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Abstract. Deep time series models often su!er from reliability issues
due to their tendency to rely on spurious correlations, leading to incor-
rect predictions. To mitigate such shortcuts and prevent "Clever-Hans"
moments in time series models, we introduce Right on Time (RioT), a
novel method that enables interacting with model explanations across
both the time and frequency domains. By incorporating feedback on
explanations in both domains, RioT constrains the model, steering it
away from annotated spurious correlations. This dual-domain interac-
tion strategy is crucial for e!ectively addressing shortcuts in time series
datasets. We empirically demonstrate the e!ectiveness of RioT in guid-
ing models toward more reliable decision-making across popular time se-
ries classification and forecasting datasets, as well as our newly recorded
dataset with naturally occuring shortcuts, P2S, collected from a real
mechanical production line.

1 Introduction

Time series data is ubiquitous in today’s world. Everything that is measured
over time generates some form of time series, for example, energy load [15], sen-
sor measurements in industrial machinery [21] or recordings of tra!c data [18].
Complex time series data is often analyzed using various neural models [3,28].
However, as in other domains, these can be subject to spurious factors ranging
from simple noise or artifacts to complex shortcuts [16]. Intuitively, a shortcut,
also called “Clever-Hans” moment, is a spurious pattern in the data that corre-
lates with the target task during training but lacks true relevance. If a model
learns to rely on such patterns rather than meaningful features, its generalizabil-
ity su"ers, performing well on data with the shortcut but failing on data without
it, which poses a significant challenge in real-world deployment [11]. While model
explanations can help uncover these shortcuts, they do not resolve the issue on
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Fig. 1. Explanations reveal that the model relies on spurious factors in the

input (red region) instead of relevant features (blue region). With RioT, the
model can be guided away from these misleading patterns, whether they appear in the
spatial or frequency domain. For this, RioT leverages feedback on incorrect explanations
to steer the model toward more meaningful and reliable reasoning.

their own (cf. Fig. 1 I). Despite extensive research in other domains [36], short-
cuts in time series models remain underexplored. Existing studies often have
specific assumptions about settings and data [4], leaving a gap in understanding
and mitigating shortcut learning in broader time series applications. To address
this, we introduce Right on Time (RioT), a new method grounded in the prin-
ciples of explanatory interactive learning (XIL) [38], which leverages feedback
on explanations to mitigate shortcuts (cf. Fig. 1 II). RioT uses traditional ex-
planation methods, such as Integrated Gradients (IG) [37], to assess whether
the model attends to the correct time steps. It then incorporates feedback on
shortcut areas to refine the model, improving robustness and generalization.

However, spurious factors in time series data extend beyond the time domain.
For example, a consistent noise frequency in an audio signal can act as a short-
cut without being tied to a specific point in time. RioT can handle these types
of shortcuts by incorporating feedback in the frequency domain. To highlight
the importance of shortcuts in time series data, we introduce a new real-world
dataset with naturally occurring shortcuts, called Production Press Sen-
sor Data (P2S). The dataset includes sensor measurements from an industrial
high-speed press, essential to many manufacturing processes in the sheet metal
working industry. The sensor data for detecting faulty production contains short-
cuts and thus provokes incorrect predictions after training. Next to its industrial
relevance, P2S is the first time series dataset that contains explicitly annotated
shortcuts, enabling the evaluation of mitigation strategies on real data.

Altogether, we make the following contributions: (1) We show both on our
newly introduced real-world dataset P2S and on several other datasets with
manual shortcuts that SOTA neural networks on time series classification and
forecasting are a"ected by these shortcuts. (2) We introduce RioT to mitigate
shortcuts for time series data. The method can incorporate feedback on the time
domain and the frequency domain. (3) By incorporating explanations and feed-
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back in the frequency domain, we enable a new perspective on XIL, overcoming
the important limitation that shortcuts must be spatially separable.

The paper is structured as follows: Sec. 2 provides a brief overview of related
work on explaining time series and correcting model mistakes. Sec. 3 introduces
our approach, while Sec. 4 describes our decoy methods and P2S. We then present
a detailed evaluation and discussion in Sec. 5. Finally, Sec. 6 concludes the paper
and outlines directions for future research.

2 Related Work

Explanations for Time Series. Explainable artificial intelligence o"ers vari-
ous techniques to interpret machine learning models, many of which originated
in image or text data before being adapted for time series [26]. Attribution meth-
ods explain models directly in the input space, while approaches like symbolic
aggregation [17] and shapelets [42] provide higher-level insights (cf. [26,29] for a
broader discussion on time series explanations). While explanation methods help
identify shortcuts, they alone do not enable model revision. Thus, our approach
begins with explanations to detect shortcuts and integrates feedback to miti-
gate them. Specifically, we use Integrated Gradients (IG) [37], which computes
attributions via model gradients and is widely used for time series data [22,39].

Explanatory Interactive Learning (XIL). Research on shortcuts and
their mitigation is growing, though it primarily focuses on visual data [36]. One
direction is explanatory interactive learning (XIL), which entails methods that
revise a model’s decision-making based on human feedback [30,38]. A core aspect
of XIL is using model explanations to correct mistakes, particularly to prevent
Clever-Hans-like behavior, where models rely on spurious shortcuts [9,35]. Sev-
eral XIL methods have been applied to image data. Right for the Right Reasons
(RRR) [27] and Right for Better Reasons [32] penalize incorrect attributions,
while HINT [31] rewards correct focus and [10] explore using multiple explainers.
Despite their success in vision tasks, XIL approaches remain largely unexplored
for time series. To address this, we introduce RioT, adapting XIL principles to
the unique challenges of time series data.

Unconfounding Time Series. Apart from interactive learning approaches,
some methods address confounding in time series models through causal infer-
ence [8]. Techniques like the Time Series Deconfounder [4], SqeDec [13], and
LipCDE [5] estimate data while mitigating confounders in covariates of the tar-
get variable. They rely on causal analysis and specific assumptions about data
generation. In contrast, our method focuses on shortcuts within the target vari-
able itself, requiring no assumptions beyond the shortcut being detectable in
model explanations - an area where existing causal methods are less applicable.

3 Right on Time (RioT)

The core idea of Right on Time (RioT) is to use feedback on model expla-
nations to guide the model away from incorrect reasoning. Following the XIL
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Fig. 2. RioT’s explanation-based revision process. Input data x passes through
the model f(x) to generate explanations e(x), receives annotated feedback a(x), and is
then fed back into the model. Integrated Gradients (IG) provides spatial explanations,
while Fourier Transform (FFT) converts them into frequency-based explanations. An-
notations can be applied in either or both domains and are leveraged by the right-reason
loss (Lsp

RR and Lfreq
RR ) to steer the model away from shortcuts in time or frequency.

paradigm, RioT is designed for seamless integration with other XIL methods.
To ensure compatibility, we structure RioT around the four key steps identified
by [9]: Select, Explain, Obtain and Revise. In Select, samples for feedback and
model revision are selected. Following previous methods, we select all samples
by default but also explore using subsets of the data. Afterwards, Explain covers
model explanations before feedback is provided in Obtain. Lastly, in Revise, the
feedback is integrated into the model to overcome the shortcuts. We introduce
RioT along these steps in the following (as illustrated in Fig. 2).

Given a dataset (X ,Y) and a model f(·) for time series classification or
forecasting. The dataset consists of D many pairs of x and y. Thereby, x → X
is a time series of length T , i.e., x → RT . For K class classification, the ground-
truth output is y → {1, . . . ,K} and for forecasting, the ground-truth output is
the forecasting window y → RW of length W . The ground-truth output of the full
dataset is described as Y in both cases. For a datapoint x, the model generates
the output ŷ = f(x), where the dimensions of ŷ are the same as of y.

3.1 Explain

Given a pair of input x and model output ŷ for time series classification, the
explainer generates an explanation ef (x) → RT in the form of attributions to
explain ŷ w.r.t. x, where a large attribution value means a large influence on the
output. In the remainder of the paper, explanations refer to the model f , but
we drop f from the notation to declutter it, resulting in e(x). We use IG [37]
(Eq. 1) as an explainer, an established gradient-based attribution method. This
method integrates the gradient along the path (using the integration variable
ω) from a baseline x̄ to the input x. It multiplies the result with the di"erence
between baseline and input. However, we make some adjustments to the base
method to make it more suitable for time series and model revision, namely
taking the absolute value of the di"erence between x and x̄ (further details in



Revising Time Series Models by Constraining their Explanations 5

Appx. A.1). In the following, we introduce the modifications to use attributions
for forecasting and to obtain explanations in the frequency domain.

e(x) = |x↑ x̄| ·
∫ 1

0

εf(x̃)

εx̃

∣∣∣∣∣
x̃=x̄+ω(x↑x̄)

dω (1) e(x) =
1

W

W∑

i=1

e
↓
i(x) (2)

Attributions for Forecasting. In a classification setting, attributions are
generated by propagating gradients back from the model output (of its highest
activated class) to the model inputs. However, there is often no single model
output in time series forecasting. Instead, the model simultaneously generates
one output for each timestep of the forecasting window. Naively, one could use
these W outputs and generate as many explanations e↓1(x), . . . e↓W (x), where each
e
↓
i(x) is the IG explanation using the i-th time step from the forecasting window

as a target instead of a classification label. This number of explanations would,
however, make it even harder for humans to interpret the results, as the size of
the explanation increases with W [23]. Therefore, we propose aggregating the
individual explanations by averaging in Eq. 2. Averaging attributions over the
forecasting window provides a simple yet robust aggregation of the explanations.
Other means of combining them, potentially even weighted based on distance of
the forecast in the future are also imaginable. Overall, this allows attributions
for time series classification and forecasting to be generated similarly.

Attributions in the Frequency Domain. Time series data is often given
in the frequency representation, and this format can sometimes be more intu-
itive for humans to understand than the typical spatial representation. Thus,
providing explanations in this domain is essential. [40] showed how to obtain
frequency attributions of the method Layerwise Relevance Propagation [1], even
if the model does not operate directly on the frequency domain. We adapt this
idea to IG: for an input sample x, we generate attributions with IG, resulting
in e(x) → RT (Eq. 1 for classification or Eq. 2 for forecasting). We then inter-
pret the explanation as a time series, with the attribution scores as values. To
obtain the frequency explanation, we perform a Fourier transformation of e(x),
resulting in the frequency explanation ê(x) → CT with Ê for the entire set.

3.2 Obtain

The next step of RioT is to obtain feedback on shortcuts. For an input x, feed-
back marks input parts via a binary mask a(x) → {0, 1}T , where a 1 signals a
potential shortcut at this time step. Thereby, masks a(x) = (0, . . . , 0)T corre-
sponds to no feedback for a sample. Similarly, feedback can also be given on
the frequency explanation, marking which elements in the frequency domain are
potential shortcuts. The resulting feedback mask â(x) = (â(x)re, â(x)im) can be
di"erent for the real â(x)re → {0, 1}T and imaginary part â(x)im → {0, 1}T . For
the whole dataset, we then have spatial annotations A and frequency annota-
tions Â. Obtaining annotated feedback masks can become costly, particularly if
the feedback comes from human experts. However, as shortcuts often occur sys-
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tematically, it can be possible to apply annotations to many samples, drastically
reducing the number of annotations required in practice.

3.3 Revise

The last step of RioT is integrating the feedback into the model. We apply the
general idea of using a loss-based model revision [27,30,35] based on the ex-
planations and the annotation mask. Given the input data (X ,Y), we define
the original task (or right-answer) loss as LRA(X ,Y). This loss measures the
model performance and is the primary learning objective. To incorporate the
feedback, we further use the right-reason loss LRR(A,E). This loss aligns model
explanations E = {e(x)|x → X} and user feedback A by penalizing the model
for explanations in the annotated areas. To achieve model revision and a good
task performance, both losses are combined, where ϑ is a hyperparameter to bal-
ance both parts of the combined loss L(X ,Y, A,E) = LRA(X ,Y) + ϑLRR(A,E).
Together, the combined loss simultaneously optimizes the primary training ob-
jective (e.g. accuracy) and feedback alignment.

Time Domain Feedback. Masking parts of the time domain is an easy way
to mitigate spatially locatable shortcuts (Fig. 1, left). We use the explanations
E and annotations A in the spatial version of the right-reason loss:

Lsp
RR(A,E) =

1

D

∑

x↔X
(e(x) ↓ a(x))2 (3)

As the explanations and the feedback masks are element-wise multiplied, this loss
minimizes the explanation values in marked parts of the input. This e"ectively
trains the model to disregard the marked parts for its computation. Thus, using
the loss in Eq. 3 as right-reason component for the combined loss allows to
e"ectively steer the model away from points or intervals in time.

Frequency Domain Feedback. However, feedback in the time domain is
insu!cient to handle every type of shortcut. If the shortcut is not locatable
in time, giving spatial feedback cannot be used to revise the models’ behav-
ior. Therefore, we utilize explanations and feedback in the frequency domain to
tackle shortcuts like in Fig. 1, (right). Given the frequency explanations Ê and
annotations Â, the right-reason loss for the frequency domain is:

Lfr
RR(Â, Ê) =

1

D

∑

x↔X

(
(Re(ê(x)) ↓ âre(x))2 + (Im(ê(x)) ↓ âim(x))2

)
(4)

The Fourier transformation is invertible and di"erentiable, so we can backprop-
agate gradients to parameters directly from this loss. Intuitively, the frequency
right-reason loss causes the masked frequency explanations of the model to be
small while not a"ecting any specific point in time.

Depending on the problem, it is possible to use RioT either in the spatial
or frequency domain. Moreover, it is also possible to combine feedback in both
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domains, including two right-reason terms in the final loss. This results in two
parameters ϑ1 and ϑ2 to balance the right-answer and both right-reason losses.

L(X ,Y, A,E) = LRA(X ,Y) + ϑ1Lsp
RR(A,E) + ϑ2Lfr

RR(Â, Ê) (5)

It is important to note that giving feedback in the frequency domain allows a
new form of model revision through XIL. Even if we e"ectively still apply mask-
ing in the frequency domain, the e"ect in the original input domain is entirely
di"erent. Masking out a single frequency a"ects all time points without pre-
venting the model from looking at any of them. In general, having an invertible
transformation from the input domain to a di"erent representation allows to give
feedback more flexible than before. The Fourier transformation is a prominent
example but not the only possible choice for this. Using other transformations
like wavelets [12], is also possible.

Computational Costs. Including RioT in the training of a model increases
the computational cost. Computing the right reason loss term requires the com-
putation of a mixed partial derivative: ε2fω(x)

εϑεx . Even though this is a second-
order derivative, it does not result in any substantial cost increases, as the
second-order component of our loss can be formalized as a Hessian-vector prod-
uct (cf. Appx. A.3), which is known to be fast to compute [20]. We also observed
this in our experimental evaluation, as even the naive implementation of our loss
in PyTorch scales to large models.

Source of Feedback. A key aspect of RioT is the feedback incorporated
in the Obtain step, which can come from various sources, including automated
methods, rule-based systems, foundation models, or human annotations. Auto-
mated approaches, such as rule-based heuristics or pre-trained foundation mod-
els, provide scalable and consistent feedback, reducing the reliance on manual
labeling. However, human annotations remain valuable for ensuring accuracy, es-
pecially in complex cases where automated methods may introduce biases or fail
to capture nuanced patterns. RioT is agnostic to the feedback source, allowing
flexibility in its application.

4 Shortcuts in Time Series

Shortcuts, like those in images, naturally occur in time series data but are often
less apparent. Developing e"ective mitigation methods requires datasets where
shortcuts are explicitly annotated, yet no existing datasets provide such anno-
tations, despite known biases in popular datasets [2]. To address this gap, we
introduce several time series dataset decoy variants inspired by prior work on de-
coy data [27], allowing for controlled evaluation of shortcut mitigation strategies.
To further evaluate shortcut mitigation under real-world conditions, we present
P2S, a real-world dataset where shortcuts arise from sensor recording processes.

4.1 Decoy Shortcuts

Classification. For both spatial and frequency cases, we introduce the shortcut
as a class-specific pattern embedded in each training sample. The spatial pattern
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replaces m time steps with a sine wave defined as s := sin(t · (2 + j)ϖ) ·A where
t → {0, 1, . . . ,m} are the respective time steps, j represents the class index and
A is the amplitude. In contrast, the frequency pattern is a similar sine wave,
but it is additively applied to the full sequence (m = T ).

Forecasting. For forecasting datasets, spatial decoys are more challenging
due to window-based sampling and the complexity of the target. To address
this, we design the shortcut as a "back-copy" of the forecast, where the decoy is
equivalent to the actual solution. Due to the windowed sampling, the shortcut
appears in every second sample. Given a sample of lookback window x → RT and
the forecast horizon y → RW . In the shortcut samples, we overwrite the first W

entries of the lookback window with the future horizon values, yielding:

xs =
(
y1, . . . , yW︸ ︷︷ ︸
future horizon

, xW+1, . . . , xT︸ ︷︷ ︸
remaining lookback

)
.

while y remains unchanged. While this setting may seem constructed, similar
patterns can emerge in real-world scenarios. For instance, in data transmission,
glitches such as packet losses or duplications can subtly introduce irregularities
into time series data, inadvertently creating forecasting shortcuts.

We model the forecasting frequency decoy as a recurring Dirac impulse with
a specific frequency, added every k time steps: i → {n · k|n → N↔ n · k ↗ T +W}
with a strength of A: interference := A ·ϱi. The impulse is present within the
lookback and forecasting window during training, representing an e"ective decoy
distracting the model from the actual forecast.

4.2 Real-World Shortcuts: Production Press Sensor Data (P2S)

RioT aims to mitigate shortcuts in time series data. While the decoys above
provide a controlled evaluation setting, they do not capture the complexity of
real-world shortcuts. To rectify this, we introduce Production Press Sensor
Data (P2S)6, a dataset of sensor recordings with naturally occurring shortcuts.

The sensor data stems from a high-speed press production line for metal
parts, one of the sheet metal working industry’s most economically significant
processes. Based on the sensor data, the task is to predict whether a run is de-
fective. The recordings include di"erent production speeds, which, although not
a"ecting part quality, influence process friction, and applied forces. Fig. 3 shows
samples recorded at di"erent speeds from normal and defect runs, highlighting
variations even within the same class. A domain expert identified regions in the
time series that vary with production speed, potentially distracting models from
relevant features, especially when no defect and normal runs of the same speed
are in the training data. In these cases, the run’s speed is a shortcut and makes
it di!cult to generalize to other speeds than those present in training. P2S also
includes a specifically curated setup that matches run speeds during training to
avoid the shortcut. Further details on the dataset are available in Sec. B.
6 https://huggingface.co/datasets/AIML-TUDA/P2S

https://huggingface.co/datasets/AIML-TUDA/P2S
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Fig. 3. Samples of P2S from normal (left) and defect (right) class at 80 and

225 strokes per minute. Areas of the time series that are especially sensitive to the
stroke rate are considered a shortcut and marked red.

5 Experimental Evaluations

In this section, we investigate the e"ectiveness of RioT7to mitigate shortcuts in
time series classification and forecasting, including revision in the spatial domain
(RioTsp) and the frequency domain (RioTfreq), as well as both jointly.

5.1 Experimental Setup

Data. For classification, we use datasets from the UCR/UEA repository [7]. We
select available datasets of a minimal size (cf. Appx. A.2), which results in Fault
Detection A, Ford A, Ford B, and Sleep. For time series forecasting, we
evaluate on three popular datasets from the Darts repository [14]: ETTM1, En-
ergy, and Weather. We split the data into training and test sets using a 70/30
ratio and 20% of the training set are used for validation. We apply the previ-
ously described decoys to the training sets and simulate feedback based on the
shortcuts to generate annotation masks. In the real-world experiment, we utilize
our newly introduced dataset P2S. The mask is applied to all samples except in
our feedback scaling experiment. For the real-world test case, we consider our
newly introduced dataset P2S. We standardize all datasets as suggested by [41],
i.e., rescaling the distribution to zero mean and a standard deviation of one.

Models. For time series classification, we use the FCN model of [19], with
a slightly modified architecture for Sleep to achieve better performance (cf.
Appx. A.1). Additionally, we use the OFA model [43]. For forecasting, we use
TiDE [6], PatchTST [24] and NBEATS [25] to highlight the applicability of our
method to a variety of model classes.

Metrics. In our evaluations, we compare model performance on datasets
with and without shortcuts, as well as with and without RioT. For classification,
we report balanced (multiclass) accuracy (ACC), and mean squared error (MSE)
for forecasting. The respective mean absolute error (MAE) results can be found
in Appx. A.5. We report average and standard deviation over 5 runs.

7 https://github.com/ml-research/RioT

https://github.com/ml-research/RioT
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Table 1. Applying RioT mitigates shortcuts in time series classification. Per-
formance before and after applying RioT for spatial (Basesp) and frequency (Basefreq)
shortcuts. High training and low test accuracies indicate overfitting to the shortcut,
which RioT successfully mitigates. No Shortcut represents the ideal scenario where the
model is not a!ected by any shortcut.

Model Config Fault Detection A FordA FordB Sleep

(ACC ↗) Train Test Train Test Train Test Train Test

FCN No Shortcut 0.99 ±0.00 0.99 ±0.00 0.92 ±0.01 0.91 ±0.00 0.93 ±0.00 0.76 ±0.01 0.68 ±0.00 0.62 ±0.00

Basesp 1.00 ±0.00 0.74 ±0.06 1.00 ±0.00 0.71 ±0.08 1.00 ±0.00 0.63 ±0.03 1.00 ±0.00 0.10 ±0.03
+ RioTsp 0.98 ±0.01 0.93 ±0.03 0.99 ±0.01 0.84 ±0.02 0.99 ±0.00 0.68 ±0.02 0.60 ±0.06 0.54 ±0.05

Basefreq 0.98 ±0.01 0.87 ±0.03 0.98 ±0.00 0.73 ±0.01 0.99 ±0.01 0.60 ±0.01 0.98 ±0.00 0.27 ±0.02
+ RioTfreq 0.94 ±0.00 0.90 ±0.03 0.83 ±0.02 0.83 ±0.02 0.94 ±0.00 0.65 ±0.01 0.67 ±0.05 0.45 ±0.07

OFA No Shortcut 1.00 ±0.00 0.98 ±0.02 0.92 ±0.01 0.87 ±0.04 0.95 ±0.01 0.70 ±0.04 0.69 ±0.00 0.64 ±0.01

Basesp 1.00 ±0.00 0.53 ±0.02 1.00 ±0.00 0.50 ±0.00 1.00 ±0.00 0.52 ±0.01 1.00 ±0.00 0.21 ±0.05
+ RioTsp 0.96 ±0.08 0.98 ±0.01 0.92 ±0.03 0.85 ±0.02 0.94 ±0.01 0.65 ±0.04 0.52 ±0.22 0.58 ±0.05

Basefreq 1.00 ±0.00 0.72 ±0.02 1.00 ±0.00 0.65 ±0.01 1.00 ±0.00 0.56 ±0.02 0.99 ±0.00 0.24 ±0.03
+ RioTfreq 0.96 ±0.02 0.98 ±0.02 0.78 ±0.04 0.85 ±0.04 1.00 ±0.00 0.64 ±0.03 0.50 ±0.16 0.49 ±0.04

5.2 Evaluations

Removing Shortcuts for Time Series Classification. We evaluate the ef-
fectiveness of RioT (spatial: RioTsp, frequency: RioTfreq) in addressing shortcuts
in classification tasks by comparing balanced accuracy with and without RioT.
As shown in Tab. 1, without RioT, both FCN and OFA overfit to shortcuts,
achieving ↘100% training accuracy, while having poor test performance. Ap-
plying RioT significantly improves test performance for both models across all
datasets. In some cases, RioT even reaches the performance of the ideal refer-
ence (no shortcut) scenario as if there would be no shortcut in the data. Even on
FordB, where the drop in training-to-test performance highlights the distribution
shift of that dataset [2], RioTsp is still beneficial. Similarly, RioTfreq enhances
performance on data with frequency shortcuts, though the improvement is less
pronounced for FCN on Ford B, suggesting essential frequency information is
sometimes obscured by RioTfreq. In summary, RioT successfully mitigates short-
cuts in both domains, enhancing test generalization for FCN and OFA models.

Removing Shortcuts for Time Series Forecasting. Shortcuts are not
exclusive to time series classification and can significantly impact other tasks,
such as forecasting. In Tab. 2, we outline that spatial shortcuts cause models to
overfit, but applying RioTsp reduces MSE across datasets, especially for Energy,
where MSE drops by up to 56%. In the frequency-shortcut setting, the training
data includes a recurring Dirac impulse as a decoy (cf. Appx. A.4 for details).
RioTfreq alleviates this distraction and improves the test performance signifi-
cantly. For example, TiDE’s test MSE on ETTM1 decreases by 14% compared
to the decoy setting.

In general, RioT e"ectively addresses spatial and frequency shortcuts in fore-
casting tasks. Interestingly, for TiDE on the Energy dataset, the performance
with RioTfreq even surpasses the no shortcut model. Here, the added frequency
acts as a form of data augmentation, enhancing model robustness. A similar
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Table 2. RioT can successfully overcome shortcuts in time series forecasting.

MSE values (MAE values cf. Tab. 7) on the training set with and test set without
shortcuts. No Shortcut is the ideal scenario where the model is not a!ected by shortcuts.

Model Config (MSE ↘) ETTM1 Energy Weather

Train Test Train Test Train Test

NBEATS No Shortcut 0.30 ±0.02 0.47 ±0.02 0.34 ±0.03 0.26 ±0.02 0.08 ±0.01 0.03 ±0.01

Basesp 0.24 ±0.01 0.55 ±0.01 0.33 ±0.03 0.94 ±0.02 0.09 ±0.01 0.16 ±0.04
+ RioTsp 0.30 ±0.01 0.50 ±0.01 0.45 ±0.03 0.58 ±0.01 0.11 ±0.01 0.09 ±0.02

Basefreq 0.30 ±0.02 0.46 ±0.01 0.33 ±0.04 0.36 ±0.04 0.11 ±0.02 0.32 ±0.09
+ RioTfreq 0.31 ±0.02 0.45 ±0.01 0.33 ±0.04 0.34 ±0.04 0.81 ±0.48 0.17 ±0.01

PatchTST No Shortcut 0.46 ±0.03 0.47 ±0.01 0.26 ±0.01 0.23 ±0.00 0.26 ±0.03 0.08 ±0.01

Basesp 0.40 ±0.02 0.55 ±0.01 0.29 ±0.01 0.96 ±0.03 0.20 ±0.03 0.19 ±0.01
+ RioTsp 0.40 ±0.03 0.53 ±0.01 0.44 ±0.00 0.45 ±0.01 0.55 ±0.20 0.14 ±0.01

Basefreq 0.45 ±0.03 0.91 ±0.16 0.04 ±0.00 0.53 ±0.05 0.63 ±0.09 0.24 ±0.04
+ RioTfreq 0.91 ±0.07 0.66 ±0.04 0.71 ±0.10 0.38 ±0.06 0.96 ±0.02 0.17 ±0.00

TiDE No Shortcut 0.27 ±0.01 0.47 ±0.01 0.27 ±0.01 0.26 ±0.02 0.25 ±0.02 0.03 ±0.00

Basesp 0.22 ±0.01 0.54 ±0.03 0.28 ±0.01 1.19 ±0.03 0.22 ±0.03 0.15 ±0.01
+ RioTsp 0.23 ±0.01 0.48 ±0.01 0.53 ±0.02 0.52 ±0.02 0.25 ±0.03 0.11 ±0.01

Basefreq 0.06 ±0.01 0.69 ±0.08 0.07 ±0.01 0.34 ±0.08 0.79 ±0.09 0.31 ±0.09
+ RioTfreq 0.07 ±0.01 0.49 ±0.07 0.07 ±0.01 0.21 ±0.02 1.12 ±0.36 0.22 ±0.01

Fig. 4. Applying RioT lets the model ignore shortcut areas. While FCN primar-
ily focuses on shortcuts, applying RioT with partial feedback (middle) or full feedback
(bottom) causes the model to ignore the shortcut and focus on the remaining input.

behavior can be observed for NBEATS and ETTM1, where the decoy setting
actually improves the model slightly, and RioT even improves upon that.

Removing Shortcuts in the Real-World. So far, our experiments have
demonstrated RioT’s ability to counteract shortcuts within controlled environ-
ments. However, real-world shortcuts, as in our new dataset P2S, often have
more complex structures. The model explanations in Fig. 4 (top) reveal a focus
on distinct regions of the sensor curve, specifically the two middle regions. With
domain knowledge, it is clear that these regions should not a"ect the model’s
output. By applying RioT, we can redirect the model’s attention away from these
regions. New model explanations highlight that the model still focuses on (other)
incorrect regions, which can be mitigated by extending the annotated area. In
Tab. 3, the model performance (exemplarly with FCN) in these settings is pre-
sented. Without RioT, the model overfits to the shortcut. the test performance
improves already with partial feedback (2) and even more with full feedback (4).
These results highlight the e"ectiveness of RioT in real-world scenarios where
not all shortcuts are initially known.
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Table 3. Applying RioT over-

comes shortcuts in P2S. Perfor-
mance on the train set with and test
set without shortcuts. FCN learns the
train shortcut, resulting in lower test
performance. Applying RioT with
partial feedback (2) already yields
good improvements, while adding
feedback on the full shortcut area (4)
is even better. No Shortcut is the
ideal scenario, specifically curated so
that there is no shortcut.

P2S (ACC →) Train Test

FCNNo Shortcut 0.97 ±0.01 0.95 ±0.01

FCNsp 0.99 ±0.01 0.66 ±0.14
FCNsp + RioTsp (2) 0.96 ±0.01 0.78 ±0.05
FCNsp + RioTsp (4) 0.95 ±0.01 0.82 ±0.06

Table 4. RioT can combine spatial and

frequency feedback. If the data contains time
and frequency shortcuts, RioT can combine
feedback on both domains to mitigate them,
superior to feedback on only one domain. No
Shortcut represents the ideal scenario when the
model is not a!ected by any shortcuts.

Sleep (Classification ACC →) Train Test

FCNNo Shortcut 0.68 ±0.00 0.62 ±0.00

FCNfreq,sp 1.00 ±0.00 0.10 ±0.04
FCNfreq,sp + RioTsp 0.94 ±0.00 0.24 ±0.02
FCNfreq,sp + RioTfreq 1.00 ±0.00 0.04 ±0.00
FCNfreq,sp + RioTfreq,sp 0.47 ±0.00 0.48 ±0.03

Energy (Forecasting MSE ↑) Train Test

TiDENo Shortcut 0.28 ±0.01 0.26 ±0.02

TiDEfreq,sp 0.16 ±0.01 0.74 ±0.02
TiDEfreq,sp + RioTsp 0.20 ±0.01 0.61 ±0.02
TiDEfreq,sp + RioTfreq 0.22 ±0.01 0.55 ±0.02
TiDEfreq,sp + RioTfreq,sp 0.25 ±0.01 0.47 ±0.01

Removing Multiple Shortcuts at Once. In the previous experiments,
we illustrated that RioT is suitable for addressing individual shortcuts, whether
spatial or frequency-based. However, real-world time series data often presents
a blend of multiple shortcuts that simultaneously influence model performance.
Thus, we investigate the impact of applying RioT to both spatial and frequency
shortcuts simultaneously (cf. Tab. 4), exemplarily using FCN and TiDE. When
Sleep contains shortcuts in both domains, FCN without RioT overfits and fails
to generalize. Addressing only one shortcut does not mitigate the e"ects, as the
model adapts to the other. However, combining the respective feedback from
both domains (RioTfreq,sp) significantly improves test performance, matching
the frequency-shortcut scenario (cf. Tab. 1). Tab. 4 (bottom) shows the impact
of multiple shortcuts on the Energy dataset, where the lower training MSE indi-
cates overfitting. While applying either spatial or frequency feedback individually
shows some e"ect, utilizing both types of feedback simultaneously (RioTfreq,sp)
results in the largest improvements, as both decoys are addressed. The perfor-
mance gap between RioTfreq,sp and the no shortcut setting is more pronounced
than in single shortcut cases (cf. Tab. 2). This highlights again the known chal-
lenge of removing multiple shortcuts at once, which is generally more complex
than individual shortcuts [36].

Handling Feedback. As the annotations are a crucial component of RioT,
we conduct two di"erent ablation studies to evaluate its impact using the classi-
fication data set Fault Detection A and the forecasting data set Energy. The first
experiment examines the required amount of feedback, while the second assesses
robustness to noisy feedback. In particular if the feedback stems from domain
experts, making excessive feedback requests is impractical. Thus our first ex-
periment evaluates the performance of RioT when feedback is provided on only
a portion of the dataset (Fig. 5). The findings reveal that full annotations are
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Fig. 5. RioT uses feedback e!-

ciently. Even with feedback on only a
small percentage of the data, RioT can
overcome shortcuts.

Fig. 6. RioT is robust against invalid

feedback. Even with some percentage
of random feedback, RioT overcomes the
shortcuts.

unnecessary. Even with minimal feedback, such as annotating just 5% of the sam-
ples, RioT significantly outperforms scenarios with no feedback. While previous
experiments assumed entirely accurate feedback, real-world applications often
involve some degree of error. Therefore, we test the resilience of RioT to increas-
ing levels of incorrect feedback (Fig. 6). Instead of accurately marking shortcut
areas, random time steps or frequency components are incorrectly labeled as
shortcuts. The results show that RioT maintains strong performance even with
up to 10% invalid feedback, presenting only slight performance declines. In cer-
tain cases, like forecasting with spatial shortcuts, RioT can still achieve notable
improvements despite high levels of feedback noise. To further evaluate whether
annotations in di"erent settings can also be incorporated via RioT, we conduct
an additional ablation where the feedback is based on shaplets instead of the
input domain directly (cf. Tab. 11 in the appendix). The results show that RioT
can be e"ective in this setup as well, and is not limited to the specific explanation
method and annotation modality shown in the other experiments (more details
in Appx. A.5). In summary, RioT e"ectively generalizes from small subsets of
feedback and remains robust against a moderate amount of annotation noise.
Additionally, RioT can incorporate feedback in other settings with other types
of explanations as well. These qualities demonstrate that RioT is well-equipped
to manage the practical challenges associated with incorporating feedback.

Qualitative Insights into Model Encodings. Lastly, we examine the
inner workings of a model by analyzing its latent representations under various
configurations. In Fig. 7, t-SNE plots show OFA’s feature encodings on Fault
Detection A in three settings: trained on shortcut data (left) with poor class
separation; after RioT regularization (center), where structure and separation
improve; and trained on clean data (right), yielding clear clusters. This reflects
the scores of the models (Tab. 1): the shortcut model reaches ↘50% accuracy,
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Fig. 7. t-SNE plots of OFA encodings for Fault Detection A. The left plot shows
that a model trained with shortcuts shows minimal class separation. The middle plot
shows the same setup but after RioT regularization, while the far right plot shows an
model without shortcuts with clear class separation. Both RioT-regularized and model
without shortcuts exhibit similar structures, highlighting the e!ectiveness of RioT.

whereas RioT boosts it to nearly 100%, matching the reference scenario with
clean data. This further demonstrates RioT’s ability to mitigate shortcuts and
restore robust performance.

Limitations. A key aspect of RioT is the incorporation of feedback. While
this is a major advantage of RioT, obtaining feedback can also present some
challenges. Although we demonstrate that only a small fraction of annotated
samples is needed, annotations remain essential. Moreover, like many interactive
learning approaches, RioT assumes accurate feedback, making it important to
consider potential issues from inaccuracies in practical applications. To reduce
the need of manual feedback, one could explore automated feedback strategies in-
stead or alongside manual feedback [34] (e.g., using an LLM to provide feedback
or automated clustering of explanations to identify outliers). Such approaches
may alleviate annotation costs but inevitably trade o" some precision and can
introduce new failure modes if the surrogate feedback is misaligned with task
requirements. Another drawback of RioT is the increased training cost. Opti-
mizing model explanations with gradient-based attributions requires comput-
ing a mixed-partial derivative. However, this can be e!ciently handled using a
Hessian-vector product, keeping the additional overhead manageable.

6 Conclusion

In this work, we present Right on Time (RioT) a method to mitigate shortcuts
in time series data with the help of feedback. By revising the model, RioT sig-
nificantly diminishes the influence of these factors, steering the model to align
with the correct reasons. Using popular time series models on several controlled
decoy datasets and the newly introduced, real-world dataset P2S with naturally
occurring shortcuts, showcases that SOTA models are indeed subject to short-
cuts. Our results demonstrate that applying RioT to these models can mitigate
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shortcuts in the data. Furthermore, we have unveiled that addressing solely the
time domain is insu!cient for fully steering the model toward the correct rea-
sons. To overcome this, we extended our method to incorporate feedback in the
frequency domain, o"ering an additional mechanism for reducing reliance on
shortcuts. Logical next steps are the extension of RioT to multivariate time se-
ries and the integration of various explainer types. Furthermore, exploring the
usage of adaptive feedback mechanisms could prove to be beneficial, in particular
in the context of multiple simultaneous shortcuts. Beyond time series, the appli-
cation of RioT, especially RioTfreq, can also allow for a more nuanced approach
to shortcut mitigation in other modalities.
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