel general GAD framework HCT, which leverages node-
feature disparity for feature alignment, enabling migration without relying
on source graph signals. In addition, it employs a hierarchical contrastive
strategy to capture deep anomaly patterns.

– We propose an efficient transfer strategy that employs LoRA for anomaly
pattern transfer, with contrastive learning to reduce cross-graph structural
differences, and incorporates structure-enhanced regularization to improve
adaptability in label-scarce scenarios.

– Extensive experiments on four large-scale real-world datasets demonstrate
the superiority of HCT over state-of-the-art methods, showing significant
performance in generality and adaptability.

2 Related Work

Graph Anomaly Detection. In this paper, we focus on anomaly detection on
undirected attributed graphs, where anomalies involve either feature differences
from neighboring nodes or dissimilar nodes being tightly connected. With the
significant improvements of GNNs in graph data mining, GNN-based GAD [20]
has garnered widespread attention. Existing mainstream solutions train separate
detection models for each dataset. Supervised GNNs utilize message passing and
aggregation or graph-high frequency distribution correlation to uncover anomaly
patterns, such as BWGNN [21] applies localized band-pass filters to manage
higher frequency anomalies, while AMNet [8] captures both low-frequency and
high-frequency signals. Unsupervised GNNs leverage contrastive learning [10,
11], graph reconstruction [9], or auxiliary objectives [22] to train models with-
out any labeled data. In real-world large-scale graph data scenarios, training
separate models for each dataset leads to high training costs and difficulties in
quickly adapting to new domains. While some GAD methods [9, 16] attempt to
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apply cross-domain transfer, their reliance on source graph limits their gener-
alizability. Unlike existing methods, our proposed HCT enables fine-tuning on
target datasets without needing joint fine-tuning with the source graph, allowing
for rapid adaptation in data-scarce scenarios.

Graph Contrastive Learning (GCL) focuses on uncovering the inherent
similarities and differences between objects in graphs, aiming to extract uni-
versal graph knowledge. Recently, GCL has emphasized mining graph informa-
tion from different levels. GraphCL [23] leverages view augmentation strategies
to enhance node representations by contrasting augmented subgraphs. GRA-
DATE [24] further explores subgraph representation learning by designing cross-
view contrastive losses to capture local features and structure information. Unlike
previous works, we consider hierarchical anomaly feature mining, and innova-
tively introduce view-level contrastive learning during the pre-training phase.

Graph Transfer Learning aims to pre-train a GNN and apply it to various
datasets. The pretrain-finetune paradigm [12, 25], which involves pre-training a
GNN on a source graph and then fine-tuning it on a target graph, has attracted
significant attention due to its ability to transfer knowledge without requiring di-
rect relationships between the source and target graphs. For instance, GCC [15]
focuses on pre-training to develop a more general GNN. Besides, GraphCon-
trol [18] and GraphLoRA [13] emphasize fine-tuning to adapt the pre-trained
GNN to different graphs. Most relevant to our work is GraphLoRA, which freezes
the pre-trained GNN and utilizes LoRA-based contrastive learning to facilitate
knowledge transfer. In contrast to GraphLoRA, our approach further considers
graph neighborhood heterogeneity during the fine-tuning stage and incorporates
a structure-enhanced objective to improve adaptability for cross-graph anomaly
detection.

3 Methodology

3.1 Problem Formulation

Notations. In the following section, we formalize the GAD task. For the in-
put, the notation G = (V,E) denotes the given undirected graph, where V =
{v1, v2, . . . , vn} represent the node set with n nodes and E = {(vi, vj)|vi, vj ∈ V }
is the edge set. In addition, the node feature matrix X ∈ Rn×d represents the
node attributes, where each node in V has a feature vector of d-dimensional
attributes. The adjacency matrix A ∈ {0, 1}n×n encodes the graph structure,
where Aij = 1 indicates the presence of an edge between nodes vi and vj . D
denotes the degree matrix of A.

Graph Neural Networks. Major GNNs adopt message-passing networks,
where neighboring nodes exchange and aggregate information to share and up-
date node features, capturing both local relationships and global information in
the graph. In this paper, we use GCN [26] as the basic module, where the hidden
representation at the ℓ+ 1-th layer can be defined as:

h
(ℓ+1)
i = σ

(
h
(ℓ)
i W (ℓ)

)
. (1)
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Fig. 1. The overall framework of HCT. Notably, networks under two views use the
same architecture and share parameters.

H
(ℓ+1)
i = σ

(
D

− 1
2

i AiD
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2
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(ℓ)
i W (ℓ)

)
. (2)

where h
(ℓ)
i and H

(ℓ)
i represent the node hidden-layer representation and the sub-

graph hidden-layer representation, respectively. σ(·) is nonlinear transformation,
D

− 1
2

i AiD
− 1

2
i indicates the normalization of the adjacency matrix, W (ℓ) denotes

the network parameters.
Problem Statement. The GAD model aims to learn an anomaly scoring

function f : G → C that differentiates abnormal nodes Va from normal nodes
Vn within a given graph G, where Va and Vn satisfy Va ∪ Vn = V , Va ∩ Vn = ∅.
C is the anomaly score, with higher values indicating a higher likelihood of
anomaly. In this paper, we focus on transferable GAD, which leverages anomaly
knowledge from a pre-trained model on the source graph Gs and applies it to the
target graph Gt with different data distributions. Assuming the source graph is
unlabeled and the target graph has limited labeled nodes, HCT aims to transfer
the pre-trained model from Gs and fine-tune it on Gt for anomaly detection. The
optimization objective using target training nodes can be expressed as follows:

f∗
ϕ = argmin

ϕ
L (fϕ (Xt, At) , Yt) . (3)

where L is the fine-tuning loss function, Xt and At represent the node feature
matrix and adjacency matrix in Gt, and Yt denotes training labels available for
Gt. The function fϕ(·) = pϕ ◦gθ(·), where pϕ is the tunable module and gθ is the
frozen pre-trained model.

3.2 HCT Overview

The overall framework of HCT is illustrated in Figure 1. First, we design a fea-
ture alignment module to map features between the source and target graphs.
In this module, node-feature disparity is introduced to capture anomaly seman-
tics, aligning the feature anomaly semantics and dimensions across different
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graphs through anomaly-based ranking and weighted mapping, reducing the
distribution discrepancy between the source and target graphs. Next, we pro-
pose a hierarchical graph contrastive network to train a pre-trained model on
the source graph, which innovatively employs cross-view contrastive learning
on node and subgraph to uncover more local anomaly information for detec-
tion. Subsequently, we introduce a structure-aware transfer learning strategy for
transferring anomaly information to the target graph. Inspired by LoRA [19], we
apply low-rank adaptation to the pre-trained contrastive learning network with
contrastive learning to minimize the structure differences between the source
and target graphs. In this process, structure-enhanced regularization leverages
label and graph neighborhood heterogeneity to enhance adaptability in scenarios
with limited labels on the target graph. Finally, we combine the various anomaly
information to calculate the anomaly score for each node in the target graph.

3.3 Feature Alignment

The graph from different domains typically exhibits significant differences in
features when performing anomaly detection. For example, in social reviews,
features may include user profiles and comment content, while in financial trans-
actions, features might represent customer transaction behaviors. Therefore, the
primary task in GAD transfer learning is to align the features into a common
feature space. Feature alignment generally includes two main parts: semantic
and dimension alignment. Previous work [13] aligns features by designing spe-
cialized function to minimize difference in node feature distributions with the
data requirement for both the source graph and the target graph. However, it
is not always feasible when source graph data is unavailable. To this end, we
introduce a discrepancy-based feature alignment module, which achieves feature
alignment by abstracting anomaly semantics without requiring joint training
with the source graph. It consists of two phases: discrepancy-based feature rank-
ing that aligns anomaly semantics, and feature mapping that aligns dimension-
ality.

Discrepancy-based Feature Ranking. The goal of GAD is to identify
anomaly nodes within the graph, which exhibit significant feature disparity com-
pared to normal nodes. In GAD, high-frequency graph signals tend to play a more
crucial role in detection [7, 27, 21], showing that features with greater disparity
across nodes are more important for distinguishing anomaly patterns. Therefore,
node-feature disparity is introduced to measure the importance of each feature
for GAD. Given a graph G with a feature matrix X, the node-feature disparity
of its features can be defined as:

disk(N (X)) =
1

|E|
∑

(vi,vj)∈E

(N (Xik)−N (Xjk))
2
. (4)

where N (·) denotes the normalization. A larger disk indicates that the k-th
feature exhibits greater variation between connected nodes, which suggests a
stronger association with high-frequency graph signals.
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To align feature anomaly semantics, we reorder the features based on node-
feature disparity. Specifically, rather than joint training, we rank the features
of all input graphs in descending order of disparity, thereby achieving anomaly
semantic alignment.

Feature Mapping. To unify the feature dimensions across multiple graphs,
combined with the varying importance of different features in GAD, we employ
weighted feature projection to map features from different dimensions into a
common feature space. For a given feature matrix X, we first normalize the fea-
tures and then apply a fully connected layer for weighted mapping. The feature
mapping is defined as follows:

Z = map(X) = N (X) · (wmdis)T . (5)

where wm represents the parameters of the mapping function.

3.4 Hierarchical Graph Contrastive Network

To effectively extract anomaly patterns, we employ a hierarchical contrastive
learning network for unsupervised training on the source graph. Inspired by
GRADATE [24], we first apply view augmentation through graph enhancement
techniques. In each view, subgraphs are generated using random walks and paired
with target nodes. Subsequently, node-level and subgraph-level contrastive learn-
ing are utilized to capture both global and local anomaly patterns. Throughout
this process, cross-view subgraph-subgraph and novelly introduced node-node
contrasts optimize the model’s embeddings across views. A joint-balanced opti-
mization objective is then introduced to guide the training process.

Graph Augmentation. Edge modification [28] is employed to perform view
augmentation, helping the model uncover deeper semantic information. Specifi-
cally, given the source graph Gs = (Vs, Es) with edge set Es including m edges,
we construct a second view Ĝs = (Vs, Ês) by randomly dropping pm

2 edges from
the adjacency matrix and adding an equal number of edges, where p repre-
sents the proportion (with p = 0.2 in our experiments). This approach allows
the model to learn more anomaly knowledge without depending on the specific
structure of the graph, thus improving its generalization.

To improve scalability on large-scale graphs, we use a random walk with
restart strategy, as proposed in previous work [15], to sample subgraphs and
construct node pairs targeting specific nodes. Subgraphs Gi and G′

i, sampled
from the same central node, are considered positive pairs, while subgraphs from
different central nodes are treated as negative pairs.

Node-level Anomaly Knowledge Learning. Node-level contrastive learn-
ing focuses on the relationships between nodes and their neighboring nodes
within each view. In each view, the node representations from its own subgraphs’
neighboring nodes form positive pairs, while those from neighboring nodes of sub-
graphs with different central nodes form negative pairs. As shown in Eq.(2), the
GCN layer maps node information from the subgraph into the embedding space.
To obtain the neighboring node representations, we employ an MLP to project
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the node features into the same embedding space, resulting in the neighboring
node representation ui = H

(ℓ+1)
i [1, :]. Subsequently, following Eq.(1), the target

node representation e0i is computed.
As anomaly nodes tend to have lower feature similarity with their neighbor-

ing nodes, we leverage a bilinear function to measure the node-level correlation
between the target node and its neighboring nodes:

c0i = fb(ui, ei) = σ
(
uiWbe

⊤
i

)
. (6)

where Wb represents the learnable parameter. Given the graph neighborhood
heterogeneity, in positive pairs, the target node is expected to have a high cor-
relation with its neighbors, resulting in c0i approaching 1. In contrast, negative
pairs exhibit low correlation, causing c0i to approach 0. Therefore, the node-level
contrastive loss is calculated as follows:

LN = −
n∑

i=1

(
pi log c

0
i + (1− pi) log(1− c0i )

)
. (7)

where pi is equal to 0 for positive pairs and 1 for negative pairs.
Correspondingly, the node-level correlation in the another view, denoted as

ĉ0i , and the node-level contrastive loss L̂N can be computed analogously.
Subgraph-level Anomaly Knowledge Learning. Importantly, a new

GCN layer operates independently at the subgraph level from the GCN at the
node level and does not share the weight parameters. The Readout function is
then applied to aggregate the node features within the subgraph Gi, computing
its representation as follows:

si = Readout(Zi) =
1

ni

ni∑
j=1

(Zi)j . (8)

where Zi represents the feature representations of all nodes in Gi, ni is the
number of nodes in Gi, and (Zi)j is the feature of the j-th node in Gi.

Using an MLP to map the node features into the same embedding space as
the subgraph representation, we obtain the target node representation e1i , as
defined in Eq.(1). Similarly, the subgraph-level correlation c1i between the target
node representation e1i and the subgraph representation zi can be calculated from
the bilinear function. The optimization of subgraph-level contrast is as follows:

LS = −
n∑

i=1

(
pi log(c

1
i ) + (1− pi) log(1− c1i )

)
. (9)

Likewise, subgraph-level correlation ĉ1i and loss L̂S can also be computed for
another view.

View-level Anomaly Knowledge Learning. Building on the advantages
of graph augmentation techniques, view-level contrastive learning considers node-
node and subgraph-subgraph contrastive learning across different views.
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For cross-view node-node contrast, the node forms a positive pair with the
neighboring node representations from its own subgraph in another view and
forms a negative pair with neighboring node representations from subgraphs
centered around different nodes in the two views. Based on prior work [29], we
design the following loss function:

LNN = −
n∑

i=1

log

(
exp(ui · ûi)

exp(ui · uj) + exp(ui · ûj)

)
. (10)

where ui and ûi are the neighboring node representations of node vi in the two
views, while uj and ûj are those of another node vj in the two views.

For cross-view subgraph-level contrast, a target node vi forms positive pairs
with its own subgraph in another view, and negative pairs with subgraphs cen-
tered around different nodes in both views. The loss function is:

LSS = −
n∑

i=1

log

(
exp(zi · ẑi)

exp(zi · zj) + exp(zi · ẑj)

)
. (11)

where zi and ẑi represent the subgraph representations of node vi in the two
views, while zj and ẑj represent those of another node vj in the two views.

Joint-balanced Optimization. During the pre-training phase, we propose
a joint-balanced optimization objective to integrate information from different
contrastive learning. To effectively balance node-level, subgraph-level, and view-
level information, we introduce trade-off parameters that facilitate this process:

L′
N = αLN + (1− α)L̂N

L′
S = αLS + (1− α)L̂S

LCR = βLNN + (1− β)LSS .

(12)

where α ∈ (0, 1) is used to balance the two views, and β ∈ (0, 1) is used to
balance node and subgraph representations.

To leverage the advantages of hierarchical contrast, the overall joint objective
function during pre-training is defined as follows:

Lpretrain = βL′
N + (1− β)L′

S + LCR. (13)

Through the above steps, we obtain a pre-trained GAD model gθ via unsu-
pervised learning on the source graph Gs.

3.5 Structure-Aware Transfer Learning

During fine-tuning, structure differences between the source and target graphs
hinder the transferability of pre-trained GAD models. To bridge this gap, we
propose a structure-aware transfer learning strategy which comprises two key
components: (1) LoRA-based fine-tuning, which alleviates structural differences
between graphs, and (2) structure-enhanced regularization, which exploits graph
neighborhood heterogeneity to enhance adaptation in label-scarce scenarios.
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LoRA-based Fine-tuning. During fine-tuning, we freeze the weights of
the pre-trained model gθ while adding a lightweight, trainable GCN layer with
the same architecture to capture structure information from the target graph.
This setup allows the pre-trained model to retain structural knowledge from the
source graph while the newly added module effectively integrates structural pat-
terns from the target graph. Moreover, LoRA significantly reduces the number
of parameters updated during fine-tuning, mitigating potential issues such as
overfitting and catastrophic forgetting.

For each GCN layer at the node and subgraph levels with weight matrix W ,
LoRA introduces an additional GCN layer with parameter matrix ∆W . The
hidden representation at l + 1-th layer is defined as follows:

h
(ℓ+1)
i = σ

(
h
(ℓ)
i W (ℓ)

)
+ σ′

(
h
(ℓ)
i ∆W (ℓ)

)
. (14)

where ∆W (ℓ) = W l
BW

l
A, σ′ represents add nonlinear transformation. W l

B ∈
Rdl×r, W l

A ∈ Rr×dl+1 , and the rank r ≪ min(dl, dl+1).
To enhance the transfer of graph-structured knowledge, we incorporate con-

trastive learning into each newly added GCN layer. Specifically, the represen-
tation hi of the same node in the original GCN, and its counterpart h′

i in the
newly added GCN layer are treated as a positive pair, while representations of
different nodes across the two GCN layers are considered negative pairs. The
fine-tuning contrastive loss is thus defined as:

L = −
n∑

i=1

log

(
exp(hi · h′

i)

exp(hi · hj) + exp(hi · h′
j)

)
. (15)

Based on the above equations, we can obtain the contrastive losses LCLN , L̂CLN ,
LCLS and L̂CLS for node-level and subgraph-level fine-tuning in both views. Con-
sidering the integrated optimization of multi-level contrastive learning informa-
tion, the fine-tuning contrastive loss is as follows:

L′
CLN = αLCLN + (1− α)L̂CLN

L′
CLS = αLCLS + (1− α)L̂CLS

LCL = βL′
CLN + (1− β)L′

CLS .

(16)

where α and β take the same values as optimization parameters in pre-training.
Structure-enhanced Regularization. In GAD, anomaly nodes exhibit

dissimilarity with their neighboring node features, whereas normal nodes are
more similar to their neighbors. To this end, we leverage the principle of structure
heterogeneity to enhance transferability in scenarios with limited labels.

Building on the correlation calculation in Eq.(6), we introduce a structure-
enhanced regularization objective. Normal nodes demonstrate high correlation
with their neighbors/subgraphs, while anomaly nodes show low correlation. The
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regularization objectives at the node-level and subgraph-level are as follows:

LRN = −
∑
i

yi log(1− c0i ) + (1− yi) log(c
0
i )

LRS = −
∑
i

yi log(1− c1i ) + (1− yi) log(c
1
i ).

(17)

Here, y represents the label information in the target graph. The regularization
objectives for the other view can be defined as L̂RN and L̂RS . Similar to Eq.(16),
we introduce the trade-off parameter to derive the final structure-enhanced op-
timization objective LR.

Fine-tuning Objective Optimization. During the fine-tuning phase, we
employ multi-task learning to jointly optimize multiple objective functions. The
overall objective function is defined as follows:

Lfinetune = λ1LR + λ2LCL + λ3LCR. (18)

where λi represents the importance of each objective function, which is set to 1
in our experiments.

3.6 Anomaly Detection

In anomaly detection, normal nodes exhibit high similarity with their own sub-
graph and neighbor node representations, while showing low similarity with the
subgraph and neighboring node representations of other nodes. On the other
hand, anomaly nodes are dissimilar to both their own subgraph and the sub-
graphs and neighboring nodes of other nodes. Thus, we define the anomaly score
using the correlation as follows:

ci = cn − cp. (19)

where cn represents the correlation in negative pair and cp represents the corre-
lation in positive pair. Leveraging the trade-off parameter in Eq.(12), we inte-
grate node-level, subgraph-level, and view-level anomaly information, with the
anomaly score further represented as:

cnodei = αc0i + (1− α)ĉ0i

csubi = αc1i + (1− α)ĉ1i

Ci = βcnodei + (1− β)csubi .

(20)

As a single-round detection may not always capture the relevant semantics, we
perform multi-round anomaly detection and compute the average across these
rounds as the final detection result.
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Table 1. Statistics of datasets including the number of nodes and edges, the node
feature dimension, the ratio of anomaly nodes in graph.

Nodes Edges Features Anomaly

Questions 48,921 153,540 301 3.00%
T-Finance 39,357 21,222,543 10 4.60%

Weibo 8,405 407,963 400 10.30%
Reddit 10,984 168,016 64 3.30%

Tolokers 11,758 519,000 10 21.80%

4 Experimental Evaluation

4.1 Experiments Settings

Datasets. For pre-training, we use the Questions [30] dataset which focuses on
social media as source graph. For comprehensive evaluations, we consider four
large-scale real-world datasets as target graphs that span a variety of domains,
including finance (T-Finance [21]), crowd-sourcing (Toloker [30]), and social me-
dia (Weibo, Reddit) [31]. The statistics of datasets are provided in Table 1.

Baselines. We compare HCT with eight methods. For training-from-scratch
methods, we choose two conventional GNNs, GIN [32] and GraphSAGE [33],
along with AMNET [8] and BWGNN [21], which are specifically designed for the
GAD task. For cross-graph transfer, we include three SOTA methods GCC [15]+fine-
tuning, GraphControl [18], GraphLoRA [13], and the GAD-specific baselines
ARC [5]. Notably, we add a classifier to GCC during fine-tuning, as it is origi-
nally an unsupervised contrastive learning model.

Metrics and Evaluation. We introduce two main metrics that match those
of previous empirical studies [4, 5], including the Area Under the Receiver Oper-
ating Characteristic Curve (AUROC) and the Area Under the Prevision Recall
Curve (AUPRC). For all metrics, anomalies are considered as the positive class,
and higher scores indicate better model performance. Experiments are conducted
in two distinct settings: public and 10-shot. The public setting assumes sufficient
labels, with 10% of the target graph dataset randomly sampled for training. The
10-shot setting represents a low-label scenario, where only 10 labeled instances
per class are available in the target graph. In both cases, 80% of the target
graph dataset is used for testing. For all methods, we report the average AU-
ROC/AUPRC with standard deviations over 5 trials.

Settings. In HCT, both GCN consist of a single layer with ReLU activation.
The subgraph size is fixed at 4, and both node and subgraph features are pro-
jected into a 64-dimensional hidden space. The model is trained for up to 400
epochs, followed by 100 rounds anomaly score calculation. Our implementation
builds on prior work [24], with all experiments conducted on a single A800 GPU.
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Table 2. Comparison of GAD performance in AUROC (%, mean±std), where high-
lighted results indicate the first and second rankings. OM indicates ’Out of Memory’
in our experimental settings.

T-Finance Reddit Weibo tolokers

Model Public 10-shot Public 10-shot Public 10-shot Public 10-shot

GIN 76.70±9.26 69.91±4.14 53.87±0.88 52.71±2.76 82.83±2.78 63.99±2.90 52.85±0.43 55.51±1.41

GraphSAGE 57.61±6.67 59.93±5.05 46.69±1.98 44.58±2.14 21.01±5.61 16.01±3.87 58.88±0.93 54.49±2.87

AMNet 83.38±1.82 80.51±3.95 50.68±0.21 57.56±0.54 80.52±1.51 71.50±2.79 59.31±0.35 53.01±1.96

BWGNN 83.57±2.84 79.92±4.31 50.90±2.83 55.58±3.90 67.37±2.70 59.68±1.31 60.25±0.18 56.03±2.65

GCC+finetuning 50.34±0.26 47.13±9.34 50.02±0.07 51.04±2.61 84.05±3.86 77.91±5.25 50.97±2.18 49.96±0.25

GraphControl 85.71±1.59 71.27±0.58 50.06±0.13 54.45±1.17 90.05±0.56 75.63±2.69 60.18±2.47 53.92±2.37

GraphLoRA OM OM 50.00±2.18 54.18±0.64 77.30±2.95 69.51±0.68 50.36±0.43 49.58±0.01

ARC 75.25±0.69 68.84±4.75 58.90±0.29 57.58±1.99 88.45±0.30 77.43±0.21 48.31±0.75 49.64±2.96

HCT 88.99±0.23 81.17±3.01 55.39±0.49 54.99±1.12 91.63±0.30 80.65±3.07 61.61±0.73 59.81±0.69
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Fig. 2. GAD performance in terms of AUPRC.

4.2 Main Results

We evaluate the GAD performance by comparing HCT with eight baselines.
Table 2 shows the comparsion results of AUROC in both settings, while Figure 2
illustrates the AUPRC comparison. The observations are as follows:

Overall Performance. HCT demonstrates strong anomaly detection capa-
bility in the transferable GAD scenario across various datasets. Specifically, HCT
achieves state-of-the-art results on three out of four datasets and approaches the
optimal performance on the remaining one. Compared to the best-performing
baseline, GraphControl, HCT improves AUROC by 2.91% and AUPRC by 8.05%
in the public setting. In the 10-shot setting, it surpasses the strongest baseline,
AMNet, by 3.51% in AUROC and 1.63% in AUPRC.

Effectiveness of Cross-graph Transferability. HCT presents robust sta-
bility in cross-domain transfer, even when dealing with disparate graph domains.
Compared to training-from-scratch methods, HCT leverages anomaly knowledge
from the source graph to enhance performance on the target graph, achieving
over a 10% AUROC improvement on the Reddit dataset. Moreover, we observe
that transfer learning baselines show minimal improvements or even adverse ef-
fects when fine-tuned on specific datasets. In contrast, HCT not only enhances
performance on datasets from similar domains but also improves AUROC by
1.85% in the public setting and 7.89% in the 10-shot setting on the cross-domain
T-finance and Tolokers datasets, surpassing other transfer learning methods.
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Table 3. Ablation study with AUROC(%, mean±std) in public and 10-shot settings.

T-Finance Reddit Weibo tolokers

Model Public 10-shot Public 10-shot Public 10-shot Public 10-shot

HCT 88.99±0.23 81.17±3.01 55.39±0.49 54.99±1.12 91.63±±0.03 80.65±3.07 61.61±0.73 59.81±0.69

w/o dfs 85.16±0.12 65.19±2.01 52.75±0.99 49.59±4.30 43.29±8.90 78.32±0.72 60.08±1.32 49.07±3.76

w/o view 83.20±0.39 59.26±8.66 51.21±0.44 50.74±1.75 62.72±4.78 65.15±3.79 59.78±0.44 59.23±0.87

w/o aug 80.01±0.10 28.27±6.48 53.39±0.68 50.58±1.60 14.16±0.88 66.01±8.57 61.02±0.32 59.20±0.94

w/ node 54.51±0.36 25.60±10.39 53.88±0.79 49.79±3.30 16.12±0.42 62.80±6.96 61.46±0.28 58.72±1.36

w/ subgraph 83.19±0.17 37.35±9.35 52.17±0.80 51.12±3.71 22.78±8.90 66.53±4.56 59.71±0.11 59.08±0.83

w/ finetuning 88.23±2.75 81.05±2.04 55.04±0.36 50.09±0.82 89.40±0.65 72.62±9.15 60.49±0.10 59.69±2.02

w/o ser 60.99±5.21 53.36±2.51 43.75±1.48 46.89±5.33 66.24±1.29 65.02±5.16 56.12±1.42 49.89±3.97

Fig. 3. Sensitivity analysis for the trade-off parameters α and β on Weibo.

Effectiveness of Heterogeneity Consideration. It is curial to consider
heterogeneity in GAD. Compared to GraphLoRA, which assumes homogeneity,
HCT demonstrates an average improvement of 10.32% in AUROC and 18.21%
in AUPRC in the public setting, and 7.36% in AUROC and 12.69% in AUPRC
in the few-shot setting, all under the same LoRA-based fine-tuning conditions.
Moreover, general transfer learning methods based on homogeneity assumption
are less effective than specialized approaches that account for graph neighbor-
hood heterogeneity in GAD, which is evidenced by the strong AUROC and
AUPRC performance of AMNet, BWGNN, and ARC.

4.3 Further Validation and Analysis

Ablation Studies. We evaluate the importance of our purposed modules in
HCT, including feature alignment, hierarchical contrastive learning, and structure-
enhanced objectives. To this end, several variants are designed: For feature align-
ment, w/o dfs replaces feature alignment with a simple dimensional mapping
module, without ranking and weighting mechanism based on node-feature dis-
parity. For hierarchical constrastive learning, w/ node and w/ subgraph de-
note using only node-level or subgraph-level contrast, respectively. w/o aug
represents the performance without graph augmentation, and w/o view in-
dicates the exclusion of view-level contrast. To evaluate LoRA-based contrast
effectiveness, w/ finetuning refers to full fine-tuning on the training dataset
for comparison. For objective optimization, w/o ser evaluates the impact of
removing structure-aware regularization. The results, as shown in Table 3, show
that the fully equipped HCT consistently achieves the best performance, thus
demonstrating the effectiveness of each component.
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Convergence Analysis. We discuss the important trade-off parameters, α
and β, involved in our methods. As shown in Figure 3, these parameters ef-
fectively enhance GAD performance on the Weibo dataset, demonstrating the
effectiveness of view balancing and node-subgraph balancing. Notably, we ob-
serve a significant drop in AUROC and AUPRC when β = 0.9, indicating that
subgraph-level information plays a crucial role in capturing graph anomalies.

5 Conclusion

In this paper, we investigate the challenge of cross-graph anomaly detection in
GNNs. To address the differences in feature and structure distributions across
graphs, we introduce HCT, a novel general GAD framework that enables effective
cross-graph transfer on undirected attributed graphs. To achieve this, HCT inte-
grates a disparity-based mapping mechanism for cross-graph feature alignment
alongside hierarchical contrastive learning to facilitate anomaly pattern capture
and transfer. Additionally, a structure-aware regularization objective is proposed
to enhance adaptability in label-scarce scenarios. Extensive experiments on four
large-scale real-world datasets confirm the effectiveness and generalizability of
HCT, significantly outperforming baselines while maintaining stable transferabil-
ity across disparate graph domains. In the future, we will continue to explore the
graph heterogeneity and efficient detection on large-scale graphs for the task.
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