
Breaking Free: Decoupling Forced Systems with
Laplace Neural Networks

Bernd Zimmering1(�)[0000−0001−8292−9945], Cecília
Coelho1,2[0009−0009−4502−937X], Vaibhav Gupta1[0009−0004−5359−6263], Maria

Maleshkova1[0000−0003−3458−4748], and Oliver Niggemann1[0000−0001−8747−3596]

1 Institute for Artificial Intelligence, Helmut Schmidt University Hamburg, Germany
{bernd.zimmering,cecilia.coelho,guptav,maleshkm,oliver.niggemann}@hsu-hh.de

2 Centre of Mathematics (CMAT), University of Minho, Braga, Portugal

Abstract. Forecasting the behaviour of industrial robots, power grids
or pandemics under changing external inputs requires accurate dynam-
ical models that can adapt to varying signals and capture long-term
effects such as delays or memory. While recent neural approaches address
some of these challenges individually, their reliance on computationally
intensive solvers and their black-box nature limit their practical utility.
In this work, we propose Laplace-Net, a decoupled, solver-free neural
framework for learning forced and delay-aware dynamical systems. It uses
the Laplace transform to (i) bypass computationally intensive solvers,
(ii) enable the learning of delays and memory effects and (iii) decompose
each system into interpretable control-theoretic components. Laplace-Net
also enhances transferability, as its modular structure allows for targeted
re-training of individual components to new system setups or environ-
ments. Experimental results on eight benchmark datasets—including
linear, nonlinear and delayed systems—demonstrate the method’s im-
proved accuracy and robustness compared to state-of-the-art approaches,
particularly in handling complex and previously unseen inputs.

Keywords: Neural Networks · Scientific Machine Learning · Neural
Differential Equations · Laplace Transform.

1 Introduction

In forced dynamical systems, an external controller C (e.g., a motor or human)
drives a dynamical system S (e.g., a pendulum) using input signal x(t) to
achieve desired objectives over time t (Fig. 1). The system responds with outputs
y(t), evolving from its initial state y0 based on the interaction of the forcing
inputs with its internal dynamics [23]. These systems span various domains such
as control engineering, robotics, finance, ecosystems and epidemiology, where
external inputs (e.g., economic policies, climate, public health measures) strongly
influence system behaviour [21,27,7]. Here, modelling S is essential for designing
C, enabling effective control of these complex systems.

Traditionally, modelling such systems has relied on hand-crafted ordinary
differential equations (ODEs) with predefined forcing terms [23]. These approaches
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Fig. 1. Control loop with system S that responds with y(t) and is forced by some
controller C through excitations x(t). y0 is the initial state of the system.

require deep domain expertise and often struggle to generalise beyond their
original design [32]. In recent years, data-driven methods like Neural ODEs [4]
have emerged as powerful tools to learn the dynamics of the system directly
from the data. Extensions of Neural ODEs [25,16,12,18] incorporate external
excitations x(t) into their models, but rely on iterative ODE solvers. Such
solvers can be computationally expensive and prone to numerical drift over long
prediction horizons [2]. Although alternative methods [1,14] have been proposed
to address these challenges, they often fail to fully decouple the dynamics of the
system S from the external controller C, limiting their flexibility in handling
arbitrary forcing inputs.

To overcome these limitations, Neural Operators (NOs) have been introduced
as a solver-free alternative for learning mappings directly from inputs x(t) to
outputs y(t) [20,3]. However, NOs frequently struggle to capture critical memory
effects, such as delays or non-local behaviours (i.e. fractional differential equations
(FDEs) as described in [9]), which are essential for accurately modelling many real-
world systems. Recent studies [28,6,22] emphasise the importance of addressing
these memory effects to improve model fidelity.

Another promising avenue involves leveraging the Laplace Domain (LD)
for learning forced dynamical systems. LD-based methods have shown strong
performance in capturing both forced dynamics and delays [3,14]. Although the
Laplace transform has long been a cornerstone in fields like control theory, fluid
dynamics, and systems biology, its integration into modern machine learning
frameworks remains relatively under-explored. A recent study [30] highlights
the conceptual parallels between classical engineering approaches (e.g., transfer
functions, ODE models) and current machine learning methods such as Neural
ODEs and Neural Laplace. These similarities are discussed in detail using the
Spring-Mass-Damper (SMD) system as a running example, which also serves as
a benchmark in this study.

In many real-world scenarios - such as adapting robotic controllers to new
hardware configurations or refining economic forecasts under changing regulations
- modular and decoupled architectures offer significant advantages. By isolating
specific components of a model (e.g., internal dynamics vs. external forcing),
these architectures enable efficient adaptation to new scenarios without requiring
a complete model retraining. This modularity not only reduces computational
costs but also enhances interpretability by aligning learned components with
classical theoretical insights.
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Despite the progress made by existing methods, many remain constrained by
specific assumptions about input signals, overlook delays or other memory effects
or rely heavily on iterative solvers. These limitations can lead to numerical drift,
high computational overheads, or inadequate modelling of long-term dependencies
- especially in scenarios involving complex forcing signals or extended prediction
horizons.

To address these challenges, we propose a novel modular Laplace-based
framework that explicitly handles external forcing and memory effects without
relying on iterative solvers (as summarised in Table 1). Our main contributions
can be summarized as follows:

– Decoupled Laplace Representation: We introduce Laplace-Net, a de-
coupled NN architecture that employs the Laplace domain with an explicit
factorization that separates internal system dynamics from external forcing
and initial states, aligning with classical system theory.

– Arbitrary Forcing and Intervention Handling: Our approach accepts
time-varying or previously unseen inputs without retraining the entire model,
facilitating straightforward adaptation to new control signals or external
perturbations.

– Solver-Free, Memory-Aware Inference: We follow Holt et al. [14] em-
ploying numerical inverse Laplace transforms and thus avoiding iterative
integration. We mitigate numerical drift and capture memory effects (e.g.,
delays or fractional dynamics) within the same framework.

– Enhanced Transferability and Interpretability: The decoupling into well
established subcomponents enables their reuse or pre-training and improves
interpretability for experts.

– Improved Performance: Laplace-Net consistently outperforms LNO across
all datasets and surpasses LSTM on 6 out of 8 datasets, demonstrating its
effectiveness in capturing linear, non-linear, chaotic, and memory-dependent
dynamics.

The remainder of this paper is structured as follows: Section 3 formally defines
the problem and introduces key concepts related to Laplace transforms. Section 4
presents the proposed decoupled Laplace-based framework. Section 5 evaluates
our approach on linear, non-linear and delayed systems.3 The conclusions and
future directions are discussed in Section 6.

2 Related Work

Data-driven modelling of dynamical systems encompasses a wide range of neural
approaches, many of which differ in their reliance on time-stepping solvers, ability
to model memory effects or inhomogeneous excitations, and degree of modular
decomposition. Table 1 summarizes representative methods evaluated across four
key aspects:
3 Code available at https://github.com/zimmer-ing/Laplace-Net

https://github.com/zimmer-ing/Laplace-Net
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(i) Solver-Free indicates whether the method avoids ODE solvers during training,
which are compute intensive.
(ii) Memory assesses the capability to explicitly handle delays (as in Delay
Differential Equations, DDEs) and non-local behavior (as found in Fractional
Differential Equations, FDEs [8]).
(iii) Arbitrary Forcing evaluates the ability to generalize to unseen or non-
parametric input trajectories x(t).
(iv) Decoupled reflects the extent to which the approach separates system
dynamics from external inputs and initial conditions, specifically into components
that mimic theoretical concepts.

Table 1. Comparison of neural approaches for modelling dynamical systems along
four key dimensions: solver-free inference; memory (e.g. delays) ; arbitrary forcing;
modularity.

Method Reference
Solver
Free Memory

Arbitrary
Forcing Decoupled

Neural ODE [4] × × × ×
Neural FDE [6,29] × ✓ × ×
Neural DDE [28] × ✓ × ×
ODE-RNN [25] × × ✓ ×
Fourier NODE [18] ✓† × ✓ ×
Neural IM [12] × × ✓ ✓
Neural CDE [16] × × ✓ ×
Neural Flow [1] ✓ × × ×
Neural Laplace [14] ✓ ✓ × ×
Neural Laplace Control [13] ✓ ✓ ✓ ×
DeepONet [20] ✓ × ✓ ×‡

Laplace NO [3] ✓ × ✓ ✓

Laplace-Net This Work ✓ ✓ ✓ ✓

† Fourier NODEs eliminate the need for a solver during training but still require one
for inference.
‡ DeepONet is partially decoupled: the branch network encodes both initial and
external inputs, while the trunk network models system dynamics. However, the
separation between initial conditions and external inputs within the branch network is
not complete.

Neural ODEs and Solver-Based Extensions. Neural ODEs [4] and their
immediate variants, such as ODE-RNN [25], ANODE [11], and Neural IM [12],
parameterise ODE vector fields in a continuous latent space. These approaches
have demonstrated their effectiveness in various scenarios, including homogeneous
and some forced systems. However, they still rely on iterative numerical solvers
such as Runge-Kutta, which can lead to substantial computational costs during
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training and error accumulation over extended time horizons. Extensions of
this framework include approaches for delayed [28,22] and fractional systems [8].
Neural Delayed DEs [28] and Neural Fractional DEs [5,29] explicitly embed
delay or learn the amount of memory [6] but, like their predecessors, rely on
solver-based training loops and do not explicitly separate forcing inputs.

Laplace-Based, Solver-Free Methods. Neural Laplace [14] revolutionizes
the approach to learning DEs by operating in the Laplace domain, eliminat-
ing the need for stepwise integration during both training and prediction. This
method employs a numerical inverse Laplace transform algorithm to generate
time-domain predictions, enabling the capture of complex memory-like effects
such as fractional-order behaviour and delay times. While Neural Laplace claims
to handle forced differential equations, its implementation is limited to forcing
functions that remain constant between training and testing phases, rather than
accommodating arbitrary inputs. Neural Laplace Control [13] extends the frame-
work for reinforcement learning scenarios. However, it only considers past actions
during prediction, not accounting for future actions, restricting its applicability.
Fourier NODE [18] offers an alternative approach, approximating state deriva-
tives in the frequency domain to avoid using ODE solvers during training. This
method explicitly incorporates control inputs for trajectory prediction, enhancing
its versatility in handling forced systems. However, Fourier NODE still requires
a numerical solver during inference. This requirement limits its applicability for
resource-constrained scenarios (e.g. edge devices).

Operator Learning for Forced Systems. Modern approaches, such as Deep-
ONets [20] and Laplace Neural Operators [3], enable solver-free evaluations by
learning mappings from input (forcing) functions directly to solution functions.
While initially developed for Partial Differential Equations (PDE), some works
have successfully extended their application to ODEs [20,3]. DeepONets, for
instance, employ a unique architecture consisting of two key components: a
branch network that encodes inputs functions, such as initial conditions and
forcing profiles, into a high-dimensional vector; a trunk network that processes
evaluation points of the solution. This structure allows DeepONets to effectively
capture complex solution behaviours across a wide range of input conditions.
However, the method’s unified approach to encoding both system dynamics and
external influences can limit the interpretability and modular reuse of the learned
representations. In contrast, Laplace Neural Operators introduce a degree of mod-
ularization by separating internal system dynamics from external inputs within
the Laplace domain. By restricting themselves to a pole–residue representation
(Eq. (5) in [3]), these operators enable the inverse Laplace transform to be carried
out symbolically, simplifying implementation. However, such a representation
struggles to capture delayed or fractional dynamics (Eq. (15) in [15], Theorem 5.4
in [19], and Example 1.25 in [26]), as their Laplace transforms do not generally
reduce to simple pole–residue forms. Methods like Neural Laplace [14] address
this limitation by numerically computing the inverse Laplace transform, thereby
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allowing for a wider range of dynamical phenomena beyond the pole–residue
framework.

Bridging Gaps via Decoupling and Generalized Forcing. As highlighted
in Table 1, a recurring shortfall in existing methods is the lack of an explicit fac-
torization of the system’s internal transfer characteristics, initial conditions, and
arbitrary forcing signals — especially in a solver-free framework. Some methods,
such as Neural IM [12] and ODE-RNN [25], partially decouple interventions or
control inputs, but they often rely on iterative updates over time or fail to handle
continuous forcing seamlessly. Similarly, Neural Laplace Control [13] extends Holt
et al. [14] by incorporating past actions into a latent state representation, yet it
assumes a homogeneous response for predictions and does not account for future
forcing inputs, limiting its applicability in scenarios requiring forward-looking
control.

3 Preliminaries

We consider a dynamical system S with input x(t) ∈ RDx and response y(t) ∈
RDy . Let t = (t1, . . . , tN+M ) ⊂ [0, T ] be discrete times (t1 < · · · < tN+M ),
where the first N indices partition the historical segment thist and the final
(N+1, . . . , N+M) indices partition the forecast segment tfore. We collect samples
into X ∈ R(N+M)×Dx and Y ∈ R(N+M)×Dy with the partitions Xhist ∈ RN×Dx ,
Xfore ∈ RM×p, Yhist ∈ RN×q, and Yfore ∈ RM×q defined analogously. Our
objective is to predict Yfore given Xhist,Yhist, and Xfore. Formally, we learn

f :
(
Xhist, Yhist, Xfore

)
7→ Yfore. (1)

Although the above forecasting objective is stated in the time domain, a
powerful way to analyse and solve differential equations is via the Laplace
transform. We therefore briefly recall the key properties of this transform and its
inverse as they form the foundation of our solution.

The Laplace transform maps time-domain signals into the complex s-domain,
where derivatives become algebraic factors. For a function y(t), the Laplace
transform is:

Y(s) = L{y(t)} =

∫ ∞

0

e−st y(t) dt, s ∈ C. (2)

The complex variable s is typically written as s = σ+iω, where σ ∈ R corresponds
to exponential growth/decay and ω ∈ R to oscillatory behaviour. Applied to the
n-th derivative, the Laplace transform yields:

L
{dny(t)

dtn

}
= sn Y(s) −

n−1∑
k=0

sn−1−k dky(0)

dtk
. (3)
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A pure time delay τ ∈ R>0 appears as e−τs in the Laplace domain, and fractional
derivatives can be treated similarly to Eq. (3)[26,19,15].

Solving an ODE in the Laplace domain calls for the inverse Laplace transform
(ILT),

y(t) = L−1{Y(s)} =
1

2πi

∫ σ+i∞

σ−i∞
Y(s) est ds, (4)

which is rarely solvable in closed form.
Since direct evaluation of Eq. (4) is rarely feasible, numerical methods are

required. Among them, the Fourier series-based ILT [10] was identified as the
most robust for boundary element simulations [17] and proposed for machine
learning due to its efficiency and stability [14]. As the name already implies, it
employs Fourier transforms at several points in time. It reconstructs smooth,
real-valued signals by sampling Y(s) at a sequence of query points (cf. Eq. (6))
along a vertical line (parallel to the imaginary axis) in the complex plane. The
real component of this line is shifted by a time-dependent offset σ. For each time
point, this vertical contour is repositioned accordingly. The numerical ILT is
given by:

y(t) ≈ 1

ζt
eσt

[
Y(s0)

2
+

NILT∑
k=1

Re
{
Y(sk) e

i kπt
ζt

}]
, t > 0. (5)

Here, ζ ∈ R>0 controls the frequency resolution, NILT is the number of frequency
terms along the imaginary axis. Together ζ and NILT determine the bandwidth
as well as the maximum frequency to be transformed. Please note, that compared
to the original literature [10,17] we follow [14] and directly use ζt as a scaling
factor.

The query points s0, sk define a discrete grid of evaluation points for Y(s):

sk(t) = σ + i
kπ

ζt
, k ∈ N0, k ≤ NILT, with σ = α− log(ϵ)

ζt
. (6)

Here, α ∈ R>0 is chosen so that the contour lies to the right of all singularities of
Y(s), ensuring convergence (typically α = 10e−3). ϵ ∈ R>0 is used for numerical
precision in the computation of σ and typically chosen ϵ = 10α. Intuitively,
increasing NILT increases the density of query points along the imaginary axis,
allowing finer resolution of frequency components. The time variable t shifts the
contour along the real axis, while ζ scales the overall size of the grid in both
directions.

4 Solution

To model Eq. (1), we propose Laplace-Net, a Laplace-based neural network (NN)
that removes the solver, decouples initial conditions from inputs, and encapsulates
system dynamics. We first decompose the system response in line with classical
control theory [23] and then integrate NNs into this framework.



8 B. Zimmering et al.

4.1 Decomposition of System Responses

To illustrate the decomposition of Y(s) into decoupled components, we consider
a differential equation of the form:

n∑
i=0

Ai
diy(t)

dti
= Bx(t), (7)

where Ai ∈ RDy×Dy and B ∈ RDy×Dx are constant matrices.
Applying the Laplace transform L{·} to both sides and using Eq. (3) yields:

n∑
i=0

Ai

(
si Y(s) −

i−1∑
k=0

si−1−k dky(0)

dtk

)
= BX (s). (8)

Rearranging terms and isolating Y(s), assuming the invertibility of
(∑n

i=0 Ais
i
)−1

,
results in:

Y(s) =
( n∑
i=0

Ais
i
)−1

(
BX (s) +

n∑
i=0

Ai

i−1∑
k=0

si−1−k d
ky(0)

dtk

)
. (9)

o simplify the structure of the solution, we introduce the notation H(s) ∈ CDy×Dy

and P(s) ∈ CDy as follows:

H(s) :=
( n∑
i=0

Ais
i
)−1

, H(s) ∈ CDy×Dy , (10)

P(s) :=

n∑
i=0

Ai

i−1∑
k=0

si−1−k d
ky(0)

dtk
, P(s) ∈ CDy . (11)

Using Eqs. (10) and (11) we can simplify Eq. (9) to:

Y(s) = H(s)
(
BX (s) +P(s)

)
, (12)

which represents the decomposition of Eq. 7 into separate components: the system
dynamics given by H(s), the influence of initial conditions captured in P(s), and
the external excitations BX (s).

4.2 Neural Network-based Approximation

To generalize the decomposition in Eq. (12), we introduce Laplace-Net. Figure 2
provides an overview, and Algorithm 1 details the computational steps. First,
historical input-output sequences are encoded into (P, z), where P captures
initial conditions. Using P and queries s, P(s) is formed in the Laplace domain.
Second, the external input Xfore undergoes a numerical Laplace transform and
is mapped into the output space via B. Third, a NN approximates the transfer
function H(s), which, together with the other components, is combined using
complex-valued operations to compute Y(s) in the Laplace domain. Finally,
an inverse Laplace transform reconstructs the time-domain output Yfore. To
handle long sequences and non-linearities, this process runs recurrently with an
adjustable stride δ, resulting in Q steps.
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Fourier 
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History

Fig. 2. Overview of the Laplace-Net architecture. Blue elements represent learnable
matrices or NNs, including an encoder for historical data and a trainable transfer
function. Purple elements denote complex-valued components.

External Input X(s): The Laplace transform of the external input can be com-
puted numerically using either a discrete summation or a Fourier-based approach.
The Discrete Laplace Transform (DLT) follows directly from the definition in
Equation (2):

X (s) =

N−1∑
k=0

x(tk) e
−stk ∆t, (13)

where ∆t = tk+1 − tk is the time increment.
If x(t) is assumed periodic, it can be represented as a Fourier series [3]:

x(t) =

K∑
k=−K

ake
iωkt, 0 ≤ t < T, (14)

where ak and ωk are the Fourier coefficients and frequencies, respectively. Using
the Fast Fourier Transform (FFT), these coefficients can be efficiently computed.
Applying the Laplace transform yields:

X (s) =

K∑
k=−K

ak
s− iωk

. (15)

This approach, referred to as the Fast Fourier Laplace Transform (FFLT), exploits
the relationship between Fourier and Laplace transforms.

History Encoding and Initial State P(s) We represent the initial condition term
P(s) via a combination of an encoder network and an analytic structure, rather
than explicitly computing its Laplace transform. Specifically, we introduce a
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Algorithm 1 The Laplace-Net algorithm.
Require: (thist,Xhist,Yhist), (tfore,Xfore), δ, NILT; Ensure: Ypred

1: function Laplace-Net(thist,Xhist,Yhist, t
(z)
fore,X

(z)
fore, NILT)

2: (P, z)← fenc(thist,Xhist,Yhist)

3: Compute Queries s from t
(z)
fore by Eq. (6)

4: P(s)← fP(s)(P, s) ▷ Eq. (18)
5: Compute grid g from tfore,NILT by Eq. (19)
6: H(s)← fH(s)(g, z) ▷ Eq.(20)
7: H(s)← H(s)

fscale(tfore)·κH(s)
▷ optional step (Eq. (22))

8: X (s)← L(t(z)fore,X
(z)
fore, s) ▷ by either Eq. (13) or Eq. (15)

9: Y(s)←H(s)(BX (s) +P(s)) ▷ Eq. (12)
10: return Numerical ILT fL−1(Y(s), tfore) ▷ by Eq. (5)
11: end function
12: Ypred ← ∅, Q←

⌈
M

δ

⌉
13: for q = 0 to Q− 1 do
14: (t

(z)
fore,X

(z)
fore)← Extract window

15: Y
(z)
pred ← Laplace-Net(thist,Xhist,Yhist, t

(z)
fore,X

(z)
fore, NILT)

16: (thist,Xhist,Yhist)← Update history
17: Ypred ← Ypred ∪Y

(z)
pred

18: end for
19: return Ypred

history-dependent parameter P ∈ RDy×P and a latent variable z, both inferred
by a history encoder:

fenc : R1 × RThist×dx × RThist×dy → RDz×P × RDz , (16)

such that:
P, z = fenc

(
thist,Xhist, Yhist

)
. (17)

Here, P collects information needed to construct the polynomial representation of
the initial state, and z is a latent state capturing additional system characteristics
from historical data.

Comparing P(s) to the analytic form in (11), we note that P(s) is a poly-
nomial in s whose coefficients depend on system matrices Ai and initial states
dky(0)
dtk

. Thus, the initial state term can be rewritten as:

P (s) = fP(s)

(
s,P

)
=

P−1∑
i=0

pi s
i with P =

(
p0,p1, . . . ,pP−1

)
. (18)

Here, P ∈ N>0 is a hyper parameter that reflects the order n of Eq. (8), which
usually only can be guessed for real-world datasets. This formulation preserves
the analytic dependence on initial conditions while offering a flexible, data-driven
adaptation. By encoding P and z jointly, the model can capture system properties
without direct knowledge of Ai or y(0) and its derivates.
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Transfer Function H(s) Next, we learn the overall transfer function H(s) via
a NN fH(s), which takes as input a 2D-grid g ∈ RNILT×T . Here, NILT is the
number of ILT terms (see Eq. (5)), and T is the forecast horizon. Although
the ILT method naturally produces the (complex) query points sk(t) (Eq. (6)),
these can grow unbounded for small t, leading to extreme input values for the
NN. This results in large weight updates, potentially causing gradient instability
and slowing down convergence. To address this, we map the ILT queries onto a
normalized grid g = [gm,n], ensuring numerical stability while preserving spectral
and temporal structure. The ILT axis remains uniform, while irregularly sampled
time points tn are scaled to [−1, 1] using:

gm,n = 2
tn − tmin

tmax − tmin
− 1. (19)

This ensures that tmin maps to −1 and tmax to 1, preserving relative spacing.
The transfer function is then modelled by:

H(s) = fH(s)(g, z), (20)

where z is precisely the latent state inferred by the history encoder (17). Con-
ditioning on z allows H(s) to adapt to varying system behaviours and capture
locally linear approximations of potentially non-linear processes.

Inverse Laplace Transform and Time-Independent Scaling In Eq. (5), the contour
parameter is often set as λ = ζt, making Y(s) explicitly time-dependent. To
remove this dependency, we define the scaling factor4:

fscale(t) = ζt e−σt = ζt ϵ
1
ζ e−αt. (21)

When scaling is used, we get H̃(s) by Eq. (20) which is transformed into the
time dependent transfer function along the t axis by:

H(s) =
H̃(s)

fscale(t) · κH(s)
. (22)

Here, the scaling parameter κH(s) stabilises training by preventing the am-
plification of small variations in H̃(s) due to division by fscale(t), ensuring a
well-conditioned and robust representation.

5 Evaluation

We evaluate our method by benchmarking it against a sequence-to-sequence
LSTM (seq2seq LSTM) and the LNO of [3] on eight univariate dynamical system
datasets that differ in complexity and characteristic behaviour. By restricting
ourselves to the univariate case, we concentrate on the core dynamics without
the complexity of multiple input channels. In this formulation, the input-to-state
B is simply a scalar, set to 1.
4 A full derivation is provided in Appendix A of the supplementary material.
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Experimental Setup. All datasets consist of uniformly sampled time series with
50 historical data points and a forecast horizon of 500 steps. We employ a
train-validation-test split: the training set is used to learn model parameters, the
validation set for hyperparameter tuning, and the test set for final performance.

For the Spring-Mass-Damper System (SMD) and Mackey-Glass data, we
generate our own univariate time series by applying three distinct periodic signals
for training (sigmoid), validation (decaying sine), and testing (triangular). In
contrast, for the Duffing, Lorenz, and driven pendulum datasets, we adopt the
data of [3] directly, which rely on decaying sinusoidal input signals x(t) whose
decay coefficient varies across samples. To reduce experimental bias, we determine
the learning rate and other model-specific hyperparameters5 via the Tree-Parzen
Estimator (TPE) [24] in optuna, using 100 TPE trials per dataset for each
method. We then use the best hyper-parameters and train each method six times
with different random seeds to assess robustness. All datasets are processed in a
single pass (batch size 512) per epoch. Our experiments run on a high-performance
cluster with eight GPUs (Nvidia A40 and A100). In total we run 2544 trainings
to for our setup.

Test Systems and Results. Table 2 presents the mean and standard deviation
of the MSE on the test set over six repeated runs. Below, we provide a brief
overview of each system and comment on the observed results. We start with a

Table 2. Mean ± (standard deviation over six seeds) for MSE on test set. Bold values
indicate the best result per data set.

Dataset/Model LNO LSTM LP-Net

SMD 1.88e-01 (1.48e-01) 3.56e-04 (4.53e-05) 8.75e-04 (2.46e-04)
Duffing c = 0 7.42e-02 (3.93e-02) 1.21e-01 (2.21e-02) 1.98e-02 (6.52e-03)
Duffing c = 0.5 1.06e-03 (1.04e-04) 1.33e-03 (8.73e-04) 5.31e-05 (1.23e-05)
Lorenz ρ = 5 4.05e-02 (1.18e-02) 1.21e-04 (2.77e-05) 5.19e-04 (1.09e-04)
Lorenz ρ = 10 5.36e+00 (5.97e-01) 2.10e+00 (3.79e-01) 1.31e+00 (3.27e-01)
Pendulum c = 0 5.81e-01 (9.83e-02) 6.89e-01 (6.43e-02) 6.61e-03 (1.67e-03)
Pendulum c = 0.5 1.08e-03 (7.37e-04) 6.92e-04 (1.52e-04) 5.10e-05 (2.00e-05)
Mackey-Glass 5.90e-01 (2.08e-01) 3.50e-01 (6.99e-02) 8.83e-03 (3.27e-03)

simple linear Spring-Mass-Damper (SMD) system, also used in [30] as an
application example:

mÿ(t) + c ẏ(t) + k y(t) = x(t), m, c, k ∈ R+, (23)

where m is the mass, c the damping, and k the spring constant. It has an initial
displacement y(0) = y0 as well as initial velocity ẏ(0) = v0. As the table shows,

5 Details on the best hyperparameters found by the TPE can be found in Appendix B
of the supplementary material.
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the seq2seq LSTM achieves the lowest error, yet Laplace-Net still surpasses LNO
and provides a stable fit. This indicates that, although SMD is comparatively
simpler to model, Laplace-Net remains competitive.

The Duffing oscillator:

mÿ(t) + c ẏ(t) + k1 y(t) + k3 y
3(t) = x(t), m, c, k1, k3 ∈ R+, (24)

introduces a cubic spring (constant k3). Following [3], we use damped (c = 0.5),
which provides transient bahavior as the oscillations decline and undamped
(c = 0) where oscillatory behaviour dominated. Notably, Laplace-Net achieves
the best results for both scenarios, capturing non-linear oscillatory behaviour
accurately in the damped case.
The Lorenz system:

ṡx = σ(y−sx), ẏ = sx(ρ−sz)−y, ṡz = sxy−βsz−x(t), σ, ρ, β ∈ R+, (25)

is a three-dimensional chaotic model where sx, sz are internal states, ρ = 5 or
ρ = 10 sets the degree of chaos. For ρ = 5, the table indicates that the LSTM
gives the best result. However, at ρ = 10, Laplace-Net emerges on top, evidencing
superior adaptability under stronger chaotic dynamics.
Another non-linear system is the Driven pendulum:

ẍ(t) + c ẋ(t) +
g

l
sin
(
x(t)

)
= xext(t), c, g, l ∈ R+, (26)

where g is the gravity and l is the rod length. Again a damped (c = 0.5) and
undamped (c = 0) similar to the Duffing system, a higher damping leads to more
transient, decaying behaviour. Here, Laplace-Net clearly outperforms LSTM
and LNO in both scenarios, underscoring its strength in modelling non-linear
oscillatory phenomena.
The Mackey-Glass system:

ẏ(t) = β
y(t− τ)

1 + [y(t− τ)]n
− γy(t) + x(t), β, γ, τ, n ∈ R+, (27)

brings explicit time delays τ , which often pose challenges for standard recurrent
architectures. Here, β controls the strength of the delayed feedback, while γ
represents the dissipation rate. Laplace-Net attains a particularly low error,
whereas for the LSTM and LNO we observe that they are not able to capture the
behaviour. Because all models share the same training and tuning procedures,
this improvement suggests Laplace-Net retains more effective long-range memory,
thus handling delayed feedback more robustly.

Taken together, these findings verify that Laplace-Net is accurate and robust
across diverse types of dynamical systems. In most cases, it surpasses both seq2seq
LSTM and LNO, particularly for non-linear, chaotic, or delay-based dynamics.
This ability to handle forced, damping-induced, and chaotic regimes demonstrates
the method’s versatility for extended forecasting horizons. Table 2 shows that
our method, is able to outperform LNO as well as the LSTM for most of the
datasets, except for the Lorenz System with ρ = 5.
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6 Discussion and Limitations

While Laplace-Net offers a flexible, solver-free approach to modelling forced dy-
namical systems, it has theoretical and practical limitations. A fundamental con-
straint arises from the Laplace transform: functions growing super-exponentially,
i.e., those for which there exist no constants C, σ > 0 such that |f(t)| ≤ Ceσt, are
not transformable [26]. This limitation is particularly relevant for transforming
input signals X (s) = L{x(t)}. This restriction is mainly of theoretical interest,
as, to the best of our knowledge, the current literature does not report typical
cases where this limitation is violated. Furthermore, the Laplace transform is
widely used and considered broadly applicable in engineering practice, implicitly
assuming that real-world signals do not violate these constraints [23].

Although classical error bounds exist for certain numerical ILT algorithms
[10,17], deriving comparable stability or approximation guarantees for Laplace-
Net mapping remains an open challenge. Our empirical results indicate robust
performance, but a theoretical analysis of the error and stability properties is
an important direction for future work. Another challenge lies in the numerical
approximation of X (s) and Y(s). For signals containing high frequencies (e.g.
abrupt jumps), a large number of ILT terms (NILT) is required for accurate
reconstruction. While the computation of the proposed Laplace transforms, such
as the Discrete Laplace Transform (DLT) in Eq. (13) and the Fast Fourier
Laplace Transform (FFLT) in Eq. (15), can be computationally intensive, it can
be performed once prior training.

Memory consumption also presents a constraint, as the computational cost
grows linearly with both the number of ILT terms NILT and the number of
prediction time points. Particularly for signals with sharp discontinuities, achiev-
ing sufficient accuracy requires large NILT values, which significantly increases
memory requirements. Despite these challenges, the design of Laplace-Net is
highly parallelisable, with the exception of time-stepping. However, this overhead
is negligible compared to the numerous iterations required by ODE solvers.

One major advantage of Laplace-Net is that the Laplace representation of
the input X (s) is handled independently, allowing for pre-validation or even
manual refinement before joint training. This makes debugging and refining the
forcing component significantly easier. Moreover, if certain components of the
system transfer function H(s) are already known, for instance, from physical
principles, they can be directly embedded into the model while learning only the
remaining unknown terms. This hybrid approach reduces the learning burden
and allows for more effective integration of prior knowledge. Recent work has
demonstrated that incorporating such explicit prior knowledge into neural ODE
models for electrical circuits can substantially improve performance, consistently
outperforming black-box LSTM and standard NODE architectures, particularly
in data-limited scenarios [31].

The decoupled structure also enables selective training strategies. When
working with controlled experiments where the system is initialized at zero, the
initial state term P(s) can be explicitly set to zero, removing unnecessary degrees
of freedom and simplifying optimization. In real-world settings where the initial
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conditions vary, the full model can then be fine-tuned, leveraging pre-trained
components for efficient adaptation.

Furthermore the decoupled structure of Laplace-Net improves interpretability:
In many fields, the structure of the dynamical system, learned with H(s) is
of interest (e.g. when designing the controller C). Learning it as a dedicated
component enables domain experts to interpret what was learned.

7 Conclusion and Future Work

In this work, we introduced a decoupled, solver-free neural network (NN) frame-
work for learning forced and delay-aware dynamical systems: the Laplace-based
Network (Laplace-Net). Laplace-Net explicitly separates internal system dynam-
ics from external control inputs and initial conditions, addressing key limitations
of existing approaches. Unlike many prior approaches such as Laplace Neural
Operator (LNO), can learn systems with hard delays or non-local memory, in-
cluding those appearing in Fractional Differential Equations (FDE). Laplace-Net
enhances transferability by enabling fast retraining or fine-tuning for new forcing
signals, which is particularly advantageous in data-limited scenarios. Furthermore,
it improves interpretability, as its learned components align with classical theo-
retical concepts familiar to experts (e.g., transfer functions). Finally, Laplace-Net
is highly parallelisable and scales linearly with both the number of frequency
terms and prediction time steps.

Laplace-Net demonstrates clear advantages across a wide range of dynamical
systems. Evaluated on eight datasets covering linear, non-linear, chaotic, and
delayed dynamics, it consistently outperforms the LNO in all cases. Compared
to an Long Short-Term Memory (LSTM) model, Laplace-Net achieves superior
accuracy on nearly all datasets, with the exception of a linear ODE case and one
out of seven non-linear scenarios, as shown in Table 2. These results highlight
the effectiveness of Laplace-Net in capturing complex system behaviour across
various dynamical systems.

While Laplace-Net shows robust performance on synthetic and univariate
datasets, this evidence needs to be enhanced for usage in real-world applications.
In particular, the evaluation on real-world datasets as well as on multivariate
time series is useful. Also, comparisons to more state-of-the-art algorithms such
as Fourier NODE or Neural CDEs remain future work. Furthermore, run-time
improvements compared to solver-based algorithms as well as resource require-
ments need to be quantified on a broader basis. Beyond this, investigating the use
of more specialised NN architectures for the components of Laplace-Net beyond
fully connected networks may enhance performance or increase interpretability.
Also, extending to handle two- and three-dimensional use cases, similar to LNO,
would increase the applicability of Laplace-Net.
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