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Abstract. Anomaly detection has been actively studied, enabling the
high-accuracy detection of anomalies. However, because anomaly detection
assumes that an anomaly has already occurred, detecting future anomalies
before they occur and preventing them from happening is impossible.
Therefore, we develop a Transformer-based Anomaly Prediction (TranAP)
method, which is designed to detect future anomalies. TranAP predicts
future values from previous time series and uses reconstruction techniques
to detect signs of anomalies using the predicted results. Detecting these
precursors requires a correct understanding of the temporal characteristics
of the multivariate time series (MTS). Because the timing of behavior
leading to an anomaly may differ for each feature, we apply multi-head
attention (ATTN) in the time dimension for each feature. Additionally,
TranAP captures the dependencies between different features that the
conventional ATTN could not. Because the effect of ATTN is partially
diminished within the attention block, even after improvement to capture
detailed information in MTS, we modify the operation of the block
to preserve this effect. We demonstrate the effectiveness of TranAP
by comparing it with state-of-the-art models. This improved attention
mechanism of TranAP allows for a better understanding of behavior that
leads to anomalies.

Keywords: anomaly prediction, multivariate time series forecasting,
reconstruction, Transformer, attention block, multi-head attention

1 Introduction

Anomaly detection has been extensively studied and has demonstrated high
performance. An anomaly, also known as an outlier or novelty, refers to an
unusual, irregular, inconsistent, unexpected, rare, faulty, or simply a strange
observation, depending on the context. Anomaly detection aims at identifying
unexpected patterns or data points in real-world applications. Anomaly detection
for multivariate time series (MTS) requires handling time series with several
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Fig. 1: Example of an anomaly precur-
sor.

Fig. 2: Univariate time series for each
feature.

features, and numerous deep learning (DL)-based models have been proposed
to address this task [26, 16]. Most of these models focus on accurately detecting
anomalies that have already occurred, whereas detecting future anomalies before
they manifest is increasingly expected. Anomaly prediction is the process of
identifying current patterns or signs that may indicate upcoming abnormal
events [12]. The goal is to detect these precursors before the occurrence of
anomalies, thereby enabling proactive preventive actions.

Figure 1 illustrates the transition of data points for each feature of an MTS
obtained from a real-world system. An abnormal event occurs in the anomaly part
owing to an external attack that sets the value of feature 1 to 700. However, this
anomaly does not occur immediately after the attack. A time lag (the anomaly
precursor part in Figure 1) exists between the attack and the actual occurrence
of a critical abnormal event, which is recognized as an anomaly. During this
period, the effects of the attack spill over to features other than feature 1, which
was initially attacked, and signs triggering an abnormal event can be observed in
several features.

PAD proposed an anomaly prediction model that requires anomalous data and
an anomaly detection model for training [12]. We propose a Transformer-based
Anomaly Prediction (TranAP) method that uses only normal data for training
and does not require an anomaly detection model. TranAP uses MTS forecasting,
which predicts future values from previous values and determines whether an
anomaly will occur in the future by reconstructing the prediction results.

Anomaly prediction requires an accurate understanding of the temporal
characteristics of the MTS. The behavior leading to an anomaly may occur at
different times for each feature, as shown in Figure 2. However, general multi-
head attention (ATTN) cannot capture each characteristic. Furthermore, because
MTS anomaly prediction targets data with several features, more detailed MTS
characteristics can be extracted by capturing the dependencies between the
features. Therefore, we enhance ATTN to better capture the different temporal
dependencies for each feature as well as the dependencies between features.



Multivariate Time Series Anomaly Prediction 3

In addition, the attention block comprises ATTN, residual connection (RES) [9],
and layer normalization (LN) [5], which contribute to the Transformer perfor-
mance [32]. Previous studies on natural language processing (NLP) revealed that
other components cancel the effects of ATTN [13]. To the best of our knowledge,
studies on the attention block of the MTS are yet to be conducted. Further
research is needed to confirm whether the same observations can be made in
MTS as in natural language.

The contributions of this study are as follows:

– We proposed a novel framework specialized for anomaly prediction tasks
by utilizing MTS forecasting and reconstruction. Unlike the conventional
anomaly prediction model that requires anomalous data and an anomaly
detection model for training, the proposed framework does not need them.

– We applied ATTN in the time direction for each feature and also in the
feature direction to focus on the behavior leading to anomalies in MTS.

– We found that RES partially cancels the effect of ATTN in the attention
block. Based on this finding, we modified the attention block to preserve the
strong effect of the improved attention mechanism.

– We evaluated TranAP on five real-world datasets, demonstrating that anomaly
prediction using MTS forecasting and reconstruction is effective. Various
experiments showed that improving attention mechanisms helps capture the
detailed characteristics of MTS.

2 Related Work

Anomaly Detection in MTS. Because anomaly detection requires handling
time series with multiple features, numerous anomaly detection models using
DL have been proposed [38, 34, 31, 35]. Most of these models focus on detecting
anomalies that have already occurred, and cannot detect future anomalies.

Some anomaly detection models use techniques such as autoregression and
reconstruction. These models detect anomalies by predicting or reconstructing
data points within a given input and comparing them with actual values. TranAP
is similar to the aforementioned models because it performs anomaly predictions
based on forecasting and reconstruction. However, TranAP predicts future unseen
MTS whose actual values are unknown from the given input, and thus cannot
perform comparisons during anomaly prediction. Therefore, we adopt a framework
to evaluate the results of MTS forecasting by reconstruction (see Section 3.2).
Anomaly Prediction. The currently proposed anomaly prediction model called
PAD [12] uses training data consisting of normal and pseudo-anomalous data.
In the training phase, PAD requires anomaly detection and prediction models;
the latter model is trained to imitate the results of the former. Specifically, the
anomaly prediction model receives the MTS at timestep t = T − 1 to predict
whether an anomaly will occur at t = T . It is trained to predict the same outcome
as the anomaly detection result at t = T obtained by the anomaly detection
model. However, it is difficult to prepare all combinations of anomalies and their
precursors, and the trained anomaly prediction model has difficulty detecting
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Fig. 3: TranAP architecture. The proposed model consists of Transformer-based
forecasting and reconstruction.

precursors correctly for unknown anomalies that are not included in the training
data [6, 36]. Furthermore, the anomaly prediction model requires an anomaly
detection model for training, which makes it difficult to train them efficiently.
Transformer Attention Block Analysis. The ATTN, a key component of
Transformer, has been analyzed in several studies on NLP [2, 14, 27, 19, 21, 10].
Transformer is composed of not only ATTN but also these components such
as RES and LN. Previous studies have shown that other components cancel
the effect of ATTN [13]. However, most Transformer-based models have only
improved the ATTN and have not considered the operation of the entire attention
block, e.g.,[25, 37, 34, 31, 35].
MTS forecasting using Transformer. MTS forecasting is the task of pre-
dicting future MTS values from previous values [18, 30, 22]. Transformer-based
forecasting models have been proposed [39, 33, 20, 40, 7, 25]. These models im-
prove ATTN and focus on efficiently extracting long-term time dependencies
with less computational complexity. Because the MTS has several features, more
detailed information about the data can be extracted by capturing the dependen-
cies between features. Crossformer [37] is a Transformer-based model for MTS
forecasting that improves ATTN to capture the dependencies between features.

3 METHODOLOGY

3.1 Problem Statement

Consider the MTS X consisting of M data points {x1,x2, . . . ,xM}, where each
data point xt ∈ RD is collected at a certain timestep t. D(D > 1) is the number
of features in the MTS. We adopt a window-based approach in the anomaly
prediction task, similar to [12]. That is, X is divided into a set of windows of
input length T such as {x1:T ,x1+step_size:T+step_size, . . . ,xM−T+1:M}, and the
input to the model is in window units.

The problem with anomaly prediction is that, given an input window of input
length T , we predict whether an anomaly will occur during the next τ timesteps.
For example, given an input window x1:T ∈ RT×D from timestep 1 to T , we
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predict whether anomalies may occur between timestep T + 1 and T + τ ; that is,
whether an unseen xT+1:T+τ ∈ Rτ×D contains anomalies. Here, τ denotes the
prediction length. In this case, we output ypredT+1:T+τ ∈ {0, 1} (where 1 denotes
an anomalous window) for each given window x1:T as the anomaly prediction
result for xT+1:T+τ . This problem is evaluated for each testing window as in [12].
Given the MTS X̂ for testing, it is divided into a set of windows of input length
T as in training. For example, given x̂1:T , we can predict whether an unseen
future x̂T+1:T+τ is an anomalous window using the trained model. The correct
label used for the evaluation is ŷT+1:T+τ ∈ {0, 1}, and if {ŷT+1, ŷT+2, . . . , ŷT+τ}
contains one or more abnormal labels, we denote ŷT+1:T+τ as one.

In the following, we denote an input window as x1:T and a predicted window
as xT+1:T+τ for simplicity.

3.2 Model Structure

TranAP mainly consists of Transformer-based MTS forecasting and reconstruc-
tion, as illustrated in Figure 3. We use only normal data for training [8, 3]. TranAP
enables the detection of any combination of anomalies and their precursors not
included in the training dataset. Because the model has already been trained
with normal data, it can successfully predict future values when a normal window
is given. However, given a window that deviates from normality, the results will
not be correct predictions of future trends. Such deviations can be detected as
precursors of an anomaly. Similar to TranAP, some anomaly detection models
use prediction techniques. However, while these models predict values within an
input window, allowing for comparison with actual values, TranAP predicts a
future unseen window and thus cannot be compared with actual values. Therefore,
we utilize the Transformer for reconstruction to evaluate the results of MTS
forecasting. The MTS, which concatenates the input and predicted values, is
reconstructed. It is also trained using only normal data, enabling successful
reconstruction when it receives a predicted MTS with normality. However, when
it receives a predicted MTS that deviates from normality, the reconstruction fails,
and the window is determined as a precursor of an anomaly.

3.3 Segmentation of Time Series

Fig. 4: Interactions between data points
in each layer.

In MTS tasks, the segmentation of the
input time series contributes to the ac-
curacy of each task [37, 25]. Figure 4
shows the interactions between data
points when a window is given to the
trained TranAP. The (i, j) cell indi-
cates the extent to which the jth data
point on the key side contributes to
the computation of the output corre-
sponding to the ith data point on the
query side. From Figure 4, we observe that the interactions tend to be divided into
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segments, particularly after the second layer. As the characteristics of temporally
close data points in the time series are similar, they have similar interactions.
Moreover, aggregating information from multiple data points into segments
reduces the computational complexity while maintaining the accuracy of the
anomaly prediction (see Section 5.1). We divide the input window into segments
when performing MTS forecasting and reconstruction.

3.4 Temporal and Feature-wise ATTN

We perform ATTN in the time dimension (temporal ATTN) and feature dimension
(feature-wise ATTN) in Transformer-based MTS forecasting and reconstruction.
Temporal ATTN. General Transformer-based models capture the temporal
dependencies between input representations by performing ATTN in the time
dimension. This computation fails to capture the temporal characteristics of each
feature because all features of each input representation share the same attention
map and the information of all features at a timestep is aggregated into a single
embedding.

Because the timing of behaviors leading to an anomaly differs for each
feature, capturing each temporal characteristic is essential for anomaly prediction.
Therefore, we performe ATTN on each feature separately in the univariate time
series.

Temporal ATTN receives H ∈ RN×D×dmodel as input, where N is the number
of segments. Note that H is a vector after trainable linear projection added with
a positional embedding. We define H:,d as a vector of all segments with feature
d(1 ≤ d ≤ D). After temporal ATTN (ATTNtime), we obtain the output Htime:

Ĥtime
:,d = LN

(
ATTNtime (H:,d,H:,d,H:,d) +H:,d

)
,

Htime = LN
(
FF

(
Ĥtime

)
+ Ĥtime

)
,

(1)

where FF denotes the feedforward network.
Feature-wise ATTN. Temporal ATTN alone does not capture feature-wise
dependencies. We apply ATTN in the feature dimension (ATTNfeature) after
performing temporal ATTN:

Ĥfeature
i,: = LN

(
ATTNfeature (Htime

i,: ,Htime
i,: ,Htime

i,:

)
+Htime

i,:

)
,

Hfeature = LN
(
Ĥfeature + FF

(
Ĥfeature

))
,

(2)

where Hi,: is a vector of all features of the ith (1 ≤ i ≤ N) segment.

3.5 Effect of ATTN

Although many Transformer-based models have improved the attention mecha-
nism, [13] reported that RES cancels the effect of ATTN in NLP. Therefore, we
investigate the operation in the attention block when dealing with the MTS.
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(a) ATTN mixes input representations
other than its own.

(b) RES preserves the original information.

Fig. 5: Interactions between representations in each layer.

Transformer consists of layers with an attention block. The attention block
comprises three components: ATTN, RES, and LN.

H̃ = LN(ATTN(H,H,H) +H)︸ ︷︷ ︸
RES

, (3)

where H := [h1,h2, . . . ,hL] ∈ RL×dmodel is the sequence of input representa-
tions, and hi ∈ Rdmodel is the ith input representation. H̃ := [h̃1, h̃2, . . . , h̃L] ∈
RL×dmodel is the sequence of output representations, and h̃i ∈ Rdmodel is the output
corresponding to hi.

Among these components, ATTN and RES have contrasting effects on the com-
putation of output representations. While ATTN mixes the input representations,
RES preserves the original input representations.

We can visualize the interactions between the representations after ATTN
and RES in each layer when a window is provided to the trained TranAP in
Figure 5. The (i, j) cell indicates how strongly the key input hj ∈ {h1,h2, . . . ,hL}
contributes to computing the query output h̃i. The diagonal elements correspond
to the effect of preserving the original input information, that is, preserving
hj=i when computing h̃i. ATTN in Figure 5a mixes information from input
representations other than its own. On the other hand, RES in Figure 5b loses
the mixing effect of ATTN and strongly preserves the information from the
original input representation. These results indicate that RES cancels the effect
of ATTN on the MTS.

We modify Eq. (3) to adjust for the mixing effect of ATTN and the preservation
effect of RES:

H̃ = LN(ATTN(H,H,H) + λH) , (4)

where λ(0 ≤ λ ≤ 1) is a parameter that adjusts each effect. The lower λ, the
stronger the influence of ATTN.

We calculate the mixing ratio ri for ATTN, RES, and LN, which represents
the ratio of the mixing effect to the sum of the mixing and preservation effects.
A higher mixing ratio indicates that the mixing effect is stronger than the
preservation effect. Table 1 shows the mixing ratio after performing ATTN, RES,
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Table 1: Mean value of the mixing ratio for each component.
Components λ = 0 λ = 0.25 λ = 1

Multi-head attention 95.8 96.0 95.9
Residual connection 91.7 84.5 74.2
Layer normalization 91.8 84.5 74.2

and LN with λ = 0, 0.25, 1. The values in Table 1 represent the mean ratios of
the heads and layers.

These results demonstrate that, while general Transformer-based models (i.e.,
λ = 1) lose the mixing effect of ATTN after RES, increasing the influence of
ATTN in the attention block can preserve the mixing effect even after RES. We
set λ to preserve a strong mixing effect.

3.6 Anomaly Prediction Flow

Here, we define the Transformer for forecasting operations as TFpred and the
Transformer for reconstruction operations as TFreconst.
Training. TranAP is trained using only normal data. Given an input window
x1:T , the Transformer for forecasting predicts the following future τ timesteps
xT+1:T+τ :

xpred
T+1:T+τ = TFpred(x1:T ), (5)

where xpred
T+1:T+τ denotes the predicted values. We utilize the mean squared error

(MSE) to compute the difference between the predicted values and ground truth
during the training phase of the Transformer for forecasting. The Transformer is
trained to minimize the following objective function:

Lpred =
∥∥∥xpred

T+1:T+τ − xT+1:T+τ

∥∥∥2
2
. (6)

The Transformer for reconstruction reconstructs a vector x1:T ⊕ xpred
T+1:T+τ ∈

R(T+τ)×D that combines the original input x1:T and the predicted xpred
T+1:T+τ :

xreconst
1:T+τ = TFreconst(x1:T ⊕ xpred

T+1:T+τ ), (7)

where ⊕ is the operation of the concatenation of two vectors, and xreconst
1:T+τ

represents the reconstructed values. The Transformer for reconstruction is trained
to minimize the following objective function to reconstruct values similar to the
input:

Lreconst =
∥∥xreconst

1:T+τ − x1:T+τ

∥∥2
2
. (8)

Anomaly Prediction. The trained Transformer for forecasting receives an
input window x̂1:T and predicts the future x̂pred

T+1:T+τ . Subsequently, the trained
Transformer for reconstruction reconstructs x̂1:T ⊕ x̂pred

T+1:T+τ :

x̂pred
T+1:T+τ = TFpred(x̂1:T ),

x̂reconst
1:T+τ = TFreconst(x̂1:T ⊕ x̂pred

T+1:T+τ ),
(9)
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where x̂reconst
1:T+τ denotes the reconstructed values. The anomaly prediction score

AAP(x̂T+1:T+τ |x̂1:T ) is defined as

AAP(x̂T+1:T+τ |x̂1:T ) =
∥∥∥x̂reconst

1:T+τ − x̂1:T ⊕ x̂pred
T+1:T+τ

∥∥∥2
2
. (10)

AAP(x̂T+1:T+τ |x̂1:T ) means the degree to which an anomaly can occur in future
x̂T+1:T+τ (i.e., x̂1:T can be a precursor of an anomaly) given an input window
x̂1:T . A window x̂1:T with an anomaly prediction score AAP(x̂T+1:T+τ |x̂1:T ) that
exceeds a predefined threshold is determined to be a precursor of an anomaly
(i.e., ypred

T+1:T+τ = 1). Then, the result of the anomaly prediction ypred
T+1:T+τ ∈ {0, 1}

is compared with the correct label yT+1:T+τ ∈ {0, 1} to evaluate the success or
failure of the anomaly prediction.

4 Experiments

4.1 Anomaly Prediction in MTS

Datasets. We assess the performance of the proposed TranAP on five real-world
datasets: SWaT [23], PSM [1], SMD [29], SMAP [11], and NIPS-TS-GECCO [15,
24].
Baselines. We compare TranAP with nine anomaly detection models and one
anomaly prediction model PAD.

Anomaly detection models consist of reconstruction-based models: LSTM-
AE [28], MAD-GAN [17], USAD [4], CAE-M [38], TranAD [31], Anomaly
Transformer [34], and DCdetector [35]; the autoregression-based model
LSTM [11]; and the density-estimation model DAGMM [41]. Anomaly de-
tection models can be applied to anomaly prediction tasks by considering the
precursors of anomalies as an anomaly (see Appendix A.3).
Experimental Settings. All models follow the experimental setup with an
input length T = 48 and prediction lengths τ ∈ {24, 36, 48, 72, 96}. The attention
ratio λ is set to 0.5 for the SMD and SMAP datasets and 0.25 for the other
datasets. The segment length Lseg is set to 24 for the SMD and NIPS-TS-GECCO
datasets and 12 for the other datasets. We choose the F1-score as evaluation
metrics to compare the performance of TranAP with those of the other models.
All experiments are repeated five times and the mean of the metrics is reported.

4.2 Main Results

We first evaluate the anomaly prediction performance, as shown in Table 2.
Overall, we achieve state-of-the-art results for almost all datasets. The mean
F1-score over all the datasets is 8.1 points higher than that of the baselines. The
F1-score is 2.5–6.8 points higher than that of the baselines for datasets with
relatively clear precursors of anomalies, such as the SWaT and PSM datasets.
On the other hand, for datasets with small anomaly precursors, such as the SMD
and SMAP datasets, the F1-score is comparable to that of the baselines. The
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NIPS-TS-GECCO dataset is a challenging dataset with several types of anomalies.
However, TranAP is successful, whereas the baselines fail to predict anomalies.
The standard deviations of the F1-score of TranAP in the five repetitions of the
experiments are within 0.14%–4.09% for all datasets.

Despite a fixed input length and different prediction lengths, the F1-score
does not change significantly. In actual operations, it is desirable to detect the
precursors of anomalies further into the future. Therefore, the prediction length
should be increased to the extent that the evaluation metrics, such as the F1-score,
do not change significantly.

5 Analysis

5.1 Ablation Study

Input Length.

Fig. 6: F1-score when changing input lengths.

We investigate the effect
of input length by chang-
ing the input lengths T ∈
{12, 24, 48, 96, 168} with a
fixed prediction length τ = 96
in Figure 6. The F1-score is
the highest when T = 12 for
the SWaT dataset and T = 24
for the PSM dataset. In these
datasets, the behavior leading
to anomalies is likely to have
occurred at slightly earlier time steps when the prediction length is 96. The
longer the input length, the lower the value of the F1-score. If the input length is
too long, the input contains information that is irrelevant to anomaly prediction.
Effect of Segment.

Fig. 7: Running time and F1-score when changing seg-
ment lengths.

We investigate the
average running time
per iteration and F1-
score for different seg-
ment lengths in the
SWaT and PSM datasets
in Figure 7. We set
an input length T =
48, prediction length
τ = 48, and seg-
ment lengths Lseg ∈
{1, 3, 6, 12, 24, 48}. The average running time per iteration is reduced by 55.4%–
81.5% without decreasing the F1-score. Note that the F1-score is the highest
with Lseg = 24 for the SWaT dataset and Lseg = 6 for the PSM dataset. In the
PSM dataset with Lseg = 48, the F1-score decreases because the time steps with
different temporal characteristics are grouped into a single segment.



Multivariate Time Series Anomaly Prediction 11

T
ab

le
2:

M
T

S
an

om
al

y
pr

ed
ic

ti
on

re
su

lt
s.

W
e

us
e

an
in

pu
t

le
ng

th
T
=

4
8

an
d

pr
ed

ic
ti

on
le

ng
th

s
τ
∈
{2
4
,3
6
,4
8
,7
2
,9
6
}.

T
he

ev
al

ua
ti

on
m

et
ri

cs
ar

e
th

e
pr

ec
is

io
n

(P
),

re
ca

ll
(R

),
an

d
F
1-

sc
or

e
(F

1)
.T

he
be

st
re

su
lt

s
ar

e
in

b
ol

d
,a

nd
th

e
se

co
nd

be
st

ar
e

un
de

rl
in

ed
.A

ll
va

lu
es

ar
e

in
pe

rc
en

ta
ge

s.
M

od
el

s
A

no
m

al
y

D
et

ec
ti

on
M

od
el

s
fo

r
A

no
m

al
y

P
re

di
ct

io
n

T
as

ks
A

no
m

al
y

P
re

di
ct

io
n

M
od

el
s

L
ST

M
L
ST

M
-A

E
D

A
G

M
M

M
A

D
-G

A
N

U
SA

D
C

A
E

-M
T
ra

nA
D

A
no

T
ra

ns
D

C
de

te
ct

or
PA

D
T
ra

n
A

P
M

et
ri

c
P

R
F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

SW
aT

24
15

.2
92

.8
26

.1
96

.4
70

.9
81

.7
67

.1
82

.7
74

.0
92

.3
75

.2
82

.9
78

.2
81

.7
79

.6
62

.2
80

.2
70

.1
90

.7
76

.2
82

.8
18

.1
91

.6
30

.2
98

.6
68

.6
80

.9
69

.2
58

.3
56

.1
92

.8
81

.7
86

.9
36

15
.2

91
.0

26
.1

96
.7

74
.0

83
.8

76
.8

79
.3

77
.1

84
.2

73
.9

77
.1

78
.3

81
.3

79
.4

62
.4

79
.9

70
.1

90
.8

75
.9

82
.6

18
.3

91
.1

30
.5

99
.4

68
.9

81
.3

31
.1

84
.5

33
.6

93
.3

81
.8

87
.1

48
15

.4
91

.1
26

.4
97

.0
74

.8
84

.5
76

.9
79

.8
77

.4
92

.8
74

.0
82

.3
76

.4
82

.1
78

.8
62

.7
80

.2
70

.4
89

.7
77

.2
82

.8
18

.4
91

.2
30

.7
99

.3
68

.3
80

.9
49

.8
75

.6
43

.3
93

.4
81

.4
87

.0
72

15
.5

90
.7

26
.5

97
.0

75
.2

84
.8

83
.2

78
.6

80
.1

81
.6

77
.6

78
.5

77
.4

81
.6

79
.1

63
.1

79
.7

70
.4

90
.1

78
.1

83
.6

18
.6

92
.0

31
.0

99
.2

67
.2

80
.1

65
.6

68
.4

48
.8

92
.9

82
.3

87
.3

96
15

.8
90

.6
26

.9
97

.1
74

.4
84

.3
81

.8
78

.2
79

.0
91

.5
76

.9
83

.5
82

.0
79

.9
80

.7
63

.4
79

.2
70

.4
91

.4
77

.6
83

.9
18

.9
91

.0
31

.2
97

.2
52

.6
64

.6
32

.1
89

.0
33

.8
93

.4
81

.0
86

.8

P
SM

24
60

.5
89

.1
72

.0
67

.9
83

.2
74

.6
78

.2
87

.4
82

.6
77

.3
87

.2
81

.9
81

.7
86

.8
84

.1
70

.9
88

.2
78

.6
85

.9
85

.2
85

.3
40

.1
56

.4
46

.8
86

.9
83

.0
78

.9
39

.0
87

.0
45

.9
92

.7
86

.4
89

.2
36

64
.0

84
.2

72
.4

67
.3

85
.2

75
.1

69
.8

87
.6

77
.7

68
.6

87
.9

77
.0

73
.5

87
.5

79
.9

71
.4

87
.3

78
.6

75
.3

86
.8

80
.5

51
.4

78
.0

61
.9

83
.6

81
.5

82
.5

35
.1

83
.9

48
.4

96
.4

82
.4

88
.8

48
60

.6
87

.5
71

.6
67

.3
77

.4
72

.0
78

.8
85

.8
82

.1
80

.0
84

.6
82

.0
74

.4
86

.5
79

.9
71

.9
86

.3
78

.5
86

.7
80

.9
83

.3
55

.6
73

.8
63

.3
46

.9
44

.5
45

.6
37

.0
60

.5
29

.4
97

.5
81

.4
88

.7
72

62
.8

85
.8

72
.4

68
.0

76
.2

71
.8

71
.9

85
.7

78
.2

70
.7

86
.0

77
.6

75
.1

85
.4

79
.9

72
.8

84
.8

78
.4

78
.5

84
.6

81
.4

39
.8

56
.5

46
.7

56
.6

54
.1

55
.3

32
.2

99
.9

48
.7

93
.9

83
.4

88
.2

96
64

.5
84

.0
72

.9
69

.1
75

.8
72

.2
80

.3
82

.9
81

.6
80

.4
82

.5
81

.3
76

.4
83

.4
79

.7
73

.7
83

.3
78

.2
92

.5
77

.3
84

.0
55

.0
75

.0
63

.4
76

.5
60

.8
64

.9
42

.2
80

.6
41

.3
97

.0
81

.4
88

.5

SM
D

24
46

.5
55

.8
50

.4
41

.2
56

.1
47

.2
41

.2
76

.1
53

.4
34

.7
77

.8
48

.0
37

.7
76

.9
50

.6
43

.5
74

.0
54

.8
38

.3
76

.4
50

.9
45

.4
29

.1
35

.1
33

.4
85

.3
46

.3
6.

5
47

.6
11

.3
45

.0
73

.9
55

.9
36

47
.7

52
.8

50
.1

47
.2

51
.5

49
.0

41
.8

75
.5

53
.8

43
.1

73
.1

54
.2

42
.3

72
.3

53
.4

45
.3

72
.6

55
.5

43
.8

69
.5

53
.7

29
.8

43
.0

32
.4

44
.9

77
.1

52
.7

5.
8

66
.5

10
.0

46
.9

68
.8

55
.8

48
46

.3
51

.5
48

.5
48

.1
50

.2
48

.9
44

.2
72

.9
55

.0
41

.4
73

.6
52

.9
42

.3
73

.3
53

.6
47

.1
69

.9
56

.3
43

.1
71

.3
53

.7
79

.9
42

.8
55

.1
41

.6
79

.0
48

.0
5.

5
67

.6
10

.0
54

.2
62

.1
57

.7
72

49
.1

46
.5

47
.5

52
.0

47
.1

49
.4

47
.8

71
.2

57
.2

48
.5

69
.5

57
.1

48
.6

69
.0

57
.0

50
.8

68
.0

58
.1

47
.5

69
.2

56
.2

69
.0

24
.6

36
.2

36
.2

90
.2

48
.0

7.
3

99
.1

13
.6

56
.0

55
.4

55
.7

96
49

.6
47

.9
48

.3
53

.6
46

.5
49

.6
52

.1
70

.9
60

.1
46

.9
73

.8
57

.3
48

.9
72

.2
58

.3
54

.5
68

.0
60

.5
46

.2
73

.7
56

.8
60

.6
33

.1
42

.7
43

.5
92

.2
57

.1
7.

8
74

.4
13

.4
48

.9
69

.5
57

.0

SM
A

P

24
74

.8
53

.1
62

.1
78

.5
52

.4
62

.9
85

.6
49

.1
62

.3
87

.2
49

.1
62

.8
88

.5
48

.6
62

.8
85

.5
49

.6
62

.8
89

.7
48

.4
62

.9
57

.0
42

.9
48

.9
77

.1
49

.8
45

.3
10

.8
56

.4
17

.5
77

.7
62

.1
68

.9
36

74
.9

53
.0

62
.1

78
.5

52
.1

62
.7

85
.5

48
.9

62
.2

86
.8

49
.2

62
.8

88
.6

48
.6

62
.8

85
.7

49
.6

62
.8

88
.6

48
.6

62
.8

57
.6

42
.3

48
.7

64
.6

33
.6

38
.7

11
.0

76
.7

19
.3

88
.2

52
.3

65
.7

48
74

.3
52

.7
61

.7
78

.9
52

.2
62

.9
85

.6
48

.7
62

.1
87

.0
48

.9
62

.6
88

.9
48

.3
62

.6
85

.8
49

.4
62

.7
88

.7
48

.4
62

.6
71

.4
53

.9
61

.4
69

.8
47

.7
48

.7
13

.6
60

.1
14

.4
79

.4
51

.9
62

.8
72

74
.5

52
.6

61
.7

79
.3

51
.9

62
.8

87
.0

49
.0

62
.7

88
.9

49
.5

63
.6

89
.6

49
.6

63
.9

86
.1

49
.1

62
.5

89
.0

48
.7

62
.9

73
.0

54
.2

62
.2

68
.9

59
.6

61
.5

5.
6

40
.0

9.
8

83
.6

51
.8

64
.0

96
76

.0
52

.5
62

.1
79

.8
51

.7
62

.8
86

.6
51

.6
64

.7
88

.8
51

.8
65

.5
90

.4
51

.7
65

.8
87

.1
51

.2
64

.5
88

.5
50

.8
64

.5
43

.7
31

.5
36

.6
77

.0
49

.3
56

.0
11

.4
80

.0
20

.0
80

.6
52

.1
63

.3

G
E

C
C

O

24
83

.0
22

.3
35

.2
83

.6
22

.3
35

.2
40

.2
85

.7
26

.2
85

.7
26

.2
40

.2
85

.7
26

.2
40

.2
87

.1
26

.2
40

.3
85

.7
26

.2
40

.2
44

.1
14

.9
21

.7
14

.3
31

.5
19

.3
47

.2
31

.5
15

.9
38

.3
77

.5
51

.3
36

82
.1

20
.0

32
.1

84
.7

20
.0

32
.4

37
.6

87
.0

24
.0

87
.0

24
.0

37
.6

87
.0

24
.0

37
.6

88
.2

24
.0

37
.7

87
.0

24
.0

37
.6

49
.4

12
.7

20
.2

17
.5

46
.2

23
.3

15
.1

45
.3

10
.3

42
.4

74
.4

54
.0

48
84

.9
18

.4
30

.2
87

.1
18

.4
30

.3
88

.0
22

.5
35

.8
88

.2
22

.5
35

.8
88

.0
22

.5
35

.8
89

.2
22

.5
35

.9
88

.0
22

.5
35

.8
29

.7
8.

8
13

.6
19

.7
52

.3
27

.8
13

.1
41

.0
3.

9
45

.8
74

.1
56

.6
72

93
.4

16
.2

27
.7

93
.9

16
.2

27
.7

89
.7

20
.4

33
.3

33
.3

89
.7

20
.4

89
.7

20
.4

33
.3

90
.7

20
.4

33
.3

89
.7

20
.4

33
.3

37
.0

11
.4

14
.5

28
.0

65
.0

35
.2

32
.4

51
.0

12
.9

53
.7

73
.8

62
.1

96
94

.0
14

.9
25

.7
98

.6
14

.9
25

.9
90

.9
19

.2
31

.6
90

.9
19

.2
31

.6
90

.9
19

.2
31

.6
91

.8
19

.2
31

.7
90

.9
19

.2
31

.6
50

.2
13

.5
20

.5
42

.2
46

.9
43

.5
4.

7
60

.6
6.

2
55

.6
73

.6
63

.2
A
ve

ra
ge

57
.6

59
.9

47
.9

76
.4

54
.8

54
.7

70
.7

67
.1

61
.6

74
.3

64
.1

61
.1

75
.2

62
.4

62
.8

71
.7

61
.7

61
.4

79
.1

60
.7

59
.9

45
.3

50
.2

38
.8

60
.9

62
.2

59
.7

25
.2

67
.4

24
.7

73
.6

71
.9

70
.9



12 C. Maru et al.

Table 4: F1-score when changing attention mechanisms.
Attention mechanism Original F-ATTN T-ATTN TF-ATTN

SWaT 24 83.2 86.3 85.4 86.9
96 85.3 86.4 86.6 86.8

PSM 24 88.4 88.7 90.2 89.2
96 87.3 87.3 88.7 88.5

SMD 24 38.6 53.6 53.3 55.9
96 44.1 51.4 53.1 54.7

SMAP 24 59.3 62.5 61.9 63.1
96 61.0 62.6 63.3 63.0

GECCO 24 50.0 50.5 50.7 51.3
96 57.3 58.9 63.0 63.2

Effect of ATTN.
Table 3: F1-score when changing atten-
tion ratios.

Attention ratio 0 0.25 1

SWaT 24 86.8 86.9 86.6
96 86.5 86.8 86.6

PSM 24 88.0 89.2 87.3
96 87.2 88.5 88.0

We examine the impact of the mix-
ing effect of ATTN and the preser-
vation effect of RES on the anomaly
prediction performance by adjusting
the attention ratio λ in Eq. (4). Ta-
ble 3 denotes the F1-score with an
input length T = 48, prediction length
τ = {24, 96}, and attention ratio λ =
{0, 0.25, 1} in the SWaT and PSM datasets. Although increasing the mixing effect
improves the F1-score, completely eliminating the preservation effect (i.e., λ = 0)
tends to degrade the performance of anomaly prediction. Therefore, the increased
mixing effect of ATTN leads to improved performance, and the preservation
effect of RES also contributes to anomaly prediction in the attention block.
Effect of Temporal and Feature-wise ATTN. We perform anomaly predic-
tion on all datasets using four different attention mechanisms: general (Original),
feature-wise (F-ATTN), temporal (T-ATTN), and temporal and feature-wise
ATTN (TF-ATTN).

Table 4 denotes the F1-score with an input length T = 48 and prediction
lengths τ ∈ {24, 96}. In all cases, the F1-score is higher than that of the other
attention mechanisms for Original. F-ATTN achieves a higher F1-score than
Original for all prediction lengths, indicating that it is important to reflect the
dependencies between features in the final computed representations. The longer
the prediction length, the more T-ATTN, which treats each feature indepen-
dently, functions. Therefore, each feature has a different temporal dependency,
which is important for anomaly prediction. This indicates that performing TF-
ATTN enables detailed extraction of the MTS characteristics and contributes
to improving anomaly prediction.
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Fig. 8: Attention maps after temporal ATTN.

5.2 Visualization of Attention Maps

Fig. 9: Attention maps after feature-wise ATTN.

We visualize the interactions
between representations af-
ter temporal and feature-wise
ATTN to confirm the effective-
ness of the improved attention
mechanism. A window x̂48:71

from the PSM dataset with an
input length T = 24 and segment length Lseg = 6 which contains the precursors
of the anomalies (yellow highlighted area of Figure 8 to the right) is fed to the
trained encoder. An anomaly occurs in x̂72:95 (red highlighted area of Figure 8
to the right).

Figure 8 shows the attention maps of x̂48:71 for each feature after performing
temporal ATTN. The attention maps of each feature differ in time direction,
indicating that each feature has different temporal characteristics. In the attention
maps, the attention weights of the segments (keys) that contain behaviors leading
to anomalies tends to be higher for each segment (query). This indicates that
temporal ATTN can focus on the behaviors leading to the anomaly.

Figure 9 shows the attention maps between features when performing feature-
wise ATTN after temporal ATTN. The dependencies between features are cap-
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tured, and this information is essential for capturing the MTS characteristics.
When we compare each attention map of the segments, all segments exhibit
similar dependencies between features. These segments are close in time and thus
capture similar feature-wise dependencies.

6 Conclusions

In this paper, we proposed an anomaly prediction framework based on MTS
forecasting and reconstruction using Transformer. Our model is trained to predict
future trends using only normal data. Therefore, when given a time series exhibit-
ing deviations from normal features, the results will not be accurate predictions
of future trends, which can then be detected as precursors to anomaly occur-
rences through reconstruction. Detecting precursors of anomalies requires an
accurate understanding of the temporal characteristics of the MTS. We modified
the attention mechanism of each Transformer to perform ATTN in the time
and feature directions. However, an NLP study reported that the effect of the
ATTN was diminished after applying RES, despite using improved attention
mechanisms. Therefore, we confirmed the same phenomenon in the context of
MTS. We successfully preserved the strong effects of the improved attention
mechanism by modifying the operation of the attention block. We enhanced the
anomaly prediction performance by introducing these improvements.
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