
Going Offline: An Evaluation of the Offline Phase
in Stream Clustering

Philipp Jahn1,2 (�), Walid Durani1,2, Collin Leiber3, Anna Beer4, and
Thomas Seidl1,2

1 LMU Munich, Munich, Germany. {jahn,durani,seidl}@dbs.ifi.lmu.de
2 Munich Center for Machine Learning (MCML), Munich, Germany.

3 Aalto University, Espoo, Finland collin.leiber@aalto.fi
4 University of Vienna, Vienna, Austria. anna.beer@univie.ac.at

Abstract. Data streams are a challenging and ever more relevant set-
ting for clustering methods as more data arrives faster and faster. Stream
clustering strategies either determine the clusters in an online manner
directly as the instances appear, or they employ an offline phase where
the online summarization structures are processed to obtain a cluster-
ing result. A recent analysis found that offline clustering may often be
unnecessary or even counterproductive. The methods used in the offline
phase are usually fixed for each stream clustering approach and typically
stem from only a handful of clustering techniques. In this paper, we
perform a broad experimental analysis specifically targeting the offline
phase of stream clustering. We analyze several ways of extracting infor-
mation from the summarization structures, including a novel strategy
based on data generation. Ultimately, we showcase that an offline phase
is an impactful design choice for stream clustering. We also find that the
chosen offline method significantly impacts the clustering performance,
with the clustering quality improving drastically for some settings. Our
code is available at https://github.com/PhilJahn/SCOPE/.

Keywords: Clustering · Streaming Data · Unsupervised Learning · Of-
fline Phase

1 Introduction

In this modern world, the amount of data is ever-increasing. Many applications
continue to produce data infinitely, and as such, methods to handle the ongoing
inflow of data are highly demanded [7]. For data streams without a foreseeable
end, the amount of data becomes too large to store, which led to the development
of stream learning methods such as stream clustering [4, 40]. As with clustering
of static data, the goal is to find groupings of data where similar data points are
assigned to the same groups and dissimilar data points are kept separate.

A popular strategy for dealing with the constraints of the stream setting is
to split the clustering process into an online and an offline phase, where the
online phase deals with the ongoing stream, and the offline phase determines



2 P. Jahn et al.

Fig. 1: Data Stream Processing: While the stream data is visualized, it is un-
available once it has been added to the micro-clusters. For micro-clusters, the
inner circle represents the deviation radius r, and the outer one the assignment
radius r+. The red points with black borders are reconstructed data points with
the size corresponding to the number of data points. The CluStream variants
are different processing strategies and will be explained in Section 3.

the actual clustering [2]. Most stream clustering approaches are limited to a
single specific offline clustering approach [14]. A recent study [61] has called
offline processing into question and has shown that it may be unneeded or even
disadvantageous. This study included leaving out the offline processing for two
preexisting stream clustering approaches, the partitioning StreamKM++ [1] and
the density-based DenStream [13]. Aside from this, they applied k-Means++ [6]
and DBSCAN [20], the offline algorithms used in StreamKM++ and DenStream,
respectively, to their own approach using micro-clusters, resulting in the pure
online summarization outperforming the offline-processed method.

However, evaluating the usefulness of clustering in the offline phase based on
the performance of only a few classical clustering methods can be misleading,
raising the question of whether the limitations generally lie in the offline pro-
cessing or merely in the specific selected offline clustering method. Due to the
typical lack of strict time constraints [14], the offline phase is also more suitable
for optimization than the online phase, which can not be replayed and is more
resource-constrained. Thus, in this paper, we investigate the clustering step in
the offline phase by incorporating a wide variety of offline clustering methods into
a preexisting stream clustering approach. We compare them among each other
and against the approach without any offline clustering. As the previous work
only examined partitioning and density-based techniques in this context [61],
our examination also focuses on these categories. In this study, CluStream [2]
serves as a representative, as it is one of the most well-known stream clustering
algorithms and the basis [14] built upon by other widely used stream clustering
methods like StreamKM++ [1] and DenStream [13]. Figure 1 visualizes our study
design. To the best of our knowledge, we are the first to investigate the offline
phase of stream clustering with a diverse set of offline clustering algorithms. For
the examined datasets, our results have shown that if the offline processing is ad-
justed, it is possible to boost the performance of the stream clustering method
significantly. In one experiment, swapping the offline clustering algorithm for
CluStream resulted in almost a doubling of performance compared to the typ-
ical configuration of CluStream. Interestingly, using CluStream with the same



Going Offline 3

underlying clustering as some competitor techniques outperforms them in multi-
ple cases. As such, future evaluations of online summarization techniques should
be done with awareness of this factor, as a correctly chosen offline algorithm may
dominate the performance of the overall evaluation. Based on CluStream as a
leading example, our main contributions are:

– We investigate 12 different offline clustering approaches as processing tech-
niques for the offline phase.

– We introduce a novel way of replicating data from online summaries.
– We investigate and compare multiple ways of processing the summaries.
– We perform an extensive evaluation in the context of other stream clustering

approaches and pure online summarization as clustering.

2 Related Work

2.1 Clustering

Clustering methods group similar data objects together while separating dissimi-
lar objects. There are many types of offline clustering algorithms [47] that handle
different concepts of data similarity. Here, we put our focus on partitioning and
density-based clustering approaches. While there are many more techniques, like
hierarchical and grid-based methods, we do not cover them in this work.
Partitioning Clustering Partitioning approaches split the data into distinct
partitions. Their most prominent representative is k-Means [37], which finds k
clusters by iteratively assigning each point to its closest center and updating
the k centroids. It has led to many derived techniques. SubKMeans [41] per-
forms a dimensionality-reduction simultaneously with the clustering. A major
focus is the automatic determination of the cluster number k. X-Means [49] does
this k-estimation by optimizing information criteria. Projected Dip-Means (P-
DipM) [15] applies a test for unimodality on multiple different one-dimensional
projections. Aside from these k-Means-based approaches, Spectral Clustering
(SC) [38] is a popular approach that transfers the task to a k-dimensional rep-
resentation based on the similarity graph. Other clustering algorithms, though
usually k-Means, can be applied to obtain the final clustering. SpectACl [28]
incorporates the average density into the process of SC.
Density-based Clustering In density-based clustering, clusters are dense re-
gions with many data points that are separated by areas of lower point den-
sity. A common variant is searching for density-connected clusters, such as in
DBSCAN [20], where clusters are comprised of density-connected points within
dense areas. However, DBSCAN cannot find clusters with varying levels of den-
sity. Later innovations have attempted to address this issue. HDBSCAN [12]
uses hierarchical clustering concepts to do so. RNN-DBSCAN (RNN-DBS) [11]
uses reverse nearest neighborhood sizes to define dense points and uses neigh-
borhood relations rather than distances to handle connectivity. In contrast to
these density-connectivity-based approaches, there are also methods based on
detecting density-peaks, e.g., DPC [52]. Density peaks are characterized by high



4 P. Jahn et al.

local density and large distances to other candidates for density peaks. These
peaks serve as centroids for the clusters. SNN-DPC [36] introduces an allocation
strategy based on the incorporation of shared nearest neighbors. DBHD [18] uses
local density to determine clusters with the help of the k-nearest neighborhood
while allowing for some density variation within clusters.

2.2 Stream Clustering

The stream setting adds many additional constraints to tasks like clustering [4].
Stream data may be infinite and arrive continuously in an uncontrollable order.
As such, storage is only possible in a limited manner. Additionally, the under-
lying distribution of the data can change over time [23]. Thus, stream cluster-
ing requires both a summarization structure and a window or forgetting mech-
anism [61]. Summarization structures maintain temporary information about
data points but may differ in what information is saved. As with regular cluster-
ing, stream clustering offers a diverse set of different strategies and underlying
concepts [4, 40, 14, 65]. In this paper, we focus solely on partitioning and density-
based methods. A wide array of methods outside these constraints exist, such as
hierarchical [51] and grid-based [57] stream clustering techniques.

Most stream clustering methods can be grouped into either online or online-
offline methods [40]. Online methods directly return the clusters upon processing
the data. In contrast, online-offline methods perform postprocessing, typically
with an offline clustering method, either at fixed timesteps or based on user in-
put. Unlike online processing, offline processing is usually not time-critical [14].
The chosen offline clustering method impacts the resulting cluster shapes [4]
and is often not specific to a method. Instead, it could also be combined with
different online methods [14], though generally, this is not addressed by stream
clustering approaches. Instead, most approaches describe one specific offline pro-
cessing behavior that usually corresponds to one of a few clustering approaches
(e.g., k-Means [37], DBSCAN [20]) or a modification thereof. Kranen et al. [31]
note that the summaries of their method ClusTree could be used with any offline
clustering algorithm, including both partitioning and density-based approaches.
However, they did not evaluate this aspect in their experiments. In their follow-
up approach LiarTree [32] they do not elaborate further on this aspect or specify
the offline clustering approach.
CluStream CluStream [2] is a fundamental stream clustering method which had
a major influence on subsequent stream clustering approaches [14]. CluStream
maintains a set of micro-clusters to summarize regions of interest. The radius r
of a micro-cluster is based on the deviation of the assigned points. Here, there
are differences depending on the implementation. For MOA [10], the maximum
deviation value for any dimension is used, whereas River [43] uses the average
across all dimensions. Data point assignment occurs if a data point falls within
a maximum boundary factor mbf · r of the centroid. We call this assignment ra-
dius r+. A new micro-cluster is created if a new point falls outside of this range
for their closest micro-cluster. To maintain a limited number of micro-clusters,
they are merged based on the closest pairs. Alternatively, micro-clusters that



Going Offline 5

have not received a new data point for too long are aged out. The micro-clusters
are then employed in the offline phase to determine the actual clusters using
weighted k-Means (Wk-Means) [37]. CluStream has led to the development of
multiple related techniques. Spark-CluStream [8] employs a weighted sampling
of the micro-cluster centroids. While some variants change the micro-cluster pro-
cessing procedure, most perform a k-Means-based offline clustering, with some
introducing k-estimation techniques [5]. Still, the recent DynamicCluStream [3]
instead merges overlapping micro-clusters to form clusters.
Competitors As competitors for this work, we included a collection of both
traditional and recent stream clustering approaches. STREAMKmeans [46] is a
variant of STREAMLSEARCH [46], where the k-median clustering is replaced
with k-Means. It works on the basis of performing clustering chunk-wise and then
storing the resulting centers. The final clustering is produced using a weighted
clustering on a fixed number of these centers. DenStream [13] incorporates the
density-connectivity principles of DBSCAN [20] into an online-offline stream
clustering framework. Micro-clusters mimic the typical hierarchical structure of
DBSCAN based on the weight and radius of the micro-cluster. The weights
of micro-clusters decay over time. Points are assigned based on a distance-
parameter ε that is also used for the DBSCAN clustering in the offline phase.
DBSTREAM [26] tracks the number of data points that would be assigned to
each pair of micro-clusters. These values are then used to merge micro-clusters
into full clusters in the offline phase, rather than a traditional offline clustering
algorithm. EMCStream [66] is a recent method that works by clustering UMAP
[42] embeddings with k-Means [37]. EMCStream includes a rewind function when
concept drift is detected, though the rewind is limited to a set amount of input
data. MCMSTStream [19] is another recent approach that represents the stream
by micro-clusters with a fixed radius. Clusters are determined through mini-
mum spanning trees [24], where micro-clusters within a certain range of another
are included in the same cluster. The recent GB-FuzzyStream [62] introduces a
two-level architecture of fuzzy summarization structures, called Fuzzy Granular-
Balls (FGBs) and Fuzzy Micro-Balls (FMBs). FGBs summarize incoming data,
whereas FMBs are formed through the combination of FGBs. In the offline phase,
DPC [52] is applied on the centers of the FMBs to determine the clusters.

2.3 Data Generation

Many different types of data generation methods are available that generate new
synthetic instances based on given instructions, often in the form of sampling
distributions. These distributions either receive their own label or are combined
to form more complex clusters [30]. While commonly applied in benchmarking
and evaluation, in the case of SMOTE [16], data generation is used to deal with
imbalanced data by artificially increasing the number of minority class samples.
Especially relevant for this work is SMOClust [17], a stream-based variant of
the SMOTE approach. SMOClust makes use of the online summaries of stream
clustering approaches to generate new samples for the minority class.



6 P. Jahn et al.

3 Offline Handling for CluStream

Offline Processing The offline phase of CluStream works by taking the cen-
troids of the micro-clusters and using them as input for a traditional cluster-
ing algorithm. The reported cluster label for a specific centroid then serves as
the label for the whole micro-cluster. Regular CluStream uses Wk-Means with
the micro-cluster weights as weights. Since we want to evaluate the impact of
various offline clustering algorithms, we substitute Wk-Means with 12 different
clustering algorithms selected from both traditional methods and more recent
techniques. These are put into contrast with CluStream-O, a CluStream vari-
ant that directly uses the micro-clusters determined in the online phase for the
cluster assignment rather than performing an offline phase. When incorporating
other offline clustering algorithms into the base CluStream, the process is simi-
lar to Wk-Means. The centroids of the micro-clusters are used as prototypes to
reconstruct the real data points when training the offline clustering algorithms.
We refer to the form of CluStream, which directly replaces Wk-Means and uses
only the centroids as inputs, as CluStream-C (Centroid CluStream). Unlike
k-Means, most offline clustering approaches do not offer a weighted variant and
thus need other ways to introduce weights to fully exploit the online summaries.
Weighted Data Reconstruction As with Spark-CluStream [8], a fake weight-
ing scheme can be introduced independently of the choice of offline clustering
method on the side of the data reconstruction technique. A naive approach is
to multiply the centroids by the weight of the micro-cluster. This would corre-
spond to a true weighted clustering. We refer to this approach as CluStream-W
(Weighted CluStream). Furthermore, we include CluStream-S (Sampled CluS-
tream), which is similar to Spark-CluStream, where we sample a limited number
of points from the centroids based on their relative weight ratios rather than
the absolute values. All centroids are present in the reconstructed data at least
once, so no micro-cluster is lost due to the sampling. The label assignment uses
the clustering label determined for the closest centroid.
Generative Processing Additionally, we introduce a generative approach to
produce suitable input data for offline clustering algorithms. As the micro-
clusters offer both a centroid and a radius, we can use them as definitions for
distributions for synthetic data generation. Since the real distribution of the
data points within a micro-cluster is no longer available, we instead use a uni-
form distribution over the hypersphere defined by the micro-cluster (see, e.g.,
[30]). As with River [43], we define r as the average standard deviation across all
dimensions. Since points assigned to a micro-cluster may lie outside of this micro-
cluster radius r, the assignment radius mbf ·r = r+ is instead used as the radius
of the generating hypersphere. This approach is denoted CluStream-G (Gen-
erative CluStream) and generates a limited number of data points. The centroid
of every micro-cluster is also included, meaning that, as with CluStream-S, all
micro-clusters are represented. The mapping of data points to clusters in CluS-
tream happens on a micro-cluster basis. Every evaluated point is simply assigned
to the closest micro-cluster. The label of that micro-cluster is then used as the
label for the data point. However, the micro-clusters may not be homogenous,



Going Offline 7

Table 1: Properties of used datasets
Name Key Type Shuffled? # Dim. # Obj. k One-off?

Complex-9 [9] Comp-9 Synthetic Yes 2 3031 9 No
DENSIRED-2 [30] DEN-2 Synthetic Yes 2 5000 11 Yes
DENSIRED-10 [30] DEN-10 Synthetic Yes 10 5000 11 No
DENSIRED-100 [30] DEN-100 Synthetic Yes 100 5000 11 Yes
RBF-3 400005 RBF-3 Synthetic No 2 40000 8 No
Fertility-vs-Income6 [59] FvI Real-World No 2 4014 2 Yes
Electricty [54] Elec Real-World No 8 45312 2 Yes
KDDCUP99 [54] KDD99 Real-World No 41 494021 23 No
Gas Sensor Array [54] Gas Real-World No 128 13910 6 No
Star Light Curves [54] SLC Real-World No 1024 9236 3 Yes

adding some level of granularity to this. When using generative approaches, the
points are not just focused on the centroid of each micro-cluster, but are instead
more spread out. As a result, the clustering approaches can produce different
labels for different reconstruction points even if they are created from the same
micro-cluster. These points are then used to label the data rather than just the
centroid. The assigned labels for CluStream-G are based on the labels of the
nearest neighbor within the generated dataset rather than just considering the
centroids as done in regular CluStream. Thus, the final step is comparable to the
nearest neighbor classifier [21]. A more formalized description of the CluStream
variants can be found in the supplementary file.

4 Experiments

4.1 Experiment Setup

We present the properties of all used datasets in Table 1, though some were
only one-off datasets used for either Section 4.5 or Section 4.6. Some datasets
(Complex-9 and DENSIRED variants) were shuffled for the experiments as
they were presorted based on the ground truth labels. All other datasets were
not shuffled and retain any present concept drift [23]. We examine the effects
of this drift using the FvI dataset in Section 4.5. We used the River stream
learning library7 [43] as a base for our evaluation. We used their implemen-
tations of DenStream, DBStream, and STREAMKmeans, as well as a modi-
fied version of their CluStream code. EMCStream8, MCMSTStream9 and GB-
5 https://github.com/CIG-UFSCar/DS_Datasets/tree/master, last accessed

25.02.2025, based on data generation from MOA [10]
6 Dataset created from data from the Gapminder data repository https://www.
gapminder.org/data/, last accessed: 05.06.2025

7 https://github.com/online-ml/river, last accessed: Feb 20th, 2025
8 https://gitlab.com/alaettinzubaroglu/emcstream, last accessed: Feb 20th, 2025
9 https://github.com/senolali/MCMSTStream, last accessed: Feb 20th, 2025



8 P. Jahn et al.

FuzzyStream10 were adapted from the linked repositories. k-Means(++), SC,
DBSCAN and HDBSCAN were from scikit-learn11 [48]. SubKMeans, X-Means
and Projected Dip-Means were from ClustPy12 [34]. SpectACl13, SNN-DPC14

and DPC15 were taken from the linked repositories. Our implementations of
RNN-DBS and DBHD are available in our repository. There was a 7-day time
limit for experiments, which was exceeded by some approaches.

4.2 Parameter Selection

We used the AutoML approach SMAC316 [35] to look for the best parameters
for both the CluStream variants and the competitors. We apply the same param-
eters across the full stream and optimize based on batches, circumventing the
problems arising from using traditional AutoML for stream clustering methods
[14]. We downsample large datasets for AutoML, as recommended (e.g., in [64]).
As in prior research on AutoML for clustering [53], we give a fixed time limit for
all approaches. All experiments were executed on the same hardware (Intel(R)
Xeon(R) CPU E5-4640 v4 @ 2.10GHz). For CluStream variants, we split the
time budget so that 20% of the time was spent on the online phase and 80% on
the offline phase. Most CluStream variants use the parameters obtained from the
same online phase optimizations for comparability and use 100 micro-clusters.
CluStream-O variants with different micro-cluster numbers are optimized sep-
arately. CluStream-S and CluStream-G generate around 1000 points for each
evaluation batch. We use the ground-truth cluster number for methods requir-
ing an input cluster number. For more details, see the supplementary file.

4.3 Metrics

For evaluating the clustering results, we used adjusted rand index (ARI) [29] and
adjusted mutual information (AMI) [45]. Both metrics have a maximum value of
1, where higher is better. We use the sum of both to optimize the results of the
parameter selection. For fairness, the metrics are calculated in batches of 1000,
and the mean value over 5 seeds is reported for the best-performing parameters.

Many definitions for the similarity between datasets have been proposed [56].
For the paper, we focus on strategies that do not require ground-truth labels.
Bag of prototypes (BoP)17 [58] is a method of representing datasets by deter-
mining patches within the dataset. The Jensen-Shannon divergence [22] between
the histogram for the patches in the original dataset and the histogram pro-
duced by the assignment of the points of the projected compared dataset is
10 https://github.com/xjnine/GBFuzzyStream, last accessed: Feb 20th, 2025
11 https://scikit-learn.org, last accessed: Feb 20th, 2025
12 https://github.com/collinleiber/ClustPy, last accessed: Feb 20th, 2025
13 https://bitbucket.org/Sibylse/spectacl, last accessed: Feb 20th, 2025
14 https://github.com/liurui39660/SNNDPC, last accessed: Feb 20th, 2025
15 https://github.com/colinwke/dpca, last accessed: Feb 20th, 2025
16 https://github.com/automl/SMAC3, last accessed 30.01.2025
17 https://github.com/Klaus-Tu/Bag-of-Prototypes, last accessed: 02.12.2024



Going Offline 9

then used as a similarity score. Furthermore, the Maximum Mean Discrepancy
(MMD) is also a common method for comparing distributions [25, 50]. We used
the PyTorch-based implementation from [60]18 to compute the MMD, which, by
default, examines the distributions using five different kernel functions. Aside
from distributions, Classifier Two-Sample Tests [63, 50] are also used to assess
the similarity between datasets. Here, a binary nearest-neighbor classifier [21]
is trained to discriminate between the data of both datasets. We distinguish
between the leave-one-out accuracy using the real data points (CAr) and the
offline points (CAo) based on which points the accuracy is calculated for. We
also report the average distance of the real data points to the closest offline data
point (NNd) and the average distance of an offline data point to its closest real
data point. The scores are calculated in batches of 1000, and the weighted av-
erage score is reported. Smaller values denote a closer resemblance of data. The
purity of a clustering [39] is the accuracy if each cluster is assigned its majority
ground-truth label. We treat all unique offline data points as potential cluster
labels and report the purity for assigning the real data points to their closest
offline data point. This value represents a hard boundary for the performance
of the stream clustering algorithm, as the CluStream-based approaches can not
distinguish clusters beyond this. To maintain the logic of smaller values denoting
a better score, we instead track the Impurity (Imp.), defined as 1−Purity. Purity
has also been used as the primary metric for evaluating the offline phase in a
prior work [61]. However, we opted for ARI and AMI, as the usage of Purity
requires a restriction to a similar number of clusters to allow for a meaningful
comparison, and we aimed for multiple methods without a specified number of
clusters. Still, we report the Purity performance in our supplementary file.
For evaluating the cluster evolution, we use the Temporal Silhouette index
(TS)19 [59] and the Cluster Mapping Measure (CMM) [33]. TS is an unsuper-
vised cluster validation index designed to handle concept drift, whereas CMM
is a supervised evaluation metric designed for stream data. We use the objects
within the smallest hypersphere that covers all objects with the same label as
the ground truth clusters. We include our implementation of the CMM in our
repository. While TS is calculated for the full clustering with the most suitable
clusters per batch based on the overlap mapped to the ground truth, CMM is
calculated in batches of 1000, and the weighted average is reported.

4.4 Performance Impact of the Offline Phase

The metrics for best-performing parameters when directly replacing Wk-Means
in CluStream (CluStream-C) and all competitors are given in Table 2. Colored
cells denote the relationship in performance between CluStream-O and other
approaches, where red/blue means it is worse/better than the best variant of
CluStream-O, with saturation indicating the relative performance. The results
show that the chosen offline strategy has a strong impact on CluStream’s per-
formance. This can be seen best for Comp-9, where the best-performing offline
18 https://github.com/jindongwang/transferlearning, last accessed: 08.03.2025
19 https://github.com/CN-TU/py-temporal-silhouette, last accessed: 05.06.2025



10 P. Jahn et al.

Table 2: Mean metric scores over 5 seeds for evaluated datasets for best-
performing parameters according to the sum of ARI and AMI (×100). The best
scores are marked as bold, and the second-best scores are underlined.
Name Comp-9 DEN-10 RBF-3 KDD99 Gas

ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI
STREAMKmeans 41.6 61.6 28.8 52.6 68.4 74.6 94.0 87.0 11.6 17.0
DenStream 50.0 70.5 60.0 73.2 63.3 69.9 79.2 75.9 35.3 53.0
DBSTREAM 56.9 69.3 67.8 74.9 69.6 76.1 92.5 85.2 26.3 50.1
EMCStream 57.3 80.4 60.3 73.9 53.6 66.3 81.6 76.8 35.1 41.7
MCMSTStream 65.3 74.5 73.7 84.7 74.8 78.1 90.3 82.7 16.4 38.4
GB-FuzzyStream 20.0 57.5 19.8 43.4 31.0 51.4 - - 5.8 20.4
CluStream-O - var. k 48.7 66.9 53.2 70.7 65.2 73.2 89.5 83.5 27.4 50.1
CluStream-O - fixed k 41.6 64.7 16.0 34.3 60.2 71.2 87.1 80.6 25.5 37.8
CluStream-O - k=100 9.5 53.0 49.7 69.8 41.9 60.3 80.3 67.5 24.2 50.5
CluStream - Wk-Means 36.8 62.8 54.5 67.9 75.3 78.4 89.7 77.5 32.0 45.2
CluStream-C - k-Means 37.6 63.4 14.4 37.2 73.5 77.8 90.4 79.6 24.7 39.4
CluStream-C - SubKMeans 35.7 61.3 35.9 53.9 73.5 77.5 90.4 79.6 24.2 38.7
CluStream-C - X-Means 49.9 66.7 26.6 47.3 76.3 79.3 90.2 79.6 29.8 52.4
CluStream-C - P-Dip-M 0.0 0.0 0.0 0.0 18.3 24.4 89.6 79.0 12.7 20.3
CluStream-C - SC 47.7 72.8 49.6 64.7 76.8 79.0 91.2 81.4 31.6 45.3
CluStream-C - SpectACl 60.8 79.0 55.9 74.5 66.5 76.4 89.6 80.0 26.4 39.0
CluStream-C - DBSCAN 73.4 86.5 52.8 70.3 63.7 77.1 90.6 78.0 26.5 50.9
CluStream-C - HDBSCAN 71.9 85.7 58.3 73.2 72.0 79.6 90.7 80.5 34.7 51.4
CluStream-C - RNN-DBS 37.0 69.2 9.5 22.1 65.1 71.9 87.6 79.8 32.4 49.0
CluStream-C - DPC 45.0 75.7 56.5 70.2 69.3 76.7 92.1 83.7 31.5 52.2
CluStream-C - SNN-DPC 46.3 68.0 25.6 49.4 59.0 69.2 86.1 77.6 29.6 47.0
CluStream-C - DBHD 52.3 75.9 57.7 69.9 73.4 78.5 88.4 79.4 35.6 54.0

clustering technique has almost double the ARI score of the default case. Clu-
Stream-C, with a properly chosen offline phase method, often beats the com-
peting strategies. Still, it is noticeable that the best offline strategy depends
on the dataset. This lines up with the statement that the offline phase method
determines the final cluster shapes [4]. Specifically, density-based approaches
work best for datasets with arbitrarily shaped clusters (like Comp-9). DEN-10
has multiple density levels, leading to more difficulty for DBSCAN. In contrast,
centroid-based techniques perform well for RBF-3, where the dataset consists of
multiple moving distributions. Despite CluStream originally working with Wk-
Means, a density-based offline clustering often results in a better performance.

We also compared the results against CluStream-O with different settings for
cluster count k. Clustream-O var. k allows for a flexible choice of clusters beyond
the ground-truth cluster number, which was used for CluStream-O fixed k and
all other approaches requiring the cluster number. CluStream-O with k=100 uses
the same micro-clusters as CluStream-C. In the results we see that CluStream-O
is a viable strategy that can outperform CluStream when using an offline phase,



Going Offline 11

especially for the default setup of CluStream. This reinforces the observations
made by Wang et al. [61]. For CluStream, the micro-clusters already roughly
adhere to the same ideas as k-Means, where points are assigned to centroids that
adjust based on the data. The online phase also has the advantage of accessing
real data points, whereas the offline phase can only use summaries. Despite
this, an appropriate choice of the offline clustering algorithm still often leads to
CluStream outperforming CluStream-O. For all examined datasets, there is at
least one configuration that manages to perform better than the best CluStream-
O variant, though these are not necessarily the same variants on all datasets.

When using the same underlying clustering methods as CluStream-C, some
competitors can have a worse performance. Specifically, DenStream is similar
to CluStream, but introduces concepts of DBSCAN in its summaries. Despite
its less specialized micro-clusters, CluStream-C outperforms DenStream when
using DBSCAN in the offline phase for three of the five datasets in Table 2. Still,
on one of these three, DenStream outperforms the default CluStream variant.
Thus, stream clustering methods should also be compared using the same offline
methods, as the final performance is impacted by the chosen offline method.

4.5 Cluster Evolution

Concept drift [23] and subsequent cluster evolution [55, 33] are important factors
for the real-world application of stream clustering [44]. To examine the cluster
evolution, we drew on prior research [59]. Like them, we use the FvI dataset to
showcase this and aimed to use the same parameters they did. They provide the
code they used for evaluating the real datasets in their repository20. We set the
parameters for TS [59] to the default parameters described in their paper, which
also correspond to the ones they used in their code. These are a window-size
w of 100, the number of neighbors k to 1000, and ς to 1. CMM [33] requires
a neighborhood size k, which was set to 5. In the description of CMM, this
parameter is noted to only have a minor impact when varied between 1 and 10.

The clustering results for several stream clustering algorithms are presented
in Figure 2. Here, we selected the best run among five runs with default param-
eters and five with optimized parameters, based on the sum of ARI and AMI.
The mapping to the ground truth clusters was done based on the largest overlap
within each batch of size 1000. The chosen offline algorithm has a significant
impact on the ability to handle cluster evolution. A major factor appears to be
the ability of methods to determine the cluster number on their own. Here, these
estimations often lead to overestimation, which negatively impacts the TS index.
Still, oversegmenting appears to have the advantage with CMM. This behavior
can be attributed to CMM performing its own matching and, as such, handling
the additional cluster labels without an additional malus. As the oversegmented
clusters may be comparatively pure, this leads to high performance with CMM.
This again highlights the importance of aligning metrics and goals during eval-
uation and of selecting offline clustering methods that suit the problem setting.
20 https://github.com/CN-TU/py-temporal-silhouette, last accessed: 05.06.2025



12 P. Jahn et al.

0

1

In
co

m
e

Ground Truth
TS: 0.771, CMM: 1.000

0 2000 4000
Timestamp

0

1
Fe

rti
lit

y
0

1

In
co

m
e

STREAMKmeans
TS: 0.683, CMM: 0.290

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

DenStream
TS: 0.729, CMM: 0.286

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-O - var. k
TS: 0.528, CMM: 0.543

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream - Wk-Means
TS: 0.724, CMM: 0.787

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - k-Means
TS: 0.719, CMM: 0.538

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - X-Means
TS: 0.294, CMM: 0.805

0 2000 4000
Timestamp

0

1
Fe

rti
lit

y

0

1

In
co

m
e

CluStream-C - P-Dip-M
TS: 0.471, CMM: 0.263

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - SC
TS: 0.726, CMM: 0.538

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - SpectACl
TS: 0.771, CMM: 0.613

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - DBSCAN
TS: 0.461, CMM: 0.860

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - HDBSCAN
TS: 0.651, CMM: 0.779

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - RNN-DBS
TS: 0.391, CMM: 0.760

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - DPC
TS: 0.554, CMM: 0.611

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0

1

In
co

m
e

CluStream-C - SNN-DPC
TS: 0.366, CMM: 0.526

0 2000 4000
Timestamp

0

1

Fe
rti

lit
y

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Cluster 0 Cluster 1 Noise Cluster Other Clusters

Fig. 2: Clustering behavior of the best-performing run according to ARI and
AMI for selected stream clustering algorithms on the FvI dataset

4.6 Offline Replication Quality

In Table 3, some values for centroid-based offline approaches (CluStream-C (CS-
C), CluStream-W (CS-W), and CluStream-S (CS-S)) are the same, and thus
reported only once. These are the metrics that cover the assignment of real data
points to offline data points. Here, CluStream-G always outperforms the other
approaches. This is inherently the case as CluStream-G includes all centroids.
Nonetheless, the Impurity score showcases a significantly higher ceiling for the
clustering performance. However, with increasing dimensionalities, the gap be-
tween CluStream-G and the other approaches in terms of the nearest neighbor-

Table 3: Dataset replication scores for CluStream offline clustering inputs for
default parameters (×100). The best scores are marked in bold.

Key CS-C CS-W CS-S Centroid CluStream-G
iNNd iNNd iNNd NNd CAr Imp. iNNd NNd CAr Imp.

Comp-9 0.88 0.97 0.96 2.62 86.0 0.10 1.07 1.19 46.5 0.00
DEN-2 0.82 0.58 0.59 1.85 86.4 4.98 0.80 0.84 57.3 0.60
DEN-10 7.52 4.03 4.12 7.90 86.2 9.28 5.89 6.54 84.8 0.80
DEN-100 0.27 11.25 10.72 27.14 89.1 37.56 13.05 26.37 88.9 13.54
RBF-3 0.79 0.49 0.51 1.86 86.5 4.60 0.58 0.75 47.2 2.30
Elec 2.82 3.06 3.05 6.91 85.3 18.39 3.86 5.94 79.3 9.19
KDD99 4.22 1.93 2.03 3.21 69.2 0.37 2.12 3.14 68.9 0.12
Gas 4.11 3.82 3.84 7.99 78.5 6.11 3.96 7.90 78.0 1.63
SLC 26.50 45.42 45.09 100.09 80.1 13.71 45.50 99.89 80.0 6.93



Going Offline 13

Table 4: Additional dataset replication scores for CluStream offline clustering
inputs for default parameters (×100). The best scores are marked as bold.

Name CluStream-C CluStream-W CluStream-S CluStream-G
CAo BoP MMD CAo BoP MMD CAo BoP MMD CAo BoP MMD

Comp-9 0.6 7.2 0.6 98.8 9.5 0.7 99.6 9.0 0.6 53.4 2.7 0.6
DEN-2 0.0 18.3 37.0 97.0 14.5 3.4 98.5 14.1 3.5 60.1 5.1 3.6
DEN-10 0.2 29.3 109.1 92.6 11.7 5.6 97.7 11.5 5.7 82.8 8.4 5.8
DEN-100 0.0 39.0 214.4 87.5 29.7 9.2 98.0 29.0 6.4 98.0 29.0 6.0
RBF-3 0.0 20.2 15.1 97.1 13.9 1.0 98.3 13.6 0.9 53.4 3.1 0.9
Elec 0.1 8.4 2.6 99.6 9.4 1.3 99.8 9.0 1.2 89.2 6.4 1.2
KDD99 1.1 34.3 124.8 92.9 11.4 23.0 98.9 11.3 23.6 97.0 10.8 23.6
Gas 0.3 20.2 42.6 97.2 13.7 1.4 98.8 13.5 1.5 98.8 13.0 1.5
SLC 0.6 22.9 36.1 91.4 31.4 7.4 97.1 30.6 7.1 97.1 30.4 7.1

hood diminishes. This behavior is expected due to the Curse of Dimensionality
as the generated points are typically close to the hypersphere boundaries [27].

For the iNNd score in Table 3, CluStream-G consistently performs worse than
other approaches as it spreads its offline points further. Especially for higher
dimensionalities, this can lead to some points being far apart from real data
points. For CAo in Table 4, using CluStream centroids without weighting returns
the best results. Since there is only one replicated point per micro-cluster, it
only requires a real data point to be closer to a centroid than another micro-
cluster. When evaluating the distributions, which are covered by BoP and MMD
in Table 4, CluStream-G again performs well, though it does not outperform
other techniques for all examined datasets. However, even when performing worse
than other approaches, the scores are still fairly close to the best-performing
ones. Depending on the dataset, the weighting can be both advantageous and
disadvantageous. Although weighting allows for better mimicking of the real
data regarding point presence, the lack of weight reduction over time can lead
to deviations from the current real distributions during later timesteps.

4.7 Performance Impact of the Offline Replication

Another aspect to evaluate is the impact of the offline replication technique on
the clustering performance. An overview of the results for the best-performing
parameters can be seen in Figure 3. As CluStream does not include decay of the
micro-cluster weights, they accumulate for streams where micro-clusters survive
for a long time and summarize many data points. This could lead to large sizes of
the generated data for CluStream-W, which can result in scalability issues and
does not align with the constraints of stream clustering, as the weights could
grow infinitely. Despite most clearly approximating a weighted clustering, it is
often outperformed by the other weighted approaches or CluStream-C.

Although CluStream-G generally results in a better representation of the real
data according to the dataset similarity metric, this does not necessarily result



14 P. Jahn et al.

0.0

0.5

k-Means SubKMeans X-Means P-DipM SC SpectACl DBSCAN HDBSCAN RNN-DBS DPC SNN-DPC DBHD

A
B C D

E

F

G
H

1:

0.0

0.5

k-Means SubKMeans X-Means P-DipM SC SpectACl DBSCAN HDBSCAN RNN-DBS DPC SNN-DPC DBHD
A B C

D

E

F

G
H

2:

0.0

0.5

k-Means SubKMeans X-Means P-DipM SC SpectACl DBSCAN HDBSCAN RNN-DBS DPC SNN-DPC DBHD

A

B
C

D
E

F

G H

3:

0.0

0.4

k-Means SubKMeans X-Means P-DipM SC SpectACl DBSCAN HDBSCAN RNN-DBS DPC SNN-DPC DBHD

A

B
C

D

E
F

G
H

4:

0.0

0.5

k-Means SubKMeans X-Means P-DipM SC SpectACl DBSCAN HDBSCAN RNN-DBS DPC SNN-DPC DBHDA
B

C
D

E G H5:

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

CluStream-O CluStream CluStream-C CluStream-W CluStream-S CluStream-G

Fig. 3: Mean ARI results over 5 seeds for the datasets Complex-9 (1), RBF-3
40000 (2), DENSIRED-10 (3), Gas Sensor Array (4), and KDDCUP99 (5) for the
best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM
(C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-
O (G) (also marked by the horizontal line), as well as the CluStream variants
(denoted by hatch) for the respective offline clustering algorithms, including the
default case of Wk-Means (H). The color indicates the offline clustering. The
standard deviation over the different seeds is denoted by gray bars at the top.

in a better clustering performance. The introduction of weights appears to be
advantageous for many methods, though it can lead to mixed results for some
approaches, which is particularly noticeable in RNN-DBS and X-Means. For the
case of density-connectivity approaches, the introduction of weights translates to
a shift from connecting singleton micro-clusters to connecting primarily within
the micro-clusters themselves for higher-weight micro-clusters for CluStream-S.
This can be interpreted as a shift between a global representation for single-
ton micro-clusters, where the broader structure is made clearer, and a more
local representation when weights are introduced, leading to some trade-offs.
For CluStream-G, the higher spread can lead to individual generated points be-
coming their own clusters while the overall distances between micro-clusters are
reduced, making them harder to separate for density-connectivity approaches.
Still, it can also lead to connections between micro-clusters with a large radius



Going Offline 15

that belong to the same ground-truth cluster. For density-peak and partitioning
methods, the introduction of weights helps differentiate between micro-clusters in
terms of relevance. Generating the data points also allows for a better mimicking
of the distributions. This is most noticeable for P-DipM, which improves signifi-
cantly due to a better representation of the distributions used in the unimodality
test. In contrast, P-DipM consistently failed during the parameter optimization
for approaches that only multiply the centroids for higher-dimensional data.

5 Discussion and Conclusion

We performed a broad evaluation of the offline phase on the example of Clu-
Stream, investigating different offline clustering strategies from different cate-
gories. We also investigated different approaches to reconstruct the data from
summaries, which support this offline clustering. We tackled the observation
made by Wang et al. [61] that the offline phase may be superfluous in many
cases. With suitable parameters and offline clustering approaches, it is possible
to outperform the purely online CluStream as well as many competitors. How-
ever, it is also important to note that there is no universal solution that always
performs best. Although a generative reconstruction offers the best representa-
tion based on our evaluation, it does not necessarily lead to the best clustering
performance in all cases. It is sensible to treat both the offline reconstruction
and the actual offline clustering algorithm as additional constraints for evalua-
tion. Rather than using a single fixed offline approach specific to each stream
clustering algorithm, it instead is better to treat the offline phase as something
flexible where the same offline approach is either used for all strategies or the
performance is measured across a broader spectrum of offline strategies. In the
future, we want to expand the evaluation to more online summarization princi-
ples, especially those that include weight decay, an aspect that CluStream lacks.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: StreamKM++: A clustering algorithm for data streams. ACM J. Exp. Algo-
rithmics 17(1) (2012)

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: VLDB. pp. 81–92. Morgan Kaufmann (2003)

3. Ahsani, S., Yousef Sanati, M., Mansoorizadeh, M.: DynamicCluStream: An algo-
rithm based on clustream to improve clustering quality. International Journal of
Web Research 6(2), 77–87 (2023)

4. de Andrade Silva, J., Faria, E.R., Barros, R.C., Hruschka, E.R., de Leon Ferreira de
Carvalho, A.C.P., Gama, J.: Data stream clustering: A survey. ACM Comput. Surv.
46(1), 13:1–13:31 (2013)



16 P. Jahn et al.

5. de Andrade Silva, J., Hruschka, E.R.: A support system for clustering data streams
with a variable number of clusters. ACM Trans. Auton. Adapt. Syst. 11(2), 11:1–
11:26 (2016)

6. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
SODA. pp. 1027–1035. SIAM (2007)

7. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS. pp. 1–16. ACM (2002)

8. Backhoff, O., Ntoutsi, E.: Scalable online-offline stream clustering in apache spark.
In: ICDM Workshops. pp. 37–44. IEEE Computer Society (2016)

9. Barton, T.: Clustering-benchmark repository. https://github.com/deric/
clustering-benchmark (2015)

10. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

11. Bryant, A., Cios, K.J.: RNN-DBSCAN: A density-based clustering algorithm using
reverse nearest neighbor density estimates. IEEE Trans. Knowl. Data Eng. 30(6),
1109–1121 (2018)

12. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on
hierarchical density estimates. In: PAKDD (2). Lecture Notes in Computer Science,
vol. 7819, pp. 160–172. Springer (2013)

13. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM. pp. 328–339. SIAM (2006)

14. Carnein, M., Trautmann, H.: Optimizing data stream representation: An extensive
survey on stream clustering algorithms. Bus. Inf. Syst. Eng. 61(3), 277–297 (2019)

15. Chamalis, T., Likas, A.: The projected dip-means clustering algorithm. In: SETN.
pp. 14:1–14:7. ACM (2018)

16. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

17. Chiu, C.W., Minku, L.L.: Smoclust: synthetic minority oversampling based on
stream clustering for evolving data streams. Mach. Learn. 113(7), 4671–4721
(2024)

18. Durani, W., Mautz, D., Plant, C., Böhm, C.: DBHD: density-based clustering for
highly varying density. In: ICDM. pp. 921–926. IEEE (2022)

19. Erdinç, B., Kaya, M., Senol, A.: MCMSTStream: applying minimum spanning tree
to kd-tree-based micro-clusters to define arbitrary-shaped clusters in streaming
data. Neural Comput. Appl. 36(13), 7025–7042 (2024)

20. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: KDD. pp. 226–231. AAAI Press
(1996)

21. Fix, E.: Discriminatory analysis: nonparametric discrimination, consistency prop-
erties, vol. 1. USAF school of Aviation Medicine (1985)

22. Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert space embedding.
In: ISIT 2004. Proceedings. p. 31. IEEE (2004)

23. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

24. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.
IEEE Ann. Hist. Comput. 7(1), 43–57 (1985)

25. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel
two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

26. Hahsler, M., Bolaños, M.: Clustering data streams based on shared density between
micro-clusters. IEEE Trans. Knowl. Data Eng. 28(6), 1449–1461 (2016)



Going Offline 17

27. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics,
Springer (2009)

28. Hess, S., Duivesteijn, W., Honysz, P., Morik, K.: The SpectACl of nonconvex clus-
tering: A spectral approach to density-based clustering. In: AAAI. pp. 3788–3795.
AAAI Press (2019)

29. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)
30. Jahn, P., Frey, C.M.M., Beer, A., Leiber, C., Seidl, T.: Data with density-

based clusters: A generator for systematic evaluation of clustering algorithms.
In: ECML/PKDD (7). Lecture Notes in Computer Science, vol. 14947, pp. 3–21.
Springer (2024)

31. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The ClusTree: indexing micro-clusters
for anytime stream mining. Knowl. Inf. Syst. 29(2), 249–272 (2011)

32. Kranen, P., Reidl, F., Villaamil, F.S., Seidl, T.: Hierarchical clustering for real-time
stream data with noise. In: SSDBM. Lecture Notes in Computer Science, vol. 6809,
pp. 405–413. Springer (2011)

33. Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., Pfahringer,
B.: An effective evaluation measure for clustering on evolving data streams. In:
KDD. pp. 868–876. ACM (2011)

34. Leiber, C., Miklautz, L., Plant, C., Böhm, C.: Benchmarking deep clustering algo-
rithms with clustpy. In: ICDM (Workshops). pp. 625–632. IEEE (2023)

35. Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins,
C., Ruhkopf, T., Sass, R., Hutter, F.: SMAC3: A versatile bayesian optimiza-
tion package for hyperparameter optimization. J. Mach. Learn. Res. 23, 54:1–54:9
(2022)

36. Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search
and find of density peaks. Inf. Sci. 450, 200–226 (2018)

37. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–136 (1982)

38. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

39. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval.
Cambridge University Press (2008)

40. Mansalis, S., Ntoutsi, E., Pelekis, N., Theodoridis, Y.: An evaluation of data stream
clustering algorithms. Stat. Anal. Data Min. 11(4), 167–187 (2018)

41. Mautz, D., Ye, W., Plant, C., Böhm, C.: Towards an optimal subspace for k-means.
In: KDD. pp. 365–373. ACM (2017)

42. McInnes, L., Healy, J.: UMAP: uniform manifold approximation and projection
for dimension reduction. CoRR abs/1802.03426 (2018)

43. Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R.,
Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T., Bifet, A.: River: machine
learning for streaming data in python. J. Mach. Learn. Res. 22, 110:1–110:8 (2021)

44. Namitha, K., Kumar, G.S.: Concept drift detection in data stream clustering and
its application on weather data. Int. J. Agric. Environ. Inf. Syst. 11(1), 67–85
(2020)

45. Nguyen, X.V., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

46. O’Callaghan, L., Meyerson, A., Motwani, R., Mishra, N., Guha, S.: Streaming-data
algorithms for high-quality clustering. In: ICDE. pp. 685–694. IEEE Computer
Society (2002)



18 P. Jahn et al.

47. Oyewole, G.J., Thopil, G.A.: Data clustering: application and trends. Artif. Intell.
Rev. 56(7), 6439–6475 (2023)

48. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011)

49. Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of
the number of clusters. In: ICML. pp. 727–734. Morgan Kaufmann (2000)

50. Plesovskaya, E., Ivanov, S.: An empirical analysis of KDE-based generative models
on small datasets. Procedia Computer Science 193, 442–452 (2021)

51. Rajagopalan, A., Vitale, F., Vainstein, D., Citovsky, G., Procopiuc, C.M., Gentile,
C.: Hierarchical clustering of data streams: Scalable algorithms and approximation
guarantees. In: ICML. Proceedings of Machine Learning Research, vol. 139, pp.
8799–8809. PMLR (2021)

52. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

53. da Silva, M.C., Licari, B., Tavares, G.M., Junior, S.B.: Benchmarking automl clus-
tering frameworks. In: AutoML Conference 2024 (ABCD Track) (2024)

54. de Souza, V.M.A., dos Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A.: Chal-
lenges in benchmarking stream learning algorithms with real-world data. Data
Min. Knowl. Discov. 34(6), 1805–1858 (2020)

55. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC: modeling and
monitoring cluster transitions. In: KDD. pp. 706–711. ACM (2006)

56. Stolte, M., Kappenberg, F., Rahnenführer, J., Bommert, A.: Methods for quan-
tifying dataset similarity: a review, taxonomy and comparison. Statistics Surveys
18(none) (Jan 2024). https://doi.org/10.1214/24-ss149

57. Tareq, M., Sundararajan, E.A., Harwood, A., Bakar, A.A.: A systematic review of
density grid-based clustering for data streams. Ieee Access 10, 579–596 (2021)

58. Tu, W., Deng, W., Gedeon, T., Zheng, L.: A bag-of-prototypes representation for
dataset-level applications. In: CVPR. pp. 2881–2892. IEEE (2023)

59. Vázquez, F.I., Zseby, T.: Temporal silhouette: validation of stream clustering ro-
bust to concept drift. Mach. Learn. 113(4), 2067–2091 (2024)

60. Wang, J., et al.: Everything about transfer learning and domain adapation. http:
//transferlearning.xyz

61. Wang, X., Wang, Z., Wu, Z., Zhang, S., Shi, X., Lu, L.: Data stream clustering:
An in-depth empirical study. Proc. ACM Manag. Data 1(2), 162:1–162:26 (2023)

62. Xie, J., Dai, M., Xia, S., Zhang, J., Wang, G., Gao, X.: An efficient fuzzy stream
clustering method based on granular-ball structure. In: ICDE. pp. 901–913. IEEE
(2024)

63. Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., Weinberger, K.Q.: An
empirical study on evaluation metrics of generative adversarial networks. CoRR
abs/1806.07755 (2018)

64. Zogaj, F., Cambronero, J.P., Rinard, M.C., Cito, J.: Doing more with less: Char-
acterizing dataset downsampling for AutoML. Proc. VLDB Endow. 14(11), 2059–
2072 (2021)

65. Zubaroglu, A., Atalay, V.: Data stream clustering: a review. Artif. Intell. Rev.
54(2), 1201–1236 (2021)

66. Zubaroglu, A., Atalay, V.: Online embedding and clustering of evolving data
streams. Stat. Anal. Data Min. 16(1), 29–44 (2023)


