
An (✏, �)-accurate level set estimation
with a stopping criterion

Hideaki Ishibashi1 ( ), Kota Matsui2,4, Kentaro Kutsukake2, and Hideitsu
Hino3

1 Kyushu Institute of Technology, Kitakyushu Fukuoka 808-0196, Japan
ishibashi@brain.kyutech.ac.jp

2 Nagoya University, Nagoya Aichi 464-8601, Japan
matsui.kota.x3@f.mail.nagoya-u.ac.jp,

kutsukake.kentaro.c3@f.mail.nagoya-u.ac.jp
3 The Institute of Statistical Mathematics, Tachikawa Tokyo, 190-0014, Japan

hino@ism.ac.jp
4 RIKEN AIP, Chuo Tokyo, 103-0027, Japan

Abstract. The level set estimation problem seeks to identify regions
within a set of candidate points where an unknown and costly to evaluate
function’s value exceeds a specified threshold, providing an efficient alter-
native to exhaustive evaluations of function values. Traditional methods
often use sequential optimization strategies to find ✏-accurate solutions,
which permit a margin around the threshold contour but frequently lack
effective stopping criteria, leading to excessive exploration and inefficien-
cies. This paper introduces an acquisition strategy for level set estima-
tion that incorporates a stopping criterion, ensuring the algorithm halts
when further exploration is unlikely to yield improvements, thereby re-
ducing unnecessary function evaluations. We theoretically prove that our
method satisfies ✏-accuracy with a confidence level of 1 � �, addressing
a key gap in existing approaches. Furthermore, we show that this also
leads to guarantees on the lower bounds of performance metrics such as
F-score. Numerical experiments demonstrate that the proposed acqui-
sition function achieves comparable precision to existing methods while
confirming that the stopping criterion effectively terminates the algo-
rithm once adequate exploration is completed.

Keywords: Level set estimation · Stopping criterion · Gaussian process
· Adaptive experimental design.

1 Introduction

Adaptive experimental design is a data-driven approach to planning experiments
that determines the next experimental conditions based on data obtained so far.
It is applied in various fields of experimental sciences such as drug discovery [20]
and the development of new materials [47]. For example, in manufacturing in-
dustries, identifying defective areas where the physical properties of materials
do not meet the desired quality is a crucial issue. Such defective areas are often
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determined by measuring the physical properties, using techniques like X-ray
diffraction, in various parts of refined materials and determining whether they
exceed acceptable lower limits. This problem can be formulated as a Level Set

Estimation (LSE) by considering a black-box function that takes the coordi-
nates of measurement locations as input and outputs the physical properties
at each measurement location. LSE is a problem aimed to identify regions on
the input space where the output values of a black-box function are greater (or
smaller) than a certain threshold, and active learning (AL; [44]) approach has
been proposed specifically to perform LSE with as few experimental iterations
as possible [9,18,12,51].

In practical scenarios of adaptive experimental design, determining “when to
stop the experiment” is crucially important. If stopping is not done appropriately,
it can lead to wasteful experiments and the squandering of various costs. In ex-
perimental sciences, there are situations where an upper limit on the number of
experiments that can be conducted. A naïve approach often involves conducting
experiments up to such a “budget limit” and then stopping. For LSE, few theo-
retical guarantees exist on the consistency [7] or sample complexity [5], and there
also exist some theoretical results on the finite-time guarantee of LSE [18,36],
but to the best of the authors’ knowledge, research on the stopping criterion
for LSE is limited, with one example being the F-score sampling criterion [42].
This method stops when the 5th percentile of the sampled F-scores exceeds the
desired F-score, and it allows for intuitive parameter setting and can be applied
to a wide range of acquisition functions. However, in many applications, it is
often unclear what is the maximum possible F-score for the problem, and the
actual F-score at the stopping point may not exceed the desired F-score, making
it difficult to stop the LSE procedure by specifying the F-score.

Contributions In this paper, we propose an acquisition function for LSE based
on the distribution of a random variable that represents the difficulty of classi-
fication. The proposed acquisition function entails a natural stopping criterion,
probabilistically ensuring that the algorithm can be appropriately stopped when
the LSE is accurately performed when used with the proposed acquisition func-
tion. Furthermore, our method probabilistically guarantees the lower bounds of
performance metrics such as the F-score, accuracy, recall, precision, and speci-
ficity. Experiments using test functions and real-world data on the quality of
silicon ingots demonstrate that the proposed method performs at least as well
as existing methods in terms of the F-score, and can stop the algorithm when
sufficient estimation accuracy is achieved.

Related Works For active learning, stopping criteria based on various perspec-
tives have been proposed. For example, it is investigated in [48] that the use
of classifier confidence to determine that there are no informative instances re-
maining in the candidate point set and to stop AL. In [40], an intrinsic stopping
criterion based on the exhaustiveness of the candidate point set is proposed, that
does not depend on a predefined threshold parameter. A stopping criteria based
on Stabilizing Predictions is proposed in [11], that checks the stability of the
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current model’s predictions on the validation set and decides whether to stop
the AL. In [29,10,2], stopping criterion based on the change in the F-score is
considered. Criteria called TotalConf and LeastConf are proposed in [37], which
stop the AL based on the amount of change in the classification confidence (i.e.,
prediction uncertainty) for unlabeled data. A method to stop AL based on upper
bound of the generalization error is proposed in [24]. For Bayesian optimization
(BO), stopping criteria based on regret have been proposed [33,25,50]. Note that
each of these studies concerns stopping criteria for active learning and adaptive
experimental design for classification, regression and optimization tasks, and are
not directly applicable to the LSE problem.

Similar to the LSE problem, the estimation of the excursion set (which is
also known as the probability of failure of a system in the industrial world) has
also been considered, and different approaches such as sequential experimental
design and kriging have been employed to tackle it with criteria targeted to
reduce the uncertainty about the level set [8,3,15]. Contour finding, which iden-
tifies the contour where a black-box function equals a given threshold, has been
developed independently of LSE but is closely related to it [17,35,31]. Several
extensions of LSE to various situations are also considered, such as LSE under
input uncertainty [16,23,26], heavy-tailed output noise [32] or heteroscedasticity
of outputs [52], settings that aim at distributionally robust LSE [22], dealing
with Bernoulli observations [30], considering control over type-I and type-II er-
rors [4], and the setting where the input is composed of both deterministic and
uncertain parts [1].

2 Level Set Estimation

Consider an unknown function f : X ! R where X is a finite set of input
x. This is a so-called pool-based problem. The objective of LSE is to classify,
given a threshold ✓ 2 R, whether the outputs {f(x) | x 2 X} corresponding
to a given candidate point set X exceed ✓, using as few datasets as possible.
The upper/lower level sets are defined as H✓ = {x 2 X | f(x) > ✓} and L✓ =
{x 2 X | f(x)  ✓}, respectively. In LSE, the following procedure is iteratively
performed to achieve this objective: i) Estimate the surrogate function f̂ from
the obtained dataset. ii) Utilize the surrogate function to classify each candidate
point into any one of the upper-level set, the lower-level set, or the undetermined
set. iii) Select the next search point based on the surrogate function. iv) Query
the oracle for the corresponding output of the selected point. v) Add the obtained
point to the dataset.

The surrogate function is often modeled by the Gaussian process regression
(GPR; [49]). Consider a set of input-output pairs SN = {(xn, yn)}N

n=1. In GPR,
we assume that the function f̂ is generated by a Gaussian process (GP) with
a mean function m(x) and a covariance function k(x,x0). Additionally, the ob-
served output y is assumed to have Gaussian noise with precision parameter �

added to the generated function f̂ . Therefore, in GPR, we consider the follow-
ing generative model: f̂(x) ⇠ N (m(x), k(x,x0)), and y | x ⇠ N (f̂(x), ��1).
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Denoting y := (y1, y2, . . . , yN ), the joint distribution of y and the output f̂(x⇤)
for a new input x⇤ can be expressed by the following equation.


y

f̂(x⇤)

�
⇠ N

✓
m

m(x⇤)

�
,


K̃ k(x⇤)

kT(x⇤) k(x⇤
,x⇤)

�◆
, (1)

where K̃ = K + �
�1I, [K]i,j = k(xi,xj), k(x⇤) = (k(xn,x⇤))N

n=1 2 RN , and
m = (m(xn))N

n=1 2 RN . Therefore, the posterior distribution when observing
the dataset SN is given by p(f̂(x⇤) | y) = N (f̂(x⇤) | µN (x⇤), �2

N
(x⇤)). Here,

µN (x⇤) = m(x⇤) + kT(x⇤)K̃�1(y � m), (2)

�
2
N

(x⇤) = k(x⇤
,x⇤) � kT(x⇤)K̃�1k(x⇤). (3)

In LSE using GPR, the next exploration point is determined based on the pos-
terior distribution. Specifically, if we define the acquisition function ↵ : X ! R
parameterized by p(f̂ | y), the next exploration point is determined by xnew =
arg maxx2X ↵(x; p(f̂ | y), ✓). Although there are various types of acquisition
functions, such as those based on confidence bounds [18] and expected improve-
ment for level set estimation [51], we focus on a typical approach based on
misclassification probability [14]. Assuming that the true function f is gener-
ated from the posterior distribution p(f̂ |y), the probability Pr(x 2 L✓) can be
expressed as follows, where �(·) denotes the cumulative distribution function of
the standard Gaussian:

Pr(x 2 L✓) =

Z
✓

�1
p(f̂(x) | y)df̂(x) = �

✓
✓ � µN (x)

�N (x)

◆
. (4)

Similarly, Pr(x 2 H✓) = 1�Pr(x 2 L✓). Then, p
min(x) = min{Pr(x 2 H✓), Pr(x 2

L✓)} represents the difficulty of classifying the candidate point x; hence we call
this “misclassification probability” [14]. Similarly, we call p

max(x) = max{Pr(x 2
H✓), Pr(x 2 L✓)} “classification probability”. Therefore, the following acquisition
function selects the candidate points that are difficult to classify as the next
points of evaluation:

xnew = arg max
x2X

p
min(x). (5)

When classifying candidate points, the standard method is the classification
rule based on confidence intervals proposed by [18]. Let H̃✓ and L̃✓ be estimated
upper-level set and lower-level set, respectively. We further introduce an unde-
termined set Ũ✓. Then, a candidate point x is classified according to the following
classification rule:

H̃✓ ={x | x 2 X , µN (x) � ��N (x) > ✓}, (6)

L̃✓ ={x | x 2 X , µN (x) + ��N (x) < ✓}, (7)

Ũ✓ =X\{H̃✓ [ L̃✓}, (8)

where � is the parameter that controls the exploration-exploitation trade-off in
the acquisition function.
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3 Proposed Acquisition Function and Stopping Criterion
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Fig. 1: The proposed method selects a candidate point that is difficult to classify
and has a low probability of containing the true function value in the margin
region and stops LSE when the condition is satisfied.

This section describes the acquisition function for LSE proposed in this paper
and its stopping criterion. The pseudocode of the proposed LSE procedure is
shown in Appendix B.2.

3.1 Proposed Acquisition Function

The acquisition function based on misclassification probability (5) is an intuitive
and natural choice, where points with Bernoulli distribution parameters close
to 0.5, and therefore difficult to classify, are selected as candidates for the next
observation. In this formulation, noting that the cumulative distribution function
of the standard Gaussian is �(0) = 0.5, Eq. (4) suggests two possible scenarios
for the selected candidate points. The first case occurs when the true function
value at the candidate point is far from the threshold, but due to insufficient
data observed near the candidate point, the posterior distribution’s variance
is large, making classification difficult (�

⇣
✓�µN (x)

�N (x)

⌘
! 0.5 as �N (x) ! 1).

In this case, exploring the candidate point reduces the variance of the posterior
distribution and increases the classification probability, making it less likely to be
explored in subsequent searches. This is the case the exploration offers reasonable
information.

On the other hand, the second case is problematic. The acquisition func-
tion (5) would select points at which the true function values are close to the
threshold (�

⇣
✓�µN (x)

�N (x)

⌘
! 0.5 as µN (x) ! ✓). In this scenario, the same candi-

date point is repeatedly explored while other candidate points are ignored. For
this issue, the previous study has heuristically used the product of the misclas-
sification probability and the posterior variance as the acquisition function [14].
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In this study, we assume that a margin ✏ > 0 is given5, which indicates
a tolerance of the accuracy of estimation. If the gap between the true func-
tion value f(x) and threshold ✓ for a candidate point x lies within the range
E := (�✏/2, ✏/2], it is considered as a difficult to classify, and that exploring
this candidate point will not increase certainty about the classification, and thus
the point is removed from the candidate point set. To put it another way, for
candidate points that are difficult to classify, we decide to make a concession
and perform an ✏-accurate classification. The notion of the margin is essentially
equivalent to ✏-accuracy introduced in [12], but we explicitly utilize it as informa-
tion for determining the next experimental condition. The difficult-to-classify set
is defined as U✓ = {x 2 X | (f(x)�✓) 2 E}, and the solution triplet (H̃✓, L̃✓, Ũ✓)
is ✏-accurate if 8x 2 H̃✓ is in H✓, 8x 2 L̃✓ is in L✓, and 8x 2 Ũ✓ is in U✓.

The probability of x 2 U✓ is given by

Pr(x 2 U✓) =

Z
✓+✏/2

✓�✏/2
p(f̂(x) | y)df̂(x)

=�

✓
✓ + ✏/2 � µN (x)

�N (x)

◆
� �

✓
✓ � ✏/2 � µN (x)

�N (x)

◆
.

Similarly, Pr(x /2 U✓) = 1 � Pr(x 2 U✓). Then, with r
min(x) := min{Pr(x 2

H✓), Pr(x 2 L✓), Pr(x /2 U✓)}, we redefine the acquisition function as

xnew = arg max
x2X

r
min(x). (9)

As shown in Fig. 1, this acquisition function evaluates not only the probability
that a candidate point belongs to the upper/lower level sets but also the proba-
bility Pr(x /2 U✓) that the gap does not fall within the range E . For a candidate
point x where the gap f(x) � ✓ is within E , if the area around the candidate
point has not been well explored, Pr(x /2 U✓) increases, and if p

min(x) is also
large, then r

min(x) increases, leading to the selection of x. Conversely, if the area
around the candidate point has been thoroughly explored, the posterior variance
decreases, thus increasing the probability that the gap f(x) � ✓ falls within E
and decreasing Pr(x /2 U✓). Therefore, even if p

min(x) is large and classification
is difficult, r

min(x) becomes small, making it less likely to be chosen as the next
point of evaluation.

As similar approaches to the misclassification-based approach, there are entropy-
based and variance-based approaches [14,17]. These acquisition functions share
the fundamental idea with the one in (5) and therefore inherit similar issues to
those mentioned at the beginning of this section regarding (5). Several stud-
ies have discussed approaches to address the issues of these acquisition func-
tions [35,41], but none provide theoretical guarantees on stopping performance,
leaving the evaluation of this aspect to empirical analysis. In contrast, our ac-
quisition function addresses the aforementioned issues while also providing the-
oretical guarantees on stopping performance, as discussed in the next section.
5 Here, the margin is assumed to be given, but a method for setting the margin based

on the observed data are discussed in Appendix. B.1.
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3.2 Classification rule and stopping criterion

We describe the classification rule and stopping method for LSE using the acqui-
sition function Eq. (9). Letting r

max(x) := max{Pr(x 2 H✓), Pr(x 2 L✓), Pr(x 2
U✓)}, the proposed classification rule is as follows:

H̃✓ :={x | x 2 X , r
max(x) = Pr(x 2 H✓)}, (10)

L̃✓ :={x | x 2 X , r
max(x) = Pr(x 2 L✓)}, (11)

Ũ✓ :={x | x 2 X , r
max(x) = Pr(x 2 U✓)}. (12)

As will be discussed later, this classification rule can be considered equivalent to
the classification rule of Eqs. (6), (7), and (8) under certain conditions.

The proposed stopping criterion uses a confidence parameter � (0 < � < 1)
as a threshold, and LSE is stopped when the following inequality is satisfied:

1 �
X

x2X
r
min(x) � �. (13)

That is, LSE is stopped when the sum of the acquisition function values for
all candidate points becomes small enough. At the point of stopping LSE, the
following probability inequality holds:

Theorem 1. If we assume that H̃✓,L̃✓ and Ũ✓ are determined by using the clas-

sification rule of Eqs. (10),(11) and (12), then the following inequality holds:

Pr((H̃✓, L̃✓, Ũ✓) is ✏-accurate) � 1 �
X

x2X
r
min(x). (14)

The proof is shown in Appendix A. From this theorem, when Eq. (13) is
satisfied, stopping LSE guarantees that (H̃✓, L̃✓, Ũ✓) is ✏-accurate with a prob-
ability of at least �. Therefore, we refer to the LSE that uses the combination
of the proposed acquisition function and stopping criterion as the (✏, �)-accurate

LSE. Since the left-hand side of Eq. (14) can be evaluated by sampling func-
tions according to the GP posterior distribution, we provide the tightness of the
proposed lower bound in the Appendix C.1.

By using theorem 1, we can also guarantee the lower bound of performance
measures. Here, we present only the lower bound of the F-score as follows.

Proposition 1. If we assume that H̃✓,L̃✓ and Ũ✓ are determined by using the

classification rule of Eqs. (10),(11) and (12), then the inequality

F-score � 2|H̃✓|
2|H̃✓| + |Ũ✓|

holds with probability 1 �
P

x2X r
min(x).

The lower bound of other performance measures such as accuracy, recall, pre-
cision, and specificity, and their proofs are shown in Appendix A. In [43], the
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lower bound of the F-score could not be analytically computed, so it is estimated
using sampling. In contrast, our method provides lower bounds for the various
measures such as F-score.

The standard classification rule and the proposed classification rule can
be considered the same under certain conditions. The standard classification
rule can be interpreted as follows: x is classified into upper-level set when
Pr(x 2 H✓) > �(�) is satisfied, x is classified into lower-level set when Pr(x 2
L✓) > �(�) is satisfied, and x is classified into undetermined set when the both
of conditions are not satisfied. Regarding Pr(x 2 U✓) as �(�), the standard clas-
sification is equivalent to the proposed classification rule under the assumption
that �(�) > 0.56.

By using the above relationship, we can show that the triplet (H̃✓, L̃✓, Ũ✓) is
✏-accurate in the case of the standard classification rule. Here, � in the standard
classification rule and ✏ in the proposed classification rule can be mutually con-
verted. Note that � also changes for each x in general even if ✏ is common to all
x since Pr(x 2 U✓) varies depending on x. We denote Pr(x 2 U✓) as g(✏ | x),
then there is an inverse mapping of g(✏ | x) because g(· | x) : R+ ! (0, 1) is
a strictly increasing function with respect to ✏ 2 R+. Therefore, the following
mutual conversions between ✏ and � hold:

� = �
�1 (g(✏ | x)) , ✏ = g

�1(�(�) | x).

With these conversions, we can show that the triplet (H̃✓, L̃✓, Ũ✓) is ✏-accurate
when we use the standard classification rule as follows:

Corollary 1. We assume that H̃✓,L̃✓ and Ũ✓ are determined by using the clas-

sification rule of Eqs. (6), (7), and (8) with � and �(�) > 0.5. Let r̃
min(x) =

min{Pr(x 2 H✓), Pr(x 2 L✓), 1 � �(�)}. Then, the following inequality holds:

Pr((H̃✓, L̃✓, Ũ✓) is g
�1(�(�) | x)-accurate) � 1 �

X

x2X
r̃
min(x). (15)

The proof is shown in Appendix A.

3.3 Choice of ✏ and �

We explain how to determine the parameters ✏ and �, and its sensitivity. Regard-
ing �, the proposed lower bound tends to increase monotonically, and the bound
becomes tighter as the true probability of ✏-accuracy approaches 1 as shown in
Appendix. C.1. Therefore, we just have to set � close to 1, such as � = 0.99.
Since the stopping time does not change significantly when � is close to 1, we
can say that the stopping timing tends to be insensitive to the choice of �.
6 The condition �(�) > 0.5 is added because in the standard classification rule, when
�(�)  0.5, there is a possibility that x belongs to both the upper-level and lower-
level sets. The standard classification rule often uses values such as � = 1.96, which
corresponds to �(�) = 0.975, implicitly assuming �(�) > 0.5.
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On the other hand, it is difficult to set ✏ appropriately, since it depends on
the range of the objective function and the noise variance. In this study, instead
of determining ✏ directly, we determine ✏ as follows:7

✏(x) = 2

s
��1k(x,x)

��1 + Lk(x,x)
�

�1

✓
1 � 1 � �

2|X |

◆
, (16)

where L is a parameter set by the user instead of ✏, and it can be interpreted
as the minimum number of observations required per candidate point, even in
cases where classification is not possible. As shown in the Appendix. C.6, L is
less sensitive to the range of the function and the noise variance than directly
specifying ✏, making it a more robust parameter.

3.4 Computational cost

The proposed stopping criterion only requires the cumulative distribution func-
tion (CDF) of the standard normal distribution, and it does not require any
sampling. Since the CDF of the standard normal distribution can be efficiently
computed using libraries, the computational cost increases only linearly with the
number of candidate points. In contrast, F-scores sampling (FS) [43] requires
sampling functions from the posterior distribution, resulting in a quadratic in-
crease in computational cost with respect to the number of candidate points.
Therefore, compared to FS, the proposed stopping criterion remains computa-
tionally feasible even as the number of candidate points increases.

4 Experimental results

In this section, we demonstrate the effectiveness of the proposed acquisition
function using both synthetic data and a practical application for estimating the
red zone in silicon ingots.8 In all experiments, the threshold ✓ that defines the
level set is a pre-fixed value, but the results of setting ✓ to several different values
are also shown in the Appendix C.7. Note that consistent results are obtained
even when different thresholds are used.

4.1 LSE for test functions

Aiming at demonstrating the applicability of the proposed method across func-
tions with various shapes, we evaluate the proposed method using test functions
commonly used as benchmarks in the study of optimization algorithms. The
test functions employed in this experiment are the Rosenbrock, Branin, and
7 When using a stationary kernel, ✏ is independent of x. Please refer to the Ap-

pendix. B.1 for the detailed derivation of this equation.
8 In these experiments, we use a Macbook Pro with Apple M1 Max (10-core CPU, 32-

core GPU and 32GB memory), and implemented with Python and library GPy [19].
The code is available at https://github.com/hideaki-ishibashi/stopping_LSE

https://github.com/hideaki-ishibashi/stopping_LSE
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Cross in tray functions9, each representing a different landscape: one with
a single local minimum with a spherical vicinity, one with a valley-like struc-
ture, and one with multiple local minima. Additional results are discussed in
the Appendix C.3. For each function, thresholds are set, and candidate points
exceeding these thresholds are considered part of the true upper set, while those
below are viewed as the true lower set. The thresholds are set as follows: ✓ = 100
for the Rosenbrock function and the Branin function, ✓ = �1.5 for the Cross

in tray function. Although these test functions have continuous domains, they
are discretized into a grid of 20 ⇥ 20 = 400 points, which serve as observa-
tion candidates. In the Appendix C.2, we show that the stopping timing of the
proposed method tends not to change even if the number of candidate points
increases. Any of these points may be selected by acquisition functions, and re-
peated selections of the same points is allowed. Gaussian noise is added to the
observations, with standard deviations set according to the range of each test
function: �noise = 30 for the Rosenbrock function, �noise = 20 for the Branin

function, and �noise = 0.01 for the Cross in tray function.
The proposed method is evaluated based on both the performance of the

acquisition function and the efficiency achieved by early stopping. Generally,
the performance of the LSE acquisition function is assessed using the F-score,
which compares the predicted upper/lower level sets to the true upper/lower
level sets over the candidate points. Not all candidate points may be classified
in every search due to the classification rules. For the evaluation purpose, un-
classified candidate points are assigned to the upper or lower level sets only for
the F-score calculation if the posterior mean of GP exceeds or falls below the
threshold, respectively. The performance of the acquisition function is evaluated
based on the mean and variance of the convergence speed of the F-score when
the LSE algorithm is executed using five randomly selected initial points. On the
other hand, the effectiveness of the stopping criterion is evaluated based on the
stopping time and the F-score at that moment. In other words, a good stopping
criterion allows the algorithm to stop with fewer observations while achieving a
high F-score.

Comparison methods The level set estimation problem is also related to Bayesian
optimization [38] and bandit problems [46], and its applications range from brain
science [34] to astronomy [6,39] for example. Various algorithms (acquisition
functions) have been proposed, but in this study, we compare those that are
considered particularly major types and important in terms of practical per-
formance: in addition to uncertainty sampling (US), which selects points that
maximize the predictive variance of the Gaussian process as a baseline, we con-
sider Straddle [14], MILE [18], RMILE [18], and MELK [36], which is a recently
proposed sampling method based on experimental design. Although many other
methods exist, they do not consistently outperform those mentioned here. It
should also be noted that the main focus of this paper is the proposal of an ac-
quisition function equipped with a stopping criterion. In these acquisition func-

9 https://www.sfu.ca/~ssurjano/optimization.html

https://www.sfu.ca/~ssurjano/optimization.html
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tions, candidate points are classified according to Eqs. (6), (7), and (8), where
� = 1.96. On the other hand, in the proposed method, candidate points are clas-
sified according to Eqs. (10), (11), and (12). The same value of � = 1.96 is used
for Straddle, MILE, and RMILE. MELK assumes that candidate points are not
reclassified and that multiple points are sampled simultaneously. Following the
settings of the previous study [36], MELK samples 10 points at a time without
reclassifying candidate points. In contrast, other methods reclassify candidate
points and sample one point at a time. RMILE’s robust adjustment parameter
⌫ is set to ⌫ = 0.1 according to the previous studies [51,22]. The proposed ac-
quisition function also requires setting a parameter L, which is conservatively
set to L = 5 to address the complex shape function based on the experimental
results in Appendix C.6. The threshold for the proposed stopping criterion is
set at � = 0.99. To evaluate the stopping criterion of the proposed method, we
consider two stopping criteria. One is a standard stopping criterion which stops
LSE when all candidate points are classified’ (we call this the fully classified (FC)

criterion), and the other is a stopping criteria based on sampling F-scores [43]
(the criterion referred to as F-score Sampling (FS)). The stopping times of these
stopping criteria are compared with the stopping times when using the proposed
acquisition function and stopping criterion. In the FS criterion, as hyperparam-
eters, we need to set the desired F-score and the probability of exceeding that
F-score. In this experiment, we set the desired F-score and the probability to
0.95 and 95% (that is, 5th percentile).

Hyper-parameter setting In this experiment, we consider a GP with the mean
function set to ✓ and the covariance function defined by a Gaussian kernel
k(x,x0) = ⇢ exp(� 1

2l2
kx�x0k2). The mean function is set to ✓ to ensure that, in

the absence of any observed data, the probability of unobserved candidate points
being classified into either the upper or lower level set is 50%. This setting can be
adjusted based on any prior knowledge available in real applications. The vari-
ance ⇢ of the Gaussian kernel, the kernel width l, and the noise precision � are
hyperparameters, which are estimated by maximizing the marginal likelihood of
the observed data each time a search is conducted using LSE. To prevent large
fluctuations in the hyperparameters with each search, gamma priors are placed
on ⇢ and l. Additionally, the noise precision � is constrained within the range
[10�6

, 106] to prevent it from becoming infinite.

Results The F-scores for each acquisition function and the respective stopping
timings are shown in Figs. 2. Although there are slight differences between in-
dividual test functions, no acquisition function, including the proposed method,
significantly outperforms the baseline US or is markedly inefficient. Thus, it is
crucial to stop LSE at the right moment when the F-scores have converged to
enhance the efficiency of LSE. Regarding the stopping timings, the fully classi-
fied criterion often fails to stop the LSE even when the budget is fully utilized
except for MELK in Cross in tray function. The inability of the FC criterion
to stop is due to the occurrence of difficult-to-classify candidate points when
function values at candidate points equal the threshold, and classification be-
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(a) Rosenbrock (b) Branin (c) Cross in tray

(d) Rosenbrock (e) Branin (f) Cross in tray

Fig. 2: F-scores using each acquisition function and stoped timings with the
proposed (Ours), F-score sampling (FS) and fully classified (FC) criteria for test
functions. (a)–(c) Stopping time of FC and Ours. (d)–(f) Stopping times of FS
and Ours.

comes more challenging as noise is added to the data, distancing the function
values from the threshold. In MELK, it is sometimes possible to stop LSE even
when the fully classified stopping criteria are used, as shown in Fig. 2(c), since
it does not reclassify candidate points. However, the F-score of MELK may be
lower than that of other methods, as it cannot correct candidate points that
have been misclassified. In the FS criterion, as shown in Fig. 2(d), when the F-
score converges, LSE can be stopped regardless of the acquisition function used.
However, as shown in Figs. 2(f), despite the F-score not having converged, FS
stops LSE. This is because the desired F-score is set to 0.95 in this experiment.
This value was suitable when the F-score converged to 1, as in case Rosenbrock.
However, it was not suitable when the noise was high, and the F-score did not
converge to 1, as in cases of Branin function. Moreover, when noise was low,
FS stopped LSE before the F-score converged to 1. Therefore, it is necessary to
set the appropriate desired F-score according to the situation in the FS. Fur-
thermore, under the FS criterion, despite setting the desired threshold to 0.95,
the actual F-scores at the stopping time tend to be lower than 0.95 as shown in
Fig. 2(e) and (f). Therefore, in practical applications, the desired value should
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be set higher than expected. In contrast, the proposed method, despite using
the same parameters, can stop at the time when convergence occurs, regardless
of where the F-score converges. This demonstrates that, compared to FS, the
proposed method does not require the parameters of the stopping criterion to
be finely tuned to the specific problem.

4.2 Red-zone estimation of silicon ingots

We demonstrate the effectiveness of the proposed method when using LSE to
estimate the red zone in silicon ingots used in solar cells. The objective in this
problem is to estimate regions contaminated with impurities (called the red
zone) that are unsuitable for solar cell production. Typically, red zone estimation
is performed through spatial mapping with measurement points placed in a
regular grid, which is very time-consuming. Recently, the efficiency of red zone
estimation using LSE has been proposed [21]. The data used in the experiments
consist of lifetime measurements taken at grid points on two different types
of silicon ingots, with each ingot measured at a grid of 161 ⇥ 121 points [28].
Hereinafter, the lifetime data from the first silicon ingot will be referred to as
Lifetime1, and from the second ingot as Lifetime2. In both cases, the threshold
is set to ✓ = 230.

The performance of LSE methods are evaluated, in the similar manner to
the test functions, by observing the F-scores, and the F-score at the stopping
timing, with initial values changed randomly five times. The same methodology
as for the test functions was used for comparison, but once a candidate point is
selected, it is not selected again to estimate the noise because we have only one
observation for each point. The parameters of the acquisition functions, the GP
prior, and the hyperparameter estimation method were employed in the same
manner as for the test functions.

As shown in Figs. 3, the transition of the F-score shows no significant differ-
ences regardless of the acquisition function used, except for MELK. In MELK,
the F-score tends to converge to a low value. This is because MELK does not
reclassify candidate points. In the perspective of the stopping timings, the FC
stopping criterion fails to stop even after the entire budget is used. On the other
hand, the proposed criterion allows for early stopping once the F-scores converge.
This is likely due to measurement noise, leading to difficult-to-classify candidate
points. Thus, the proposed method effectively stops the LSE in red zone estima-
tion. FS criterion stops LSE earlier than the proposed criterion. However, the
F-score continues to gradually increase even after FS stops, and the appropriate
stopping point varies depending on the situation.

5 Discussion and Conclusion

In this paper, we proposed an acquisition function for level set estimation by
directly modeling the difficulty of classifying into upper/lower sets. The proposed
acquisition function is based on the notion of the ✏-accuracy [12], and an adaptive
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(a) Lifetime1 (b) Lifetime2

(c) Lifetime1 (d) Lifetime2

Fig. 3: F-scores using each acquisition function and stoped timings with the
proposed (Ours), F-score sampling (FS) and fully classified (FC) criteria for red
zone estimation. (a), (b) Stopping time of FC and Ours. (c), (d) Stopping times
of FS and Ours.

determination method of the ✏ parameter is proposed. A stopping criterion for
the algorithm was also proposed. When applied to both synthetic and real data,
the proposed method performed comparably to existing methods in terms of
acquisition function performance and was able to stop the algorithm early, even
in the presence of observation noise. Empirically, the proposed method tends to
be conservative. This behavior can be beneficial in some cases but harmful in
others. Balancing theoretical guarantees with more aggressive stopping remains
an open problem for future work. Another direction for future work is extending
the method to query-based problems where evaluation points are selected from a
continuous domain [45]. Additionally, extending the method to high-dimensional
problems is also an important issue.
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