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Abstract. Resampling techniques are widely used by researchers and
practitioners to address class imbalance due to their adaptability across
diverse classification tasks. However, they inherently lack the ability to
enforce user-defined preferences regarding model behavior after train-
ing, a feature typically exclusive to cost-sensitive learning frameworks
or prediction post-processing techniques. This limitation is particularly
critical in high-stakes applications, such as in the medical domain, where
maximizing minority class accuracy while minimizing false negatives is
essential. To overcome this constraint, we introduce the Genetic Beta Re-
sampling Framework (GBRF), a novel, customizable and computation-
ally efficient resampling framework that integrates user preferences into
the process of synthetic data generation. GBRF leverages Genetic Algo-
rithms to optimize two probability mass functions (PMFs) that govern
the sampling probabilities of different instance groups, enabling synthetic
data generation and/or instance removal. Consequently, GBRF can func-
tion as an hybrid sampling, oversampling or undersampling technique.
User preferences are encoded through a parameter, β, which controls
the trade-off between precision and recall. Comprehensive experiments
on 60 OpenML datasets demonstrate that GBRF effectively embeds
user preferences into data distributions, thus shaping model behavior
accordingly. It consistently outperforms state-of-the-art resampling tech-
niques, such as SMOTE-IPF and ProWSyn, as well as cost-sensitive clas-
sifiers, even when integrated with various classification models. Further-
more, by employing a non-instance-wise genetic optimization approach,
GBRF significantly reduces the search space, achieving faster conver-
gence to optimal solutions. Finally, since synthetic data generation is
governed by two PMFs, GBRF provides an intuitive and transparent
mechanism for understanding how data is generated. Code available at:
https://github.com/MiguelCarvalhoPhD/GBRF.
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1 Introduction

Class imbalance refers to the unequal distribution of the target variable in super-
vised learning tasks, where the underrepresented class, often termed the minority
class in binary classification problems, typically experiences reduced predictive
performance [4]. This skewed data distribution has far-reaching consequences
in applications where correctly classifying the minority class holds critical im-
portance, such as fraud detection, rare medical condition diagnosis, forecasting
natural disasters, and fields including chemical and biochemical engineering, IT
security, agriculture, and emergency management [21]. This problem arises from
the assumption embedded in most learning algorithms that all data points are
equally important, leading to accuracy-oriented optimization strategies with uni-
form misclassification penalties across all classes [17]. Consequently, classifiers
often prioritize majority class performance, as correctly classifying majority in-
stances while disproportionately misclassifying minority samples typically incurs
lower training loss [17]. However, it is essential to recognize that class imbalance
alone does not affect model performance [20]. Note that in cases where the classes
are easily linearly separable with large margins, optimal training loss can still be
achieved without the need to bias the decision boundary in favor of the majority
class [20]. As such, class imbalance becomes truly problematic when combined
with other existing data adverse characteristics (also referred to as data irregu-
larities), such as class overlap, existence of small disjuncts, high dimensionality,
and noise [20].

Given the widespread incidence of class imbalance across diverse sectors and
its significant impact on model performance, a wide range of methods has been
developed to address this issue, which can be broadly divided into data-level
and algorithmic-level approaches [10,4]. Data-level approaches involve modify-
ing the data distribution to magnify the relative importance of the minority class
during model training, typically by generating synthetic minority samples (over-
sampling) or extracting majority samples (undersampling) until identical class
frequencies are attained. Contrarily, algorithmic level approaches focus on alter-
ing existing learning algorithms to mitigate the bias towards the majority class,
without altering the training data [19,7]. Strategies encompass adjusting the de-
cision threshold, training class-specific classifiers, weighting-based approaches,
among others [7]. Data-level approaches are more widely utilized by researchers
and practitioners given their ability to be utilized alongside any other learning
algorithm or classification context, contrasting with algorithmic-level approaches
which are constrained to models capable of being adapted to imbalanced domains
and often rely on expert knowledge for fine-tuning [19,4,16]. However, a key lim-
itation of resampling methods is their inability to directly encode user-specific
objectives for model behavior. As Branco et al. highlighted in [4], determining
the optimal degree of undersampling based on user preferences remains an open
research problem. This issue is mainly addressed through cost-sensitive classi-
fiers, which provide a structured framework for incorporating class-specific costs
into the learning process [4].
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To overcome this fundamental limitation of resampling approaches, we pro-
pose an explainable, customizable, and computationally efficient framework for
synthetic dataset generation. This framework, designated Genetic Beta Resam-
pling Framework (GBRF), ensures that models trained on the generated artificial
data adhere to predefined user preferences, which are encoded in a parameter,
β. This parameter regulates the trade-off between recall and precision: higher β
values prioritize recall, favoring synthetic datasets that reduce false negatives at
the expense of false positives, and vice versa. In practice, penalizing false neg-
atives more heavily encourages synthetic sample generation within the decision
boundary, effectively expanding underrepresented regions and reducing minor-
ity class misclassifications. However, selecting an optimal resampling approach
is not solely dependent on user preferences but is also influenced by the afore-
mentioned intrinsic dataset characteristics. As suggested by the No Free Lunch
Theorem, no universally optimal resampling strategy exists [22], and the con-
nection between data irregularities and effective resampling protocols remains
an open research question [20]. To provide an adaptive solution, our framework
employs Genetic Algorithms to optimize two probability mass functions (PMF)
that govern the sampling probability of different instance groups, determining
whether samples are synthesized or eliminated.

The main contributions of this work are manifold:

– We present a mathematical analysis, leveraging Bayes’ Theorem, to demon-
strate how selectively resampling minority class instances with different class-
conditional densities can alter the decision boundary and subsequently influ-
ence model behavior. This analysis substantiates the validity of our resam-
pling strategy.

– We propose a novel resampling framework designed to determine optimal
resampling strategies for a wide range of datasets and user-specified prefer-
ences—an objective that, until now, has been achievable only through algo-
rithmic changes of existing models. The framework’s efficacy is empirically
demonstrated across 60 OpenML benchmarks and further supported by a
visual inspection of the generated synthetic datasets. The proposed frame-
work is also fully customizable, enabling users to specify custom functions
for sample grouping and generation, which are then optimized by GBRF.

– By deviating from conventional instance-wise optimization in genetic resam-
pling, we ensure that the search space of the genetic algorithm scales with
the number of generated sample groups rather than increasing exponentially
with dataset size, enabling faster convergence to high-quality solutions.

2 Related Work

Resampling Tabular Datasets to Address Class Imbalance. The major-
ity of recent research on resampling in tabular data has focused on addressing
the limitations of the Synthetic Minority Oversampling TEchnique (SMOTE)
to develop more robust oversampling methods [9]. SMOTE is an interpolation-
based data generation technique that operates as follows [6]: Given a training
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dataset D = {(xi, yi)}ni=1, where NNj(xi) denotes the j-th minority-class near-
est neighbor of xi, the generation of a synthetic instance, xnew, is formalized
as:

xnew = xi + α(xi −NNj(xi)), α ∼ U(0, 1) (1)

with U(0, 1) denoting a uniform random variable from the interval [0, 1] This pro-
cedure is repeated until the desired class ratio is achieved. Importantly, SMOTE
applies uniform sampling probabilities across all minority class instances, which
introduces three major issues: (i) it fails to address within-class imbalance, as
low-density regions remain underrepresented post-oversampling, (ii) it may over-
sample outliers, potentially propagating existing noise and degradating classi-
fier performance, and (iii) it does not consider the structure of the majority
class, which can lead to class overlap. To overcome these limitations, numerous
SMOTE variants have been developed, each introducing specific modifications to
the original algorithm [16]. As categorized in [9], these variations include (1) ini-
tial selection of samples for oversampling, (2) adaptive generation of synthetic
instances, (3) integration with undersampling, among others. While these ap-
proaches introduce distinct methodological refinements, they typically share a
commom principle: they aim to identify and quantify existing data irregulari-
ties and adapt the resampling process accordingly. However, fully characterizing
these data irregularities remains an unresolved research challenge, particularly
given the intricate and multifaceted nature of class overlap (see [20] for a de-
tailed discussion). This limitation imposes fundamental constraints on conven-
tional resampling methods, which rely on predefined metrics to adjust differ-
ent aspects of the resampling algorithm. This is major factor dictating why we
adopt a metaheuristic framework capable of optimizing resampling protocols dy-
namically, eliminating the dependence on handcrafted dataset characterization
metrics and enabling a more adaptable and generalizable solution.

Genetic Algorithms in Resampling Genetic Algorithms. Genetic Algo-
rithms are population based search algorithms that model complex systems by
constructing a simulated environment that mimics natural evolution, allowing
them to solve problems that do not have a well-defined efficient solution [5]. The
fundamental components of a GA include chromosome encoding, genetic oper-
ators (selection, mutation, and crossover), and a fitness function that quantifies
the suitability of each candidate solution. GA typically begins with a randomly
initialized population, where each chromosome encodes a candidate solution.
Fitness evaluation determines solution quality, guiding selection and crossover
processes that generate offspring by combining traits of the fittest individuals
[5]. Mutation introduces genetic diversity by altering genes, preventing prema-
ture convergence to local optima and enhancing exploration of the search space.
Selection mechanisms determine which individuals advance to the next genera-
tion, and this iterative process continues until a stopping criterion or predefined
number of generations is met [1].

In resampling applications, Genetic Algorithms are primarily used for un-
dersampling [13,15,8]. Typically, each majority-class sample is represented by a
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boolean gene indicating its inclusion or exclusion from the final dataset. Such
representations lead to exponentially expanding search spaces as dataset size
increases, making large-scale applications computationally demanding and re-
ducing convergence speed to high-quality solutions. Common fitness functions
include AUC, G-Mean, and AUC-ROC, evaluated on the training set [14,15].
However, assessing performance on the same dataset used for training often leads
to unreliable generalization estimates. In [11], the authors propose stratified par-
titioning to create a validation dataset, though this approach risks overfitting to
that specific partition.

3 Proposed Method

3.1 Overview

The proposed algorithm follows a four-stage process: (1) Framework instantia-
tion, where sample grouping and sample generation algorithms are defined, a
β parameter is introduced to control the trade-off between precision and recall
according to user-defined preferences, and each PMF is assigned the function
of either generating or removing samples (2) Genetic algorithm initialization
encodes PMFs as chromosomal structures and generates all the required syn-
thetic samples for subsequent optimization. (3) Genetic optimization identifies
the optimal PMFs, the ratio of samples generated/removed by each PMF and
the extent of outlier removal to be conducted, ensuring an adaptive resampling
strategy. (4) Synthetic dataset generation constructs the final resampled dataset
using the fittest solution identified through genetic optimization.

As the core premise of this resampling approach is the selective generation
and removal of samples in specific regions of the feature space to encode user-
defined preferences on the data distribution, it is essential to first demonstrate
theoretically that this mechanism can meaningfully shift a model’s decision
boundary.

3.2 Theoretical considerations on encoding user-preferences in the
data distribution

Setup and Notation. Let D be a one-dimensional dataset with two classes,
y ∈ {−,+}, with a high imbalance degree, that is, n+ ≫ n−, with n+ and n−
representing the number of majority and minority samples, respectively. Let the
minority samples follow N(µ−, σ) and majority samples follow N(µ+, σ), where
µ− < µ+. Let the class priors be π− = p(y = −) and π+ = p(y = +) such that
π− + π+ = 1 and π− ≪ π+. The optimal Bayes decision boundary, denoted by
k, is defined as the unique solution to:

p(x | y = −)π− = p(x | y = +)π+. (2)

where p(x | y = +) and p(x | y = −) represent the class-conditional densities for
the majority and minority class, respectively. The uniqueness of k follows from
the fact that the likelihood ratio λ(x) = p(x|y=−)

p(x|y=+) is strictly monotonic in x for
these Gaussian densities.
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Resampling the minority class. Let us define a nonnegative, measurable
weighting function w(x) that emphasizes regions of interest. For instance, one
may choose w(x) such that it is large for x > µ−, thereby upweighting the tail
of the minority class. We assume that 0 <

∫∞
−∞ p(t | y = −)w(t) dt < ∞. The

normalized re-weighted minority density is:

p̃(x | y = −) =
p(x | y = −)w(x)∫ ∞

−∞
p(t | y = −)w(t) dt

(3)

This mimics the effect of adding synthetic samples to the region x > µ−. More-
over, assume that re-sampling adjusts the minority class prior to π̃−, matching
the class prior of the majority class, that is, π̃− = π̃+. Thus, the joint densities
after re-sampling become:

p̃(x, y = −) = p̃(x | y = −) π̃− (4)

p̃(x, y = +) = p(x | y = +) π̃+ (5)

New Decision Boundary. A classifier trained on the re-sampled data will
have its decision boundary k̃ defined by p̃(k̃ | y = −) π̃− = p(k̃ | y = +) π̃+.
Substitute the expression for p̃(x | y = −):

π̃−
p(k̃ | y = −)w(k̃)

Z
= p(k̃ | y = +)π̃+ (6)

with Z =
∫∞
−∞ p(t | y = −)w(t) dt. Rearranging gives:

p(k̃ | y = −)

p(k̃ | y = +)
=

Z π̃+

w(k̃) π̃−
(7)

Because the likelihood ratio λ(x) = p(x|y=−)
p(x|y+) is strictly monotonic, equation 7

admits a unique solution for k̃. Notice that if w(k̃) increases (as is the case when
k̃ lies in a region where w(x) is large), then the right-hand side decreases. To
restore the equality, k̃ must shift to a region where λ(x) is naturally lower. For the
Gaussian densities under consideration (with µ− < µ+), λ(x) is decreasing in x,
so the new decision boundary k̃ shifts rightward relative to the original boundary
k. This reasoning highlights how, depending on the applied w(x), different shifts
of the decision boundary will take place.

Impact on the False-Positive Probability. To finalize this analysis, let us
consider the impact on the behavior of the resulting classifier. The false-positive
probability under the original (true) distribution for class y = + is:

P̃ (FP) =
∫ k

−∞
p(x | y = +)π+ dx (8)
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Since upweighting the tail causes k to shift to a higher value, k̃, the integration
region [−∞, k̃) becomes bigger. Therefore, more true “+” points fall into the
region where the classifier predicts “−”, and the false-positive probability of class
y = + increases. The same line of reasoning can be applied to the probability of
false negatives, demonstrating how selectively resampling regions of the minority
class can encode preferences on the data distribution.

3.3 GBRF: Algorithm Instantiation

As outlined in Section 3.1, initializing the algorithm requires specifying several
parameters, notably: (i) functions that construct sample groups with similar
characteristics (ii) functions that govern the synthetic sample generation pro-
cess, and (iii) the β parameter dictating user-preferences. Lastly, it is important
to discuss how synthetic dataset generation is mediated by the two distinct prob-
ability mass functions.

Sample Grouping Functions. Prior to introducing the two sample grouping
functions tested in this work, let us formally describe them. Let X ⊂ Rd be the
feature space and Y = {0, 1} the class labels. A sample grouping function

g : Xmin → G, G = {G1, . . . , Gk} (9)

partitions Xmin, with Xmin = {x ∈ X : y(x) = 1}, into disjoint sets, i.e.,
Xmin =

⋃k
i=1 Gi with Gi ∩Gj = ∅ for i ̸= j. The first utilized sample grouping

function, g1, partitions samples by analyzing their local neighborhood, specifi-
cally by counting the number of majority-class samples among their five nearest
neighbors, denoted by N5(x), thereby forming at most six distinct sample groups:
g1(x) = Gm5(x)+1, where m5(x) = |{xj ∈ N5(x) | yj = 0}|. Note that, by Cover
and Hart’s theorem (1967), k-NN classification error is upper bounded by twice
the error of a Bayes classifier, making nearest-neighbor analysis a reliable non-
parametric estimate of class-conditional density [18]. As such, samples heavily
surrounded by majority class samples tend to lie near the decision boundary, pro-
viding avenues from which user-preferences can be encoded in the distribution
as suggested in Section 3.2.

For the second sample grouping function, g2, we adopt the ProWsyn method-
ology, which partitions the minority class based on its global structure relative
to the majority class, as opposed to the more localized analysis provided by g1
[3]. The process iteratively constructs Nsets disjoint subsets of minority samples.
Initialization starts with an empty set G1, which is populated with all minority
samples appearing among the five nearest neighbors of any majority-class sam-
ple. These selected samples are then removed from the dataset, and the process
repeats for Nsets iterations [3]. Furthermore, it is important to highlight that
algorithm instantiation requires specifying whether sample grouping functions
are intended for instance removal or synthetic generation. When configured for
removal, the method is applied to the majority class instead of the minority class,
wherein majority samples are grouped into distinct subsets, enabling subsequent
instance elimination.
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Sample Generation Functions. We implement two procedures for sample
generation. First, the standard SMOTE procedure is implemented, which is de-
noted by fSMOTE(Gk), where fSMOTE : Gk → X∗, with X∗ representing the
synthetic data space [6]. Here, a minority sample is randomly selected from
an existing group, Gk, from which one of its five nearest minority-class neigh-
bors is utilized for interpolation, as described in Equation 1 [6]. Secondly, the
ProWsyn-based procedure is employed, which is represented as fProWsyn(Gk)
[3]. Instead of restricting the selection to the five nearest neighbors, all elements
of the grouping set Gk are considered for interpolation. This broader neighbor-
hood yields greater synthetic sample diversity and increases the framework’s
degrees of freedom to impose user-preferences. In summary, our implementation
couples the grouping function g1 with the SMOTE-based generation function
fSMOTE and the grouping function g2 with the ProWsyn-based generation func-
tion fProWsyn. Note that, as previously outlined, if either of the sample grouping
functions is designated for sample removal, the sample generation procedure is
not conducted and random samples are removed from the generated groups,
allowing the framework to act as an oversampling, hybrid sampling and under-
sampling method depending on the chosen configuration. Lastly, we stress the
fact that, since sample generation functions are dependent on sample groups, g1
can be applied in conjunction with fProWsyn and g2 with fSMOTE , illustrating
the framework’s flexibility to incorporate any of the vast resampling method-
ologies described in the literature [9]. However, it should be noted that most
SMOTE variants assign sample-wise instance sampling probabilities, as opposed
to group-wise sampling probabilities [9], but this can be easily addressed by
discretizing the sampling distribution.

Dual PMF-based Synthetic Dataset Generation. Within the proposed
framework, we define two probability mass functions, p1 and p2, each mapping
the set of sample groups G to the interval [0, 1]. That is, for each function
pi : G → [0, 1] (with G = {G1, G2, . . . , Gk} obtained via g1 and g2), we have

∀j, pi(Gj) ≥ 0 and
∑
j

pi(Gj) = 1 (10)

These functions govern the sampling probabilities for each group. Within each
group, samples are then randomly selected for either generation—using the cor-
responding sample generation function—or removal, based on predetermined pa-
rameters. Note that, p1 is used alongside g1 and fSMOTE , whereas p2 is utilized
in conjunction with g2 and fProWSyn.

Defining User-preferences. The encoding of user-preferences is conducted
through the trade-off between precision, P , and recall, R, and is inspired by [2],
which states that the relative importance a user attaches to precision and recall
is the R/P ratio at which dE

dR = dE
dP , with E being a measure of effectiveness

based on precision and recall, that is, E = E(P,R). Practically, this premise



GBRF: Encoding user-preferences in the data-distribution 9

leads to the Fβ-score formulation:

Fβ − score =
(1 + β2)PR

(β2P ) +R
(11)

where β times more importance is attached to recall than precision. Naturally,
by assigning β values higher than 1, higher importance is given to recall, which
then means that minimizing false negatives will be prioritized as opposed to
false positives, and vice-versa. This preference is then embedded into the genetic
algorithm through the fitness function. Specifically, the fitness function, which
directs the optimization process, is formulated as the average Fβ-score obtained
via 5-fold cross-validation, where resampled data is used for training and a par-
tition of the original data is reserved for testing. This approach is deliberately
adopted to avoid evaluation bias associated with the inclusion of synthetic data
in the test set, as is prevalent in many current methods [14,15].

3.4 Genetic Optimization.

Upon establishing the synthetic data generation mechanisms and the correspond-
ing fitness function, the next step is to determine how the PMFs (i.e. p1 and p2)
are encoded as chromosomes to enable genetic optimization, along with the se-
lection of the appropriate genetic operators.

PMF Genetic Encoding. Within each chromosome, one gene is allocated
for each sample group per probability mass function, in addition to a gene that
specifies the proportion of samples generated by each PMF and an optional gene
regulating the percentage of outlier removal. Collectively, these genes provide all
the necessary information for synthetic data generation. For instance, if g1 gen-
erates six groups in a dataset and the first six genes are assigned equal values,
all minority samples will have an equal probability of being selected for over-
sampling, thereby replicating the baseline SMOTE approach. Conversely, if the
last two of these six genes assume significantly higher values than the others, the
resulting behavior will resemble that of ADASYN [12]. Note that, this example
implies both p1 and p2 are set for sample generation.

Genetic Operators. All the adopted genetic operators and corresponding
parametrization are inspired in existing literature regarding genetic resampling
[13,14,15,11,8]. In the proposed framework, a fixed population size of 24 chromo-
somes is maintained. At each generation, tournament selection (k = 4) is applied
with replacement to select parent pairs for reproduction. Single-point crossover
is applied with a probability of 0.75, followed by random mutation with a proba-
bility of 0.25. A total of 20 offspring are generated per generation, and the top 4
individuals from the current population are preserved via elitism. The algorithm
terminates either when the average Fβ-score reaches 1 or upon completion of
300 iterations.
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Pre-Optimization Sample Generation. Prior to initializing the genetic opti-
mization process, all required samples are pre-generated. Specifically, N samples,
with N being the total number of samples required to achieve the desired class ra-
tio (typically 1:1), are produced for each sample group and for each PMF, ensur-
ing that every potential convergence solution is fully supported by the necessary
data. This design choice is based on experimental testing, which demonstrated
that dynamically generating samples during optimization significantly degrades
algorithm runtime. Moreover, using a consistent set of samples throughout the
optimization enhances convergence speed by obviating the stochastic component
of interpolation-based sample generation (as outlined in Equation 1).

3.5 Genetic Optimization and Synthetic Data Generation

After establishing all necessary functions and parameters, the genetic optimiza-
tion process begins by initializing all genes with one of 20 equally spaced values
between zero and one. This approach restricts gene space complexity, promotes
rapid convergence, and mitigates overfitting. As a result, the proposed method
has a substantially reduced search space, which depends only on the number
of sample groups generated by g1 and g2. Each candidate solution is then nor-
malized to ensure that the probability mass function properties are satisfied
(Equation 10). Subsequently, samples are retrieved from the pre-generated data
matrices and concatenated to form the synthetic dataset. This process is con-
ducted for 5 train/test splits, where a model is trained on the resampled train
data partition and fitness is computed by assessing model performance on the
test partition. Finally, when the genetic optimization process terminates, the
final dataset is generated based on the fittest solution using the same procedure.

4 Experiments

To comprehensively evaluate the effectiveness of our framework, GBRF, we ad-
dress the following research questions:

– RQ1: Is GBRF capable of encoding user preferences in data distributions
while achieving superior performance compared to state-of-the-art methods?
Furthermore, can GBRF be used effectively alongside different classifiers, as
is the case with standard resampling techniques?

– RQ2: Do the optimal probability mass functions obtained by GBRF conform
to theoretical expectations?

– RQ3: What is the impact of the group-wise genetic optimization approach on
the convergence speed of the genetic algorithm, and how does this translate
into improvements in overall performance?

4.1 Experimental Setup

Datasets. We randomly selected 60 datasets from OpenML, all with an imbal-
ance ratio above 3. The set includes 30 binary datasets and 30 obtained through
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binary decomposition of imbalanced multiclass datasets (via One-vs-All). The
binarization of multiclass datasets was intentionally employed to amplify the
existing class imbalance. Table 1 presents the primary statistical characteristics
of the datasets analyzed in this study. The datasets exhibit considerable het-
erogeneity in class imbalance, sample sizes, and feature dimensionality, thereby
encompassing a broad spectrum of classification problems. This diversity facili-
tates a rigorous assessment of GBRF’s efficacy.

Table 1. Mean, standard deviation, median and range for the utilized 60 benchmark
datasets of OpenML.

Metric Mean ± Std Median Range

Imbalance Ratio 54.2 ± 117.5 9.0 [3.0, 695.2]
Number of Samples 2433.5 ± 1965.1 2407.0 [31, 5473]
Number of Features 18.2 ± 41.9 8.0 [1, 299]

The names and IDs of the utilized OpenML datasets are the following: Bi-
nary: sick (38), hepatitis (55), oil_spill (311), scene (312), yeast_ml8 (316),
SPECT (336), SyskillWebertSheep (376), various analcatdata datasets (450,
463, 465, 479, 728, 747, 757, 760, 764, 765, 767, 852, 865, 867, 875), back-
ache (463), balloon (914), socmob (934), water-treatment (940), various arsenic
datasets (947, 949, 950, 951), spectrometer (954), braziltourism (957), segment
(958), mfeatmorphological (962); Multiclass: page-blocks (30.0–30.4), abalone
(183.1–183.10, 183.12–183.15, 183.21–183.27). IDs with "." refer to different bi-
nary decompositions of multiclass datasets, all of which exhibit different sample
sizes and imbalance ratios.

Preprocessing involved mode imputation and ordinal encoding for categorical
features, while missing numerical values were imputed using k−nearest neighbors
(with k = 5).

Compared Baselines. Our method was compared against four resampling
techniques: the widely used SMOTE and ADASYN, along with SMOTE-IPF
and ProWSyn, two of the best-performing methods identified in a comprehensive
study of 85 SMOTE variants [16]. Since resampling methods cannot encode
user preferences in data generation, we also compared our approach with cost-
sensitive classifiers, including cost-sensitive Random Forest, SVM, Extra Trees,
and AdaBoost with cost-sensitive Decision Trees as the base classifier.

Evaluation Metrics. We assess user preferences using the Fβ − score via 5-
fold cross-validation, ensuring resampling is only applied to the training set. To
compare performance across datasets, methods are ranked by their average Fβ-
score per dataset (1 to 9, lower is better), and the mean rank is reported. We
also compute the median percentage difference in Fβ-score between competing
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approaches and our method to quantify relative performance increase/decrease
(positive values indicate an increase of performance versus competing method
and vice-versa). Various β values are tested to evaluate the method’s ability to
achieve specific trade-offs between precision and recall. Note that, to incorporate
the same objective in cost-sensitive classifiers as in GBRF, for each tested β,
the missclassification penalty of the minority class is set to β2, whereas the
misslcassification penalty of the majority class is always kept at 1, as stipulated
by Equation 11.

Implementation Hyperparameters and Settings. GBRFhybrid refers to
the use of g1 and fSMOTE for sample generation, guided by p1, while g2 is
employed to form sample groups from which instances are removed based on p2.
In this configuration, outlier removal is disabled. In contrast, GBRFover denotes
the use of both p1 and p2 for sample generation, with outlier removal enabled.
When either of the framework variants is applied with a classifier, the same type
of classifier is used within the fitness function.

4.2 Performance Comparisons (RQ1)

Tables 2 and 3 present the average rankings for the GBRFover and GBRFhybrid

variants of the proposed framework, respectively, applied with the Naïve Bayes
and Random Forest classifiers.

In Table 2, GBRFover exhibits higher performance across all β values, ex-
cept for β = 10, for both classifiers. In addition, the method’s average perfor-
mance is notably superior to all other approaches. This demonstrates its ability
to maximize either recall or precision based on predefined user preferences by
selectively resampling specific regions of the feature space. Notably, when paired
with Gaussian Naïve Bayes—a typically less effective classifier due to its assump-
tion of feature independence and normal distributed data—GBRFover outper-
forms cost-sensitive ensemble methods, which are often the strongest performers
for tabular data. This result underscores both the robustness of the proposed
method and the limitations of cost-sensitive approaches. The latter impose a
fixed β2 misclassification penalty on the minority class, which effectively mimics
replicating (i.e. oversampling) each sample β2 times. In practice, this rigid penal-
ization often results in highly nonlinear and overfitted decision boundaries that
fail to generalize well (or at all), similar to the shortcomings of random over-
sampling [4]. This effect was particularly evident in more challenging datasets,
where cost-sensitive methods showed substantial declines in performance com-
pared to resampling-based techniques, thus justifying the large observed differ-
ences in median performance. In contrast, resampling-based methods can more
effectively expand the minority class distribution through interpolation-based
sample generation, which is less susceptible to overfitting when tailored to the
dataset characteristics and aligned with user preferences. Furthermore, it is ev-
ident that conventional resampling methods lack the ability to incorporate user
preferences into the data distribution, as evidenced by their reduced performance
at extreme β values.
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Table 2. Average rank obtained over the Fβ-scores across all datasets for different β
values with GRFBover, excluding ties. Tests are conducted with Naives Bayes (top)
and Random Forest (bottom). Average median % performance difference of GBRF
relative to the competing methods is also presented. Best result per β is bolded.

Approach Methods | β values 0.1 0.2 0.5 1 2 5 10 Average

GRFBover (Ours) 3.91 3.96 4.08 3.77 3.88 4.12 4.00 3.96 (0.00%)
Resampling + SMOTE-IPF 5.11 4.96 4.71 4.59 4.36 4.35 4.45 4.65 (1.55%)
Gaussian NB ProWSyn 4.90 4.75 4.20 4.40 4.38 4.49 4.75 4.55 (1.56%)

SMOTE 4.79 4.84 4.76 4.62 4.70 4.49 4.80 4.71 (1.19%)
ADASYN 5.00 4.97 5.19 4.92 4.61 4.29 4.58 4.79 (1.17%)
CS Random Forest 4.55 4.89 5.44 5.50 6.11 6.23 6.33 5.58 (25.36%)

Cost-sensitive CS SVM 7.67 7.55 7.14 6.44 5.74 4.63 3.68 6.12 (58.64%)
Classifiers CS ExtraTrees 4.85 4.92 5.32 5.79 6.25 6.76 6.77 5.81 (28.46%)

CS AdaBoost 4.22 4.15 4.15 4.96 4.98 5.64 5.64 4.82 (18.96%)
GRFBover (Ours) 3.37 3.30 3.85 3.97 3.53 3.57 3.80 3.63 (0.00%)

Resampling + SMOTE-IPF 4.79 4.81 4.09 4.20 4.79 4.99 5.08 4.68 (2.63%)
Random Forest ProWSyn 3.92 4.16 4.51 4.44 4.33 4.12 4.51 4.28 (0.70%)

SMOTE 4.41 4.23 4.09 4.36 4.36 4.92 5.15 4.50 (2.24%)
ADASYN 4.74 4.51 4.40 4.05 4.47 4.74 4.73 4.52 (2.03%)
CS Random Forest 5.15 5.41 5.65 5.68 6.34 6.21 6.22 5.81 (19.18%)

Cost-sensitive CS SVM 8.01 7.99 7.67 6.72 5.38 4.19 3.48 6.21 (53.75%)
Classifiers CS ExtraTrees 5.35 5.60 6.12 6.15 6.50 6.70 6.55 6.14 (17.82%)

CS AdaBoost 5.27 4.99 4.61 5.42 5.29 5.54 5.48 5.23 (7.20%)
CS: Cost sensitive; NB: Naive Bayes;

Regarding GBRFhybrid, it demonstrates even greater effectiveness than GB-
RFover, achieving up to 8% improvement in Fβ-score compared to all other re-
sampling approaches. By introducing the ability to remove majority-class sam-
ples, the framework can refine the decision boundary by modifying both class
distributions, thereby providing additional flexibility in achieving the desired
trade-off between precision and recall. Notably, this improvement is particu-
larly observed for β = 1 with the Random Forrest, highlighting GBRF’s ability
to outperform traditional resampling methods even at their designed precision-
recall operating region. This is made possible by the method’s ability to adapt
its resampling strategy to the dataset’s specific characteristics. Additionally, the
framework performs optimally with multiple classifiers, maintaining a model-
agnostic property similar to conventional resampling techniques (with results
from additional classifiers available in Appendix A). To further validate the pro-
posed framework’s ability to encode user preferences in the data distribution,
we present a graphical analysis of the differences in resampled datasets and
their corresponding probability mass functions using GBRFhybrid with varying
β values. The contrast between β = 0.1 and β = 10 is immediately evident:
at β = 0.1, sample generation occurs primarily in regions densely populated by
minority class samples, thereby reducing false positives. In contrast, β = 10 re-
sults in a substantial removal of majority class samples, as indicated by the high
values of p2 in several sample groups, to ensure correct classification of all mi-
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nority samples and minimize false negatives. This showcases how GBRF shapes
sampling distributions to achieve the desired model behavior. Moreover, GBRF
enhances transparency by providing explicit information on how the resampling
was conducted, which is typically lacking in existing resampling techniques.

Table 3. Average rank obtained over the Fβ-scores across all datasets for different β
values with GRFBhybrid, excluding ties. Tests are conducted with Naives Bayes (top)
and Random Forest (bottom). Average median % performance of GBRF difference
relative to the competing method is also presented. Best result per β is bolded.

Approach Methods | β values 0.1 0.2 0.5 1 2 5 10 Average

GRFBhybrid (Ours) 4.12 4.32 3.77 3.76 3.61 3.62 3.77 3.85 (0.00%)
Resampling + SMOTE-IPF 5.08 5.08 5.01 4.62 4.57 4.81 4.64 4.83 (2.47%)
Gaussian NB ProWSyn 4.65 4.72 4.27 4.32 4.30 4.47 4.53 4.47 (1.84%)

SMOTE 4.99 4.85 4.77 4.73 4.62 4.58 4.59 4.73 (1.96%)
ADASYN 4.99 5.12 5.28 4.90 4.66 4.51 4.74 4.89 (2.60%)
CS Random Forest 4.45 4.51 5.13 5.59 6.18 6.29 6.58 5.53 (27.73%)

Cost-sensitive CS SVM 7.65 7.59 7.17 6.50 5.74 4.65 3.74 6.15 (59.57%)
Classifiers CS ExtraTrees 4.73 4.74 5.50 5.83 6.22 6.70 6.74 5.78 (28.44%)

CS AdaBoost 4.33 4.09 4.10 4.76 5.11 5.38 5.67 4.77 (17.27%)
GRFBhybrid (Ours) 3.49 3.30 3.69 2.98 2.96 2.90 3.16 3.21 (0.00%)

Resampling + SMOTE-IPF 4.64 4.81 4.30 4.23 4.49 5.01 5.14 4.66 (7.57%)
Random Forest ProWSyn 4.43 4.16 4.29 4.80 4.57 4.71 4.76 4.53 (4.94%)

SMOTE 4.47 4.23 4.02 4.48 4.73 5.18 4.94 4.58 (7.96%)
ADASYN 4.23 4.51 4.54 4.20 4.42 5.16 5.24 4.61 (7.69%)
CS Random Forest 5.44 5.41 5.87 5.87 6.37 5.92 6.16 5.86 (29.07%)

Cost-sensitive CS SVM 7.85 7.99 7.60 6.82 5.61 4.20 3.53 6.23 (59.23%)
Classifiers CS ExtraTrees 5.10 5.60 6.06 6.40 6.55 6.63 6.48 6.12 (24.74%)

CS AdaBoost 5.35 4.99 4.63 5.22 5.30 5.29 5.60 5.20 (15.62%)
CS: Cost sensitive; NB: Naive Bayes;

4.3 Probability Mass Function Analysis (RQ2)

Figure 2 presents the average probability mass functions (PMFs) obtained for
datasets with five sample groups for both g1 and g2, thus simplifying the analy-
sis. Initially, it is evident that for g1, β values greater than one tend to acquire
significantly higher sampling probabilities in regions of low minority density,
aggressively promoting the expansion of the majority class by generating sam-
ples in such areas. Conversely, β values lower than one preferentially generate
samples in high minority density regions, reinforcing existing clusters in a more
controlled manner. Moreover, in the case of g2, since sample generation is based
on a broader neighborhood, thus facilitating the expansion of the majority class,
higher probabilities are assigned to these sample groups for larger β values, and
vice-versa. These findings align with the theoretical discussion in Section 3.2,
where sampling in regions of lower minority class likelihood is shown to shift the
decision boundary towards the majority class, and vice-versa.
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Fig. 1. Synthetic dataset obtained after applying GBRFhybrid on Dataset ID 311
(randomly selected) from the OpenML repository with β = 0.1 (left) and β = 10
(right). The optimal PMF for both scenarios is shown below, where the x-axis represents
the number of majority samples within the neighborhood of minority samples for g1
and the proximity to the decision boundary for g2, thereby reflecting instance hardness.

Fig. 2. Optimal average PMFs obtained for p1 (left) and p2 (right) with GBRFovers

on a set of 88 train splits (generated via 5-fold cross validation of the 60 OpenML
datasets), where the same amount of sample groups were generated per PMF. These
averages are computed for each β value individually, with β ≥ 1 represented with a
solid line, whereas β < 1 are represented with a dotted line.

4.4 Impact of Architectural Choices on Computational Efficiency
(RQ3)

To evaluate the effect of expanding the search space on the method’s ability
to attain high-quality solutions, we compared the average ranks of GRFBover

under two conditions: one where each g1(Gk) and g2(Gk) is restricted to 20
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equally spaced values and another where this range is expanded by a factor of
100. Note that, even a 100× expansion remains negligible relative to the search
spaces routinely encountered in instance-wise genetic resampling approaches.

Table 4. Average ranks for the GRFBover methodology with Naives Bayes Classifier,
when considering a 100-fold increase in possible values of p1 and p2 per sample group,
compared to the baseline search space. Median runtime across all datasets and β values
is also presented. The experiments were conducted on a machine with an AMD Ryzen
7 5800H and GeForce RTX 3070 Mobile/Max-Q running Ubuntu 22.04.4 LTS without
any background processes running simultaneously. Best results are bolded.

Methodology | β values 0.1 0.2 0.5 1 2 5 10 Average

100x search space GRFBover

(Median Runtime : 9.696s) 4.74 4.99 4.84 5.20 5.03 4.51 4.72 4.86

Baseline GRFBover

(Median Runtime : 5.294s) 3.91 3.96 4.08 3.77 3.88 4.12 4.00 3.96

Analysis of Table 4 reveals that a larger parameter grid incurs a signifi-
cant drop in performance alongside increased runtime, thereby highlighting the
advantage of the proposed architectural design. Our fixed-size, group-wise mech-
anism offsets the combinatorial explosion of search space in standard genetic-
resampling methods, producing superior solutions. This framework also expe-
dites convergence via more frequent activation of the early stopping criteria, as
noted by the reduced runtime under identical genetic hyperparametrizations (ex-
cept search space). A median runtime of approximately 5s was recorded, which
is notably efficient for a genetic-based algorithm. Still, the predominant contrib-
utor to total runtime is the model training required for fitness estimation. These
bottlenecks may be alleviated by optimizing key parameters dictating runtime
(e.g., population size, generation count), exploiting in-context learning for tab-
ular data to bypass the need for model training, or initializing the evolutionary
search with a low time complexity classifier, as models trained with equivalent
objectives (β parameters) generally converge to analogous data distributions.

5 Conclusion

The widespread adoption of resampling methods for addressing class imbalance
originates from their compatibility with diverse learning algorithms. However,
their inability to explicitly encode user preferences in the resulting models has
driven the development of this work. We introduce GBRF, a novel framework
that integrates user-defined preferences into the data distribution, shaping model
behavior through a tunable parameter, β, which governs the precision-recall
trade-off. GBRF leverages genetic algorithms to optimize two probability mass
functions that control the generation and removal of samples, effectively func-
tioning as an oversampling, undersampling, or hybrid resampling method. By
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employing an evolutionary strategy, we ensure that resampling is conducted to
account for both user-preferences and dataset characteristics. Theoretical anal-
ysis and empirical validation across 60 benchmark datasets confirm that GBRF
effectively encodes user preferences, consistently surpassing eight state-of-the-
art resampling and cost-sensitive approaches, particularly in hybrid settings.
Additionally, the learned probability mass functions provide accurate and inter-
pretable insights into the resampling process, offering a structured approach to
understanding the inter-dependencies between data characteristics, user prefer-
ences, and resampling strategies. Future research will focus on extending this
methodology to multiclass scenarios and improving scalability.
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