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Abstract. Co-clustering is a powerful data mining tool that extracts
summary information from a data matrix, by simultaneously comput-
ing row and column clusters that provide a compact representation of
the data. However, if the matrix contains data about individuals, the
co-clustering results may be influenced by the societal biases that are
reproduced in the data. Consequently, subsequent tasks such as recom-
mendation systems may also be influenced by these biases, thereby com-
promising the fairness and integrity of the overall knowledge discovery
or machine learning process. Despite the extensive research on fairness
considerations in clustering, this issue has not been addressed in the
context of co-clustering algorithms. In addressing this critical gap in
the literature, this paper proposes a novel fair co-clustering algorithm.
The proposed algorithm is based on an associative measure derived from
the Goodman-Kruskal’s tau, which has demonstrated good convergence
properties. This ensures optimal clustering and fairness performance by
implementing an in-process rebalancing mechanism inspired by the fair
assignment problem. An extensive experimental validation is provided
to demonstrate the efficacy of our approach, also in comparison to a
state-of-the-art method that uses co-clustering for fair recommendation.

Keywords: Clustering · Fairness · High-dimensional data.

1 Introduction

Clustering results, as well as those of any other machine learning tasks, can be af-
fected by the presence of any sort of bias in the data. When the data are related to
human beings, and clustering is used to drive some critical decision process, such
bias could lead to unfair or discriminatory outcomes towards minority groups
or protected categories, a situation known as disparate impact. To address this
issue, fair clustering has recently emerged as a solution aimed at mitigating the
effects of existing biases in the data [13]. Some examples of fair methods for
clustering include the balanced representation [14,7,8], the proportionally fair
clustering [11] and the equitable distance fairness [10]. These algorithms has
shown their effectiveness in identifying a trade-off between fairness and cluster
quality in standard scenarios with relatively low-dimensional data samples. How-
ever, when dealing with high-dimensional data, most distance-based clustering
techniques struggle to identify actual patterns in the data, due to the effects of
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the well-known phenomenon of the curse of dimensionality. To cope with this is-
sue, several classes of solutions have been proposed, including resorting to more
robust definitions of distances, using some dimensionality reduction approach
such as PCA or non-negative matrix factorization, learning a lower-dimensional
representation or adopting clustering methods specifically tailored for large data
matrices. Among the latter, co-clustering (the simultaneous partitioning of rows
and columns of a data matrix) has shown its effectiveness in many challenging
scenarios, with different forms of data distributions and matrix sparsity [6]. Co-
clustering has another advantage: the partition on columns provides explanatory
patterns for the row clustering, and vice-versa, thus making co-clustering an in-
trinsic interpretable unsupervised task. Unfortunately, co-clustering is even more
seriously concerned by fairness issues than clustering. In fact, biases could affect
either the row or the column partitioning, or even both. Consider, for instance,
a user × movie matrix recording the ratings given by each user to some movie.
Co-clustering can be used to group together similar users (exhibiting similar
preferences) and similar movies (liked by similar users). If the outcome of the
co-clustering are used to perform movie recommendation to users, suggestions
might reflect societal biases present in the data and, consequently, be deeply
unfair. Worse than that, such suggestions may contribute to the reinforcement
of prejudices on demographic categories of people, thus making data even more
biased. Although fair recommendation has been extensively addressed [30], it is
worth noting that co-clustering is a more general technique that can be used
in different data analysis pipelines or knowledge discovery processes, such as
text mining [12], transfer learning [29], object detection, image segmentation
and scene categorization [26]. Despite its wide employment, to our knowledge,
the problem of bias mitigation in co-clustering has never been studied as such.
The only most similar approach uses co-clustering within a fair recommendation
framework [19]. However, while the whole process ensures unbiased recommen-
dations, the preliminary co-clustering process is not entirely fair.

To fill this gap in the fair clustering literature, we propose a fair co-clustering
algorithm based on an associative measure known as the de-normalized Goodman-
Kruskal’s τ , that has good convergence properties and does not require the final
number of co-clusters to be defined a priori. These features can be exploited
to adapt the co-clustering results to meet both partitioning quality and fairness
requirements, without being too much constrained by a ill-defined number of
clusters, and enable us to design an in-process rebalancing mechanism inspired
by the fair assignment problem. We show experimentally that our approach is
effective in identifying fair co-clusters that mitigate the disparate impact and,
at the same time, still preserve a good quality. We also derive some interest-
ing insights on the tradeoff between fairness and clustering performance: by
slightly relaxing the balance constraint, our approach enables the achievement
of reasonable partitioning results. Additionally, we compare our algorithm with a
competitor that performs latent block model for fair recommendation and uses a
fairer optimization that could be used, in theory, to obtain unbiased co-clusters.
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However, we show that this is not sufficient to pursue our goal, thus making our
approach the first truly fair co-clustering method.

2 Related work

Co-clustering is a data mining technique that simultaneously clusters rows and
columns in a data matrix, particularly well-suited for high-dimensional datasets.
Unlike traditional clustering, co-clustering optimizes a joint objective across both
dimensions, revealing and exploiting latent structures. For a more comprehensive
overview of co-clustering, we refer the reader to [6]. Despite the many existing
extensions of such technique, fairness in co-clustering has not been directly ex-
plored in the extant literature. The closest related work, to the best of our knowl-
edge, is a Gaussian latent block model (a class of methods largely used in the
co-clustering literature) with an ordinal regression for providing fair recommen-
dations independent of protected groups, thereby ensuring statistical parity [19].

Many studies, instead, have sought to incorporate fairness considerations
into clustering methodologies, with a predominant focus on group fairness in
center-based clustering. Chierichetti et al. [14] pioneered the notion of fairness in
clustering by introducing fairlets, minimal sets with a balanced representation of
different demographic groups that serve as building blocks for larger fair clusters.
Subsequent research by Bera et al. [7] has expanded this concept to encompass
multiple, non-binary protected attributes, offering approximation algorithms for
center-based objectives. Despite the efficacy of these methods, scalability chal-
lenges emerged, prompting the development of optimizations such as near-linear
time fairlet decomposition [4]. Other works extended fairness to hierarchical [1],
spectral [27] and correlation clustering [3]. Alternative notions of fairness in-
clude proportionally fair clustering [11], in which every sufficiently large group
of points is entitled to its own cluster center. Gupta et al. [22] have proposed the
concept of τ -ratio fairness, which aims to achieve a balance between proportional-
ity and efficiency through round-robin algorithms. Several studies have explored
alternative fairness constraints and optimization strategies. Some of those [2,7]
investigate methods to avoid under- and over-representing any specific group in
a cluster. Others [8,16], analyze the cost of essentially fair clustering, providing
theoretical bounds on the price of fairness.

The concept of group fairness emphasizes demographic parity across clusters,
whereas individual fairness ensures equitable treatment of each individual with
respect to the treatment of other’s or their own specific needs [15]. Chakrabarti
et al. [10] proposed α-equitable k-center clustering, ensuring that individuals
receive a comparable level of service quality, while Brubach et al. [9] defined
pairwise fairness and community preservation, capturing the scenario in which
individuals benefit from being clustered together. Other approaches include [28],
which learns fair and clustering-favorable representations for clustering simulta-
neously, in the context of visual learning. Finally, Ghodsi et al. [20] introduced a
symmetric non-negative matrix tri-factorization model with contrastive fairness
regularization that achieves balanced and cohesive clusters.
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3 Background and motivation

This section delves into fundamental concepts related to fairness and co-clustering,
essential for understanding the functionality of our proposed fair co-clustering
algorithm. Additionally, we present an example that highlights the necessity of
computing co-clustering outcomes in a fair manner.

3.1 Fair clustering

Fair clustering is a rapidly evolving field within algorithmic fairness in unsu-
pervised learning, aiming to prevent clustering algorithms from favoring spe-
cific demographics. A prominent fairness notion in clustering is balance, initially
introduced by Chierichetti et al. for two protected groups (e.g., Male and Fe-
male) [14]. Balance ensures that each cluster has an approximately equal number
of points from both groups, enforcing the notion of disparate impact. Bera et al.
generalize the balance to accommodate multiple protected groups by ensuring
that the ratio of points from each group in every cluster matches the overall
dataset ratio [7]. They define balance as follows:

Definition 1 (Balance). The balance of a clustering C is defined as:

balance(C) = min
Cj∈C,g∈G

min

(
rg

rg(Cj)
,
rg(Cj)

rg

)
(1)

where G is the set of protected groups, rg is the ratio of the group g ∈ G in the
dataset X, rg(Cj) is the ratio of the group g ∈ G in cluster Cj, i.e.,

rg =
|Xg|
|X|

; rg(Cj) =
|Xg(Cj)|
|X(Cj)|

In this paper, we use the definition given by Gupta et al. [22]. They intro-
duce the notion of τ -ratio fairness, which ensures that each cluster contains a
predefined fraction of points for each protected attribute value. This approach
necessitates a priori knowledge of the dataset demographic composition and
accommodates multi-valued protected attributes. Notably, τ -ratio fairness rep-
resents a strict generalization of the balance property, enabling nuanced adjust-
ments between clustering efficiency and fairness objectives. Its interpretability
and direct evaluability from clustering outputs distinguish it from traditional
balance fairness, as it prioritizes the maintenance of specific proportional ratios
rather than pairwise attribute balancing.

Definition 2 (τ-ratio fairness). Let τ = (τg)
|G|
g=1 be a vector, where τg ∈ [0, 1

k ]
for all protected groups g ∈ G. A clustering solution satisfies τ -ratio fairness if,
for each cluster Cj and each protected group g, the number of points belonging
to the group g in Cj is at least τgng, where ng denotes the total number of points
belonging to group g in the dataset, i.e.,

|Xg(Cj)| ≥ τgng with τg ∈
[
0,

1

k

]
(2)
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We denote the number of clusters with k. Specifically, when τg = 1/k for all de-
mographic groups g and all clusters have similar size, the definition is equivalent
to Definition 1. To avoid any potential ambiguity, we will henceforth refer to τg
as γg.

This notion of fairness is well-suited to high-dimensional data because a so-
lution can be found using greedy round-robin algorithms, which can handle a
large number of clusters and data without having to explore too wide a space of
solutions with only an additional time complexity O(kn log(n)).

3.2 Fast Co-clustering

Fast-τCC [5] is a recent co-clustering algorithm that has good convergence prop-
erties and is also able to identify a congruent number of clusters on rows and
columns, starting from an initial overestimation. Given a data matrix A =
(aij) ∈ Rn×m

+ , a co-clustering of A is a pair (R, C), where R is a partition
of the rows and C a partition of the columns of the matrix. The objective func-
tion of Fast-τCC is derived from the Goodman and Kruskal’s τ [21], and can be
defined as follows:

τ̂R|C(R, C) =
|R|∑
k=1

|C|∑
l=1

t2kl
T · t·l

−
|R|∑
k=1

t2k·
T 2

(3)

where T = (tkl) is the contingency table associated to the co-clustering (R, C),
where R = (R1, . . . ,RK) and C = (C1, . . . , CL), i.e. tkl =

∑
i∈Rk

∑
j∈Cl

aij , for
k = 1, . . . ,K and l = 1, . . . , L. Following this notation, tk· =

∑L
l=1 tkl, t·l =∑K

k=1 tkl and T =
∑K

k=1

∑L
l=1 tkl. Analogously, the association of the column

clustering C to the row clustering R can be evaluated through the function
τ̂C|R(R, C). Since τ̂ is not symmetric, the best co-clustering solutions are those
that simultaneously maximize τ̂R|C and τ̂C|R. In [5] an iterative optimization
strategy is introduced. It alternates the computation of τ̂R|C by fixing the column
partition and the computation of τ̂C|R by keeping the row partition fixed.

3.3 Unfairness in co-clustering

Co-clustering can lead to unfair outcomes when applied without proper consid-
eration of sensitive group attributes. To show this behavior, a simplified example
is provided. The scenario under consideration is the one of movie ratings. Let’s A
be a data matrix whose rows represent users, columns represent movies, and the
entries represent ratings from 0 to 5. Users are identified by two protected groups
(u0, u1, u4 users from group g0 and u2, u3, u5 from group g1) and movies are cat-
egorized by genres (e.g., m0 movie is Action, m1 is Comedy, m2 is Dramatic, m3

is Horror, m4 is Romantic).
A co-clustering algorithm will likely find the following clustering of users and

movies: R = {{u0, u1}, {u3, u4}, {u2, u5}} and C = {{m0,m4}, {m1,m2}, {m3}}.
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A =

m0 m4 m1 m2 m3 group


5 4 0 0 0 u0 g0
4 0 0 0 0 u1 g0
0 0 5 4 0 u3 g1
0 0 0 5 0 u4 g0
0 0 2 0 5 u2 g1
0 5 0 0 4 u5 g1

(a) Unfair co-clustering

A =

m0 m3 m1 m2 m4 group


5 0 0 0 4 u0 g0
0 4 0 0 5 u5 g1
4 0 0 0 0 u1 g0
0 5 2 0 0 u2 g1
0 0 5 4 0 u3 g1
0 0 0 5 0 u4 g0

(b) Perfectly balanced co-clustering

Fig. 1: A toy example with an unfair optimal solution (left) and its fair solution
(right) with respect to row clustering.

(see Fig. 1a). This solution, while reflecting the rating patterns in the data, re-
inforces existing societal biases by grouping users based on demographic charac-
teristics. In fact, the user clustering exhibits a segmentation into three distinct
clusters, one of these consisting of all users from protected group g0, another
one encompassing all users in demographic group g1. If this unfair solution is
used in a recommender system, it can lead to unfair and limited recommen-
dations, as users from g0 will be primarily recommended action and romantic
movies, while users from g1 will receive horror movie suggestions. This reduces
the likelihood that individuals will discover movies outside their stereotypical
preferences, potentially missing out on content they would enjoy.

In order to identify a fair clustering of users, where each cluster is equally
represented by each of the protected groups, according to Definition 1, it is
necessary to ensure that each cluster contains a proportion of data points for
each protected group equal to the proportion of data points for each group in
the entire dataset. A potential fair solution could be the row clustering R =
{{u0, u5}, {u1, u2}, {u3, u4}} shown in Fig. 1b. This is perfectly balanced, as the
proportion of both groups in each cluster is exactly equal to their dataset ratios,
thus resulting in balance that is equal to 1. In this case, ensuring a perfect
balance leads to a limited loss of information. In fact, the objective function on
rows τR|C only degrades from 0.62 to 0.55.

4 Fair Co-Clustering

In this section, we present Fair-τCC, a fair co-clustering method based on the
de-normalized Goodman-Kruskal’s τ (see Eq. 3). We first define the problem
of fairness in co-clustering, then describe the algorithm for computing the co-
clustering results in a fair manner.

Definition 3 (Fair Co-clustering). Given a data matrix A and protected
groups Grows = {g0, . . . , gw}, Gcols = {g0, . . . , gz} referring to the row and col-
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umn objects respectively, a co-clustering (R, C) is fair if both row and column
clustering R, C are fair.

Drawing inspiration from the definition of balance for clustering [14,7], we define
it for co-clustering tasks. Ideally, a co-clustering is balanced if, for each protected
group associated with the row (column) objects, the ratio of its points in every
row (column) clusters is the same as the ratio of its points over the whole dataset.

Definition 4 (Co-clustering Balance). Let Srows and Scols be sensitive fea-
tures associated with the row and column items, such that srows

i ∈ Grows and
scolsj ∈ Gcols, where Grows and Gcols are the protected groups the i-th row and
j-th column items belong to, respectively. The balance of a co-clustering (R, C)
is defined as:

balance ({R, C}) = min (balance(R), balance(C)) (4)

with

balance(R) = min
Ri∈R

min
w∈Grows

(
rw

rw(Ri)
,
rw(Ri)

rg

)
, (5)

balance(C) = min
Ci∈C

min
z∈Gcols

(
rz

rz(Cj)
,
rz(Cj)

rz

)
, (6)

where rw and rz are the ratios of the protected groups w, z in the dataset; rw(Ri)
and rz(Cj) are the ratios of the protected groups w, z in each row cluster Ri and
column cluster Cj.

The protected groups for both row and column objects are not always known.
Therefore, if only Grows (Gcols) is known, co-clustering is considered fair if the
row (column) clustering is fair (i.e., balance(R) ≈ 1). For simplicity, in this work
we ensure the fairness for only the protected groups of row objects.

4.1 Fair-τCC algorithm

We now introduce Fair-τCC, the fair adaptation of the current state-of-the-art
co-clustering method proposed by Battaglia et al. [5]. The primary objective of
this algorithm is to ensure balanced representation of each protected group in
every row cluster. Specifically, it guarantees a minimum fraction of points from
each protected group in every cluster, adhering to the concept of τ -ratio fairness
(refer to Eq. 2), hereinafter referred as γ to avoid any ambiguity. The pseudocode
for this algorithm is detailed in Algorithm 1, while the procedure for updating
the row clustering is illustrated in Algorithm 2.

First, we must introduce two matrices P = (pij) and Q = (qkl), with pij =
aij

A
and qkl =

tkl

A =
∑

i∈Rk

∑
j∈Cl

pij , where A denotes the sum of all the entries of
A (hence, A = T ). We also introduce the row cluster incidence matrix R = rik
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Algorithm 1 Fair τCC(A, s,G,K0, L0, tmax,α)

Input: A n×m data matrix A, a sensitive feature s = [s0, . . . , sn], protected groups
G = {g0, . . . , gw}, initial number of row and column clusters K0 and L0, max
number of iterations tmax, a vector α = [α0, . . . , αw] with αg ∈ [0, 1].

Result: R, C row and column clustering such that R satifies γ-ratio fairness (Eq. 2).
Initialize R(0) and C(0);
t← 1; changes← True;
compute P from A;
while changes and t < tmax do

R(t) ← FairUpdateRowClusters(P,C(t−1),R(t−1), s,G,α);
C(t) ← UpdateColumnClusters(P,R(t),C(t−1));
if R(t) = R(t−1) and C(t) = C(t−1) then

changes← False;
end
t← t+ 1;

end

and C = cjl, with rik = 1 if row i is in row cluster Rk (rik = 0 otherwise) and
cjl = 1 if column j is in column cluster Cl. According to this notation,

Q = R⊤PC (7)

Equation 3 can be then rewritten as:

τ̂R|C(R, C) =
K∑

k=1

L∑
l=1

(∑
i∈Rk

pil
p·l

)
qkl −

K∑
k=1

(∑
i∈Rk

pi·

)
qk·

where qk· =
∑

i∈Rk
pi· =

∑L
l=1

tkl

A =
∑L

l=1

∑
i∈Rk

∑
j∈Cl

aij

A , and q·l = p·l =∑
j∈Cl

p·j =
∑K

k=1
tkl

A =
∑K

k=1

∑
i∈Rk

∑
j∈Cl

aij

A , pi· =
∑m

j=1
aij

A , p·j =
∑n

i=1
aij

A ,
pil =

∑
j∈Cl

pij , and p·l =
∑

j∈Cl
p·j = q·l.

Let R(t) be the row cluster incidence matrix at iteration t, and Q(t) =
R(t)⊤PC its associated distribution. The objective function τ̂R|C(R(t), C) is

τ̂R|C(R(t), C) =
n∑

i=1

(
L∑

l=1

pil
p·l

q
(t)
kl − pi·q

(t)
k·

)
(8)

Each row q
(t)
k of Q(t) can be interpreted as a prototype of the k-th cluster of

R(t), and the following similarity function between any row pi of P and q
(t)
k is

defined:

σ
(
pi,q

(t)
k

)
=

L∑
l=1

pil
p·l

q
(t)
kl − pi·q

(t)
k· (9)

It measures the similarity between a “point” pi and a cluster prototype q
(t)
r . The

objective function becomes

τ̂R|C(R(t), C) =
n∑

i=1

σ
(
pi,q

(t)
k⋆

)
(10)
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Algorithm 2 FairUpdateRowClusters(P,C,R(0), s,G,α)

h[!ht] Input: A n × m matrix P, column clustering C, initial row clustering R(0),
sensitive feature s = [s0, . . . , sn], protected groups G = {g0, . . . , gw}, fairness
parameters α = [α0, . . . , αw] with αg ∈ [0, 1].

Result: row clustering R that satisfies γ-ratio fairness (Eq. 2)
t← 1; changes← True;
while changes do

Q(t−1) = R(t−1)⊤PC;
compute U(t−1) and V(t−1) as in Eq. 12;
Σ = PC(Q(t−1) ⊙U(t−1) −V(t−1))⊤;
for i = 1, . . . , n do

k⋆(i)← argmax
k

(σik);

end
compute R(t) using k⋆;
remove empty clusters and update R(t);
if R(t) violates γ-ratio fairness then

R(t) = FairRowAssignments(R(t), Σ, s, G, α);
end
if R(t) = R(t−1) then

changes← False;
end
t← t+ 1;

end

where k⋆ = argmax
k

(
σ
(
pi,q

(t)
k

))
is the cluster assignment maximizing function

σ.
Algorithm 2 uses two K ×L matrices U and V to compute all σ values in a

n×K matrix Σ = (σik), where σik = σ
(
pi,q

(t)
k

)
. More precisely:

Σ = PC(Q(t−1) ⊙U(t−1) −V(t−1))⊤ (11)

where ⊙ indicates the Hadamard matrix product, and

U(t) =


1∑
l q

(t)
1l

· · · 1∑
l q

(t)
Kl

...
. . .

...
1∑
l q

(t)
1l

· · · 1∑
l q

(t)
Kl

 , V(t) =


1∑
l q

(t)
1l

· · · 1∑
l q

(t)
1l

...
. . .

...
1∑
l q

(t)
Kl

· · · 1∑
l q

(t)
Kl

 (12)

Then, the algorithm also removes all empty clusters. Hence, from one iteration
to another, the number of clusters may decrease and R(0) and C(0) can be
initialized with random partitions using safely high values of K0 and L0.

Given this initial assignment, we evaluate whether the optimal solution R∗

satisfies the γ-ratio fairness property. If it does not, a fair assignment Rfair

is determined (see Algorithm 3). The trade-off between fairness and clustering
quality is managed through the utilization of the similarity matrix Σ. Let s =
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[s0, . . . , sn] denote the sensitive feature associated with the rows of the data
matrix, where si ∈ G and G = {g0, . . . , gw} represents the set of protected
groups. From the similarity matrix Σ, we derive a n × K matrix D = (dik),
defined as follows:

dik = σ(pi,q
∗
k)− σ(pi,qk) ∀k = 1, . . . ,K (13)

Here, σ(pi,q∗
k) indicates the similarity value between point pi and its optimal

cluster prototype q∗k, while σ(pi,qk) represents the similarity value between point
pi and an alternative cluster prototype qk. Consequently, dik quantifies the loss
in clustering quality when point pi is allocated to cluster k instead of its optimal
cluster k∗. To ensure optimal preservation of quality, it is important to determine
the sequence in which cluster prototypes for each point should be evaluated
and the sequence in which the points from the same protected group should be
chosen. To do this, we sort the indices of the row vector di, corresponding to the
cluster prototypes of the point pi, by value in ascending order. Then, for each
protected group, we sort points by di in ascending order.

Algorithm 3 FairRowAssignments(R∗,Σ, s,G, α)
Input: The optimal row clustering R∗, n×K similarity matrix Σ, sensitive feature

s = [s0, . . . , sn], protected groups G = {g0, . . . , gw}, fairness parameters α =
(α0, . . . , αw) with αg ∈ [0, 1], ∀g ∈ G.

Result: row clustering Rfair that satisfies γ-ratio fairness
Initialize Rfair = 0(n×K);
Compute D as in Eq. 13;
Sort cluster prototypes by dij values in ascending order, ∀i = 1, . . . , n;
Sort row objects by protected group and then by dij value in ascending order;
for g in G do

Ag = {pi ∈ A s.t. si = g}; ng = |Ag|; γg = 1
K
αg;

for iter = 1 . . . ⌊γgng⌋ do
for j = 1 . . .K do

pmin = argminpi∈Ag :
∑K

j=1 r
fair
i,j =0

(σ(pi,qk∗)− σ(pi,qj));

rfairmin,j = 1;
end

end
∀pi ∈ Ag :

∑K
j=1 r

fair
i,j = 0, rfairi,k∗ = r∗i,k∗;

end

For each protected group g, a fraction of unassigned row items equivalent to
γgng is chosen for allocation to a non-optimal cluster with the aim of minimizing
loss value and ensuring fairness. The parameter ng denotes the number of points
belonging to the protected group g. The fairness parameter γg ∈

[
0, 1

K

]
is the

fraction of ng points to be allocated in each cluster. Specifically, it is defined as
γg = 1

Kαg where K represents the number of row clusters identified by the vanilla
approach and αg ∈ [0, 1] is a user-defined parameter that quantifies the desired
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level of fairness. If αg = 1.0 for a group g, then the ng points will be equally
distributed across K clusters (ng

K points in each cluster) and the group’s ratio in
each cluster matches its ratio in the overall dataset. Conversely, if αg = 0.0 for
a group g, fairness violation is permitted for that group. If all groups have their
parameters set to zero (αg = 0.0,∀g ∈ G), any solution is acceptable, allowing for
selection of the optimal row clustering. Notably, if αg = 1.0 for all groups, row
clustering achieves perfect balance (balance(R) ≈ 1.0), otherwise with αg = 0.8
the 80% rule of disparate impact doctrine is guaranteed. Finally, any points that
remain unallocated at the end of this procedure are assigned to their optimal
cluster.

5 Experiments

In this section, we present the findings from our experiments conducted on four
real-world datasets to evaluate the effectiveness of Fair-τCC. We first present
the dataset used, the competing methods and the experimental protocol. Then,
we delve into the results and discuss them.

5.1 Experiment design

The datasets most commonly employed for fairness assessment (e.g. Adults, Ger-
man credit, Banks, etc.) are low-dimensional and, consequently, are not well-
suited to our experiments: co-clustering, in fact, identifies subsets of rows and
columns in a high-dimensional data matrix that exhibit meaningful patterns.
Furthermore, the majority of the benchmark datasets utilized for assessing co-
clustering results lack any sensitive information. Following a thorough examina-
tion of available datasets, we identified four of them as being suitable for our pur-
poses. These include two ratings dataset (MovieLens-1M [23] and Yelp [17,18]),
a product reviews dataset (Amazon reviews [17,18]), and an image collection
for facial recognition (Labeled Faces in the Wild [24]). Table 1 summarizes the
characteristics of the data matrix for each dataset utilized in our experiments.
Additionally, Table 2 provides details on the sensitive features selected for each
dataset, including the protected groups and their respective proportions within
the datasets.

Table 1: Datasets used for the experiments
Dataset Size Rows Columns Values Labels Sens. Att.

MovieLens-1M 6040× 3645 users movies ratings genres gender; age
Yelp 1441× 333 users restaurants ratings category gender
Amazon 705× 10152 reviews words frequencies prod. categories gender
LFW 13233× 1850 face images features RGB value people IDs gender
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Table 2: Information about protected groups and their ratio in the whole dataset.
Dataset Sens. Att. Protected groups Group ratio

MovieLens-1M gender Male; Female 72%; 28%
MovieLens-1M age < 35; 35-50; > 50 57%; 29%; 14%
Yelp gender Male; Female 38%; 62%
Amazon gender Male; Female 39%; 61%
LFW gender Male; Female 78%; 22%

We compared our algorithm against the standard version of Fast-τCC, which
does not incorporate fairness constraints1 and the only closely related competi-
tor, Parity LBM [19], a Gaussian latent block model with an ordinal regres-
sion designed for fair recommendations independent of protected attributes2.
To assess the performance of each algorithm regarding co-clustering quality and
fairness, we employed several evaluation metrics:

– τR|C and τC|R [21]: the Goodman-Kruskal’s τs measuring the quality of
co-clustering computed by every algorithms.

– ARI [25]: the Adjusted Rand Index. It is used to compare the agreement
between row and column assignments predicted by the fair algorithms with
those from the corresponding vanilla approach (ARIrows and ARIcols in Ta-
ble 3). Additionally, it is used to compute the aggrement between the cluster-
ing and the given ground-truth labels detailed in Table 1 (ARI in Table 3).

– Balance [7]: This metric quantifies the balanced representation of protected
groups within each cluster according to Definition 1.

– Kullback-Leibler fairness error [31]: It is based on Kullback-Leibler di-
vergence and quantifies the distributional disparities between the predefined
target demographic proportions and the marginal probabilities of the de-
mographics within cluster. It attains its theoretical minimum of zero iff all
clusters exhibit demographic proportions identical to the target distribution,
thereby enforcing strict adherence to the specified fairness constraints.

We executed 10 iterations of each algorithm. The mean values and standard
deviations for all metrics are reported.

To evaluate the effectiveness of our algorithm, we set the number of initial
clusters for both rows and columns to K0 = 10 and L0 = 10, respectively.
Furthermore, for adjusting the trade-off between the level of fairness and co-
clustering efficiency, we launched the experiments varying all α values within
the range [0, 1] for all protected groups. Conversely, Parity LBM was executed
with hyperparameters configured as follows: 25 row and column clusters to be
found for the MovieLens dataset and 10 for all others; a maximum number of 300
epochs for the training; a batch size of (200,200) and a learning rate of 2e-2. After

1 https://github.com/rupensa/tauCC
2 https://github.com/jackmedda/C-Fairness-RecSys/tree/main/
reproducibility_study/Frisch_et_al

https://github.com/rupensa/tauCC
https://github.com/jackmedda/C-Fairness-RecSys/tree/main/reproducibility_study/Frisch_et_al
https://github.com/jackmedda/C-Fairness-RecSys/tree/main/reproducibility_study/Frisch_et_al
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Table 3: Summary of the results for all co-clustering algorithms.
Algorithm τR|C τC|R ARI ARIrows ARIcols Balance KL fairness

ML (gender)
Fast-τCC 0.109 ± 0.011 0.104 ± 0.013 0.090 ± 0.024 - - 0.787 ± 0.046 0.018 ± 0.007
Fair-τCC 0.021 ± 0.004 0.088 ± 0.009 0.070 ± 0.022 0.115 ± 0.024 0.595 ± 0.138 0.969 ± 0.003 0.000 ± 0.000
Fair-τCCweak 0.096 ± 0.022 0.099 ± 0.015 0.080 ± 0.026 0.542 ± 0.278 0.717 ± 0.191 0.919 ± 0.018 0.003 ± 0.001
LBM 0.004 ± 0.000 0.004 ± 0.000 0.025 ± 0.003 - - 0.535 ± 0.152 0.392 ± 0.168
Parity LBM 0.004 ± 0.000 0.004 ± 0.000 0.026 ± 0.004 0.256 ± 0.022 0.510 ± 0.035 0.600 ± 0.087 0.169 ± 0.026

ML (age)
Fast-τCC 0.109 ± 0.011 0.104 ± 0.013 0.090 ± 0.024 - - 0.787 ± 0.046 0.018 ± 0.007
Fair-τCC 0.016 ± 0.001 0.070 ± 0.006 0.088 ± 0.024 0.096 ± 0.009 0.444 ± 0.029 0.954 ± 0.000 0.000 ± 0.000
Fair-τCCweak 0.063 ± 0.036 0.096 ± 0.016 0.108 ± 0.028 0.329 ± 0.204 0.643 ± 0.233 0.806 ± 0.108 0.033 ± 0.043
LBM 0.004 ± 0.000 0.004 ± 0.000 -0.005 ± 0.001 - - 0.288 ± 0.115 0.718 ± 0.143
Parity LBM 0.001 ± 0.001 0.001 ± 0.001 -0.013 ± 0.006 0.042 ± 0.009 0.195 ± 0.052 0.000 ± 0.000 +∞

Amazon
Fast-τCC 0.076 ± 0.013 0.079 ± 0.012 0.111 ± 0.029 - - 0.385 ± 0.025 0.505 ± 0.046
Fair-τCC 0.027 ± 0.003 0.035 ± 0.001 0.011 ± 0.002 0.007 ± 0.002 0.022 ± 0.010 0.957 ± 0.016 0.001 ± 0.001
Fair-τCCweak 0.032 ± 0.004 0.037 ± 0.003 0.012 ± 0.006 0.020 ± 0.012 0.029 ± 0.022 0.773 ± 0.094 0.037 ± 0.020
LBM 0.002 ± 0.000 0.002 ± 0.000 0.102 ± 0.002 - - 0.000 ± 0.000 +∞
Parity LBM 0.002 ± 0.000 0.002 ± 0.000 0.098 ± 0.004 0.350 ± 0.031 0.829 ± 0.027 0.023 ± 0.072 +∞

Yelp
Fast-τCC 0.566 ± 0.005 0.564 ± 0.005 0.000 ± 0.005 - - 0.721 ± 0.045 0.142 ± 0.063
Fair-τCC 0.453 ± 0.035 0.499 ± 0.017 0.001 ± 0.002 0.025 ± 0.004 0.002 ± 0.004 0.976 ± 0.007 0.000 ± 0.000
Fair-τCCweak 0.536 ± 0.041 0.543 ± 0.028 0.001 ± 0.003 0.030 ± 0.008 0.002 ± 0.002 0.870 ± 0.023 0.018 ± 0.013
LBM 0.042 ± 0.009 0.026 ± 0.005 -0.010 ± 0.005 - - 0.553 ± 0.056 0.217 ± 0.041
Parity LBM 0.028 ± 0.015 0.017 ± 0.008 -0.011 ± 0.007 0.225 ± 0.050 0.122 ± 0.046 0.622 ± 0.152 0.161 ± 0.111

LFW
Fast-τCC 0.005 ± 0.000 0.005 ± 0.000 0.000 ± 0.000 - - 0.940 ± 0.013 0.001 ± 0.000
Fair-τCC 0.001 ± 0.000 0.006 ± 0.002 0.001 ± 0.000 0.159 ± 0.029 0.774 ± 0.241 0.989 ± 0.003 0.000 ± 0.000
Fair-τCCweak 0.004 ± 0.002 0.005 ± 0.001 0.000 ± 0.001 0.595 ± 0.401 0.782 ± 0.281 0.864 ± 0.170 0.012 ± 0.016
LBM 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 - - 0.393 ± 0.028 0.381 ± 0.032
Parity LBM 0.002 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.348 ± 0.031 0.768 ± 0.049 0.803 ± 0.019 0.025 ± 0.005

training, we applied the KMeans algorithm to the row and column probability
matrices generated by the model to obtain the definitive cluster assignments.
All experiments were conducted on a Linux server equipped with 32 Intel Xeon
Skylakes cores running at 2.1 GHz, 256 GB RAM, and one Tesla T4 GPU.
The source code of our algorithm and the datasets necessary to reproduce all
experiments are available online3.

5.2 Results

In Table 3, we report the performance of Fair-τCC in comparison with its vanilla
version (Fast-τCC), the direct competitor (Parity LBM) and its non-fair counter-
part (LBM). The running times are reported in Table 4. We present two versions
of our algorithm: the first with a maximum fairness constraint (Fair-τCC), and
the second with a more relaxed fairness constraint allowing a small violation
for only one protected group (Fair-τCCweak). For MovieLens (ML) with age as
sensitive attribute, we allow a minor infringement on the constraint for two pro-
tected groups. The α values of the relaxed version are selected from two values,
0.9 and 1.0, by maximizing the row clustering quality τR|C .

On the MovieLens-1M (ML) dataset with gender as the sensitive attribute,
Fair-τCC achieves significant improvements in fairness with a Balance of 0.97

3 https://github.com/federicopeiretti/fair_taucc

https://github.com/federicopeiretti/fair_taucc
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Table 4: Execution times in seconds
Dataset Fast-τCC Fair-τCC Fair-τCCweak LBM Parity LBM

ML (gender) 3.37 ± 1.10 490.04 ± 96.41 217.85 ± 158.04 5110.05 ± 248.72 5262.01 ± 257.77
ML (age) 3.37 ± 1.10 202.41 ± 2.15 85.16 ± 47.25 8983.49 ± 121.10 9629.89 ± 604.88
Yelp 0.052 ± 0.0125 35.31 ± 60.94 24.87 ± 61.45 3242.94 ± 508.38 3321.18 ± 558.38
Amazon 1.14 ± 0.49 117.83 ± 22.76 68.85 ± 43.66 12189.15 ± 42.35 13966.79 ± 741.62
LFW 3.51 ± 0.84 245.72 ± 155.32 404.47 ± 251.65 38414.79 ± 5950.14 40201.68 ± 9781.72

and a near-zero KL fairness error (0.0002), significantly outperforming both
Fast-τCC (Balance 0.79, KL 0.018) and Parity LBM (Balance 0.60, KL 0.17).
However, this comes at the cost of clustering quality, as τR|C and τC|R drop to
0.021 and 0.088, respectively, compared to Fast-τCC’s 0.11 for both metrics. Fair-
τCCweak strikes the trade-off between fairness and clustering quality by allowing
a small fairness violation for the majority group (αmale = 0.9). It achieves higher
τR|C (0.096) and τC|R (0.099) than Fair-τCC while maintaining strong fairness
metrics (Balance 0.92, KL 0.003). Interestingly, Fair-τCCweak also exhibits better
alignment with its vanilla counterpart, as shown by ARIrows (0.54) and ARIcols
(0.72), compared to Fair-τCC’s lower values.

For the MovieLens-1M (ML) dataset with age as the sensitive attribute, Fair-
τCC again demonstrates superior fairness metrics (Balance 0.954, KL 0.0002),
outperforming all other algorithms. However, its ARI score (0.08) is slightly
lower than that of its standard version (0.09). Fair-τCCweak improves on all ARI
scores (ARI 0.108, ARIrows 0.329, ARIcols 0.643), while maintaining reasonable
τR|C , τC|R and fairness metrics.

On the Amazon dataset, Fair-τCC achieves near-perfect fairness with a Bal-
ance of 0.96 and a KL error of 0.001, addressing the infinite KL errors observed in
the other counterparts (Fast-τCC, Parity LBM and standard LBM) due to their
lack of fairness constraints. However, its ARI score drops significantly to 0.01
from Fast-τCC’s 0.11, reflecting the difficulty of maintaining clustering quality
under strict fairness constraints in this dataset. Fair-τCCweak, allowing a small
fairness violation for the majority group (αfemale = 0.9), achieves performance
very similar to that of its more rigorous version, but the Balance drops signif-
icantly to 0.77. Parity LBM achieves high column alignment with its vanilla
counterpart (ARIcols=0.83), but its Balance score remains low at 0.02.

The Yelp dataset reveals an interesting trade-off between clustering quality
and fairness across algorithms. While Fast-τCC achieves the highest τR|C and
τC|R values of 0.56, it exhibits poor fairness metrics, with a Balance of 0.72 and
KL error of 0.14. In contrast, Fair-τCC achieves near-perfect fairness with a Bal-
ance of 0.98 and a KL error of 0.0004, while maintaining reasonable clustering
quality (τR|C = 0.45, τC|R = 0.50). This outcome may be attributable to exces-
sive sparsity in the data matrix. Fair-τCCweak offers a compromise, exhibiting
enhanced τR|C and τC|R values (0.54) compared to Fair-τCC, while preserv-
ing good fairness metrics (Balance 0.87). Parity LBM demonstrates moderate
alignment with its baseline counterpart in terms of row and column assignments
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(a) Balance (b) τx and τy coefficients

(c) ARIrows (d) ARIcols

Fig. 2: Fair-τCC vs. Fast-τCC on MovieLens for increasing values of α.

(ARIrows=0.22, ARIrows=0.12), but its overall performance is weaker in both
clustering quality and fairness.

A particularly noteworthy case arises in the Labeled Faces in the Wild (LFW)
dataset, where Fair-τCCweak exhibits a Balance score of 0.86 — lower than that
of Fair-τCC (0.94) — despite achieving significantly better row assignment align-
ment with an ARIrows score of 0.59 compared to Fair-τCC’s much lower score
of 0.16. This observation underscores an essential aspect of our findings: while
strict adherence to fairness constraints may lead to diminished performance in
terms of balance, allowing for slight violations can enhance clustering effective-
ness without severely compromising overall fairness.

Overall, these results demonstrate that Fair-τCC consistently delivers su-
perior fairness performance across all datasets while maintaining reasonable
clustering quality with respect to Fast-τCC, and the other competitors (Par-
ity LBM and standard LBM) and reasonable computational time, as showed in
Table 4. Allowing slight violations of fairness constraints, even for a single pro-
tected group, can lead to an improvement in terms of clustering quality, while
achieving substantial gains in fairness compared to non-fair method. This trade-
off makes Fair-τCCweak particularly suitable for applications where both fairness
and clustering effectiveness are critical considerations.
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(a) Balance (b) τx and τy coefficients

(c) ARIrows (d) ARIcols

Fig. 3: Fair-τCC compared to Fast-τCC on Amazon for increasing values of α.

5.3 Impact of α on the trade-off between fairness and quality

In this section, the impact of α values on the trade-off between clustering qual-
ity and fairness is assessed. To do that, a comparative analysis is conducted
between the performance of the proposed algorithm and that of Fast-τCC. This
is achieved by systematically varying the αmajority value assigned to the majority
group in the range of [0.0, 1.0] while maintaining a constant value αminority = 1.0
for the group least represented in the dataset. Fig. 2 and Fig. 3 show the trend of
evaluation metrics of both algorithms as αmajority increases on MovieLens and
Amazon datasets, considering gender as sensitive feature. Fair-τCC maintains
a relatively high balance with a positive trend as the majority group αmajority

increases, indicating its superiority in maintaining a well-balanced representa-
tions than the non-fair approach. This phenomenon, which persists even with
αmajority = 0.0, is likely attributable to the fact that, prior to implementing a
fair reassignment, the row clustering obtained via τR|C maximization is evalu-
ated. This observation is more evident in the MovieLens dataset, when αmajority

is set to a low value. In this case, the τR|C , τC|R and ARI scores are close to
those of the non-fair version (Fig. 2b and 2d) and the row and column clustering
agreements with it are very high (Fig. 2c). A good trade-off between fairness
and clustering quality can be seen for αmajority = 0.9, as the balance remains
high and τx, τy do not decrease too much.
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6 Conclusion

We have introduced an algorithm that computes co-clustering with fairness con-
straints. It seeks a tradeoff between cluster quality and balance by adopting an
optimization strategy that accounts for the protected groups the data instances
belong to, by exploiting the properties of a co-clustering approach based on an
associative statistical measure that has some desirable properties: it leads to fast
convergence and to the identification of a congruent number of clusters on both
rows and columns starting from an initial overestimation. The experiments have
shown that our algorithm is effective also when compared with the only exist-
ing competitor, a co-clustering approach for fair recommendation based on the
latent block model.

As future work, we intend to extend the current framework to guarantee
fairness balance not only in the row clustering but also in the column clustering,
thus addressing fairness constraints bidirectionally. Moreover, we plan to investi-
gate the co-clustering problem under the individual fairness setting. Finally, we
will explore multiobjective optimization as a way to automatically select optimal
quality-fairness tradeoffs.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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