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Abstract. As modern neural networks get more complex, specifying a
model with high predictive performance and sound uncertainty quantifi-
cation becomes a more challenging task. Despite some promising theo-
retical results on the true posterior predictive distribution of Bayesian
neural networks, the properties of even the most commonly used poste-
rior approximations are often questioned. Computational burdens and
intractable posteriors expose miscalibrated Bayesian neural networks
to poor accuracy and unreliable uncertainty estimates. Approximate
Bayesian inference aims to replace unknown and intractable posterior
distributions with some simpler but feasible distributions. The dimen-
sions of modern deep models, coupled with the lack of identifiability,
make Markov chain Monte Carlo (MCMC) tremendously expensive and
unable to fully explore the multimodal posterior. On the other hand,
variational inference benefits from improved computational complexity
but lacks the asymptotical guarantees of sampling-based inference and
tends to concentrate around a single mode. The performance of both
approaches heavily depends on architectural choices; this paper aims to
shed some light on this, by considering the computational costs, accu-
racy and uncertainty quantification in different scenarios including large
width and out-of-sample data. To improve posterior exploration, differ-
ent model averaging and ensembling techniques are studied, along with
their benefits on predictive performance. In our experiments, variational
inference overall provided better uncertainty quantification than MCMC;
further, stacking and ensembles of variational approximations provided
comparable accuracy to MCMC at a much-reduced cost.

Keywords: Approximate Bayesian Inference · Bayesian Deep Learning
· Ensembles · Out-of-Distribution · Uncertainty Quantification.

1 Introduction

Despite the tremendous success of deep learning in areas such as natural language
processing [45] and computer vision [27,8], often there is no clear understand-
ing of why a particular model performs well [55,44]. Even though the universal
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approximation theorem guarantees that a wide enough feed-forward neural net-
work with a single hidden layer can express any smooth function [24], in practice,
constructing a model which is not only expressive but generalizes well is chal-
lenging. In contrast, the so-called no free lunch theorem [51] dictates that there
is no panacea to solve every problem, and one should be careful when design-
ing a model appropriate to the task. Many modern machine learning models
are over-parametrized and prone to overfitting, especially given the limited size
of the dataset. Complex problems demand exploring bigger model spaces, and
there is a danger of choosing an excessively over-parametrized model, which is
going to overfit and have a high variance. Additionally, conventional deep models
do not offer human-understandable explanations and lack interpretability [31].
By default, classical neural networks do not address the uncertainty associated
with their parameters and whilst there exist proposals enabling neural networks
(NNs) to provide some uncertainty estimates, they are often miscalibrated [17].
As a result, these models are typically overconfident, provide a low level of un-
certainty even when data variations occur [38], and are easily fooled and are
susceptible to adversarial attacks [44,35]. At the same time, reliable uncertainty
quantification (UQ) is crucial for any decision-making process, and it is not
enough to obtain a point estimate of the prediction.

The key distinguishing property of the Bayesian framework is that it incorpo-
rates domain expertise and deals with uncertainty quantification in a principled
way: by marginalizing with respect to the posterior distribution of parameters.
As a result, Bayesian models are more resistant to distribution shifts and can im-
prove the accuracy and calibration of classical deep models [50]. Nevertheless, the
reliability of uncertainty estimates and the gap between within-the-sample and
out-of-sample performance still require improvement [11]. The posterior distri-
butions arising in Bayesian neural networks (BNNs) are analytically unavailable
and highly multimodal, and the core challenge lies in estimating the posterior
[39]. One should not only find a model that matches the task but, as importantly,
achieve the alignment between the model and the applied inference algorithm
[15]; and the most theoretically grounded sampling methods and approximation
techniques are limited by the computing budget, size of the dataset, and sheer
number of parameters. We list several characteristics of classical and Bayesian
neural networks in the Table 1.

Outline. In this work, we consider some of the challenges and nuances of
Bayesian neural networks and evaluate the performance with different archi-
tectures and for different posterior inference algorithm choices. Specifically, we
study the sensitivity of BNNs to the choice of width in Section 2.3, depth in Sec-
tion 2.4, and investigate the performance of BNNs under the distribution shift in
Section 2.5. Across all the experiments in Section 2, we observe that for different
inference algorithms, one model can provide strikingly diverse performances. The
challenge of comparative model assessment is addressed in Section 3.1, where we
introduce the estimated pointwise loglikelihood as a measure of model utility.
While given some set of models, the Bayesian approach has the potential to deal
with the model choice by comparing posterior model probabilities, such com-
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Table 1: Some of the challenges and properties of classical and Bayesian neural
networks.

Property Classical NN Bayesian NN
Interpretability poor improved ✓
Robustness to OOD poor improved ✓
Adversarial attacks sensitive less sensitive ✓
Overconfidence typical less typical ✓
Training outcome point estimate · posterior distribution P
Incorporate prior no yes
Require initialization yes yes

parison tends to favour one candidate disproportionally strongly [36]. Thus, the
classical Bayesian model averaging (BMA) based on model probabilities [22] is
only optimal if the true model is among the comparison set. In response to the
limitations of BMA, in Sections 3.2 and 3.3 we consider ensembling, stacking
and pseudo-BMA [54].

2 Empirical Study of Limiting Scenarios

2.1 Architecture Components

Whilst the dimensions of the input and the output are determined by the di-
mensionality of the data set, the dimension of the weight space plays an essential
part in specifying neural networks and can be tuned to improve prediction per-
formance. In the case of feed-forward neural networks, this amounts to finding
optimal depth and width. While the universal approximation theorem advocates
for single-layer neural networks [24], variants of the universal approximation the-
orem exist for deeper networks [32,19]. Further, deep neural networks gained
popularity due to their expressiveness and tremendous success in real-world ap-
plications, allowed by the increase in available computing power [5]. At the same
time, the more parameters one has, the more nuanced the choice of the model
becomes. No matter what the prediction task is, overly complex models suffer
from the curse of dimensionality which causes not only poor performance but
also computational problems.

On a slightly different line, we recall the seminal result first obtained for
neural networks with one hidden layer [34] and then extended to arbitrary depth
[33] which states that under general conditions, as the width of a BNN tends to
infinity, the distribution of the network’s output induced by the prior converges
to a Gaussian process (GP) with a neural network kernel, also known as the
neural network GP (NNGP); there is a similar correspondence relating GPs and
distributions induced by the posterior [25]. When defining BNNs, choosing a
prior and understanding how properties and prior beliefs on the weight space
translate to the functions is a major challenge. Generally, we require priors which
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Fig. 1: Examples of the directed acyclic graph (DAG) of the neural network and
of the priors used in the experiments.

are: (1) interpretable, e.g. we want to be able to specify the hyperparameters of
the prior based on the task at hand; (2) have large support, i.e. prior should not
concentrate around a small subset of the parameter space; (3) lead to feasible
inference and favour reasonable approximations of the posterior and predictive
distributions.

Finally, to specify any neural network, one needs to choose the activation
function, which (apart from being nonlinear) is required to be differentiable.
In our experiments, we consider the widely-used rectified linear unit function
(ReLU) defined as max(0, x), which switches the negative inputs off and leaves
the positive ones unchanged, as well as the sigmoid activation function defined
as σ(x) = exp(x)/(exp(x) + 1).

2.2 Setup of the Experiments

In the experiments, we consider the following BNN, illustrated by the Figure 1a

y ∼ N (bL+1 +WL+1zL,σ) , σ ∼ |N(0, 0.001)| (1)
zl = g (bl +Wlzl−1) for l = 1, . . . , L,

where we consider two different choices of activations g, namely, the ReLU and
the sigmoid; |N(, )| denotes a half-normal distribution; and z0 = x. We consider
two possible choices of priors on the weights (illustrated by Figure 1b): (i) Gaus-
sian priors as the most conventional choice [1,12]; (ii) Student-t priors, motivated
by the observation that empirical weight distributions of SGD-trained networks
are heavy-tailed [13,18]. We finish specifying the model by placing Gaussian
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priors on the biases, that is:

W1 ∼ F

(
0,

1

4L

)
, Wl ∼ F

(
0,

4

Dl−1

)
for l = 2, . . . , L+ 1,

bl ∼ N
(
0,

1

4L

)
for l = 1, . . . , L+ 1,

where the notation F (µ, σ2) represents a distribution with mean µ and scale σ,
and specifically, here is chosen as either Gaussian or Student-t with 5 degrees of
freedom. To avoid divergence in wider networks and mitigate the damage caused
by the nonlinear deformation [20], the weights’ variance is scaled by the inverse
of the preceding layer’s width.

The BNN defined by Equation (1) and trained with automatic differentia-
tion variational inference (ADVI) [28], which assumes a mean-field (diagonal)
Gaussian variational family, is referred to as mfVIR or mfVIS, depending on the
choice of the activation: ReLU or sigmoid, respectively. The model trained with
the Hamiltonian Monte Carlo (HMC), using the No U-Turn Sampler (NUTS)
[23] is denoted as HMCR or HMCS. For simplicity, we often refer to one-layer
neural networks of particular width D as to mfVIRD, mfVISD, HMCRD or
HMCSD (e.g. one-layer BNN with 20 hidden units and ReLU activation trained
with mean-field VI is called mfVIR20). All experiments are implemented with
Numpyro [40], ArviZ [29], JAX [4] and Flax [21]. We record the run time of the
approximate inference (TT), the root mean squared error RMSE and empirical
coverage for the function and observations (EC). Note that we compute empir-
ical coverage as a fraction of observations contained within the 95% confidence
interval (CI), this means that in the ideal settings the computed EC should equal
to 0.95. If EC > 0.95 then the confidence intervals are too wide; a worse scenario
occurs when EC < 0.95 as it means that the CIs are too narrow and the model
is overconfident in predictions. Details on the computed metrics and the corre-
sponding formulas are discussed in the supplementary, where we provide further
information on the initialization and parameters for the inference algorithms1.

The absence of the test log-likelihood among the recorded metrics is moti-
vated by the observation that the higher test log-likelihood does not necessarily
correspond to a more accurate posterior approximation nor to lower predictive
error (such as RMSE) [7].

2.3 Increasing the Width of the Network

We consider a simple synthetic dataset with one-dimensional input and output:

x ∼ Unif([0, 2]), y = sin(10x)x2 + ϵ, ϵ ∼ N(0, 0.25).

The training data D consists of N = 500 observations and the new data for
testing D̃ consists of Ñ = 100 observations. We first study the performances

1 The code is available on GitHub.

https://github.com/sheinkmana/ArchitectureofBNNs


6 A.Sheinkman and S.Wade.

of mfVIR, mfVIS, HMCR and HMCS with 1 hidden layer and either Gaus-
sian or Student-t priors as the width increases, and illustrate the metrics for
D1 = 20, 200, 1000 and 2000 hidden units by the Figure 2a. The predictions
of the four combinations of activation and inference algorithm with Gaussian
priors when D1 = 2000 are provided on the Figure 2b; similar results were ob-
tained when weights have Student-t distribution, the figures are presented in the
supplementary. For either choice of priors, performance of the mfVIS dips with
the increase in the dimension of the hidden layer; moreover, for D1 = 1000 and
D1 = 2000 its posterior predictive distribution fails to capture the data, and,
in fact, degenerates to the prior (Figure 2b). An explanation of why such be-
haviour occurs was obtained via the correspondence of Gaussian processes and
BNNs. While as the width increases the true posterior of a BNN converges to
a NNGP posterior [25], any optimal mean-field Gaussian variational posterior
of a BNN with odd (up to a constant offset) Lipschitz activation function con-
verges to the prior predictive distribution of the NNGP [6]. In other words, the
mean-field variational approximations of wide BNNs with sigmoid activations
ignore the data. If one abandons the mean-field assumption and proposes a full-
rank variational family, then using variational inference (VI) for wider networks
would take at least a hundred times more time than using HMC, which under-
mines the benefits of using VI. Such degenerate behaviour is not observed with
HMC(Figure 2b, but this comes at a significant increase in training time. For
wider networks, the HMCR model exhibits a better performance than the HMCS
both in terms of accuracy and uncertainty quantification. In terms of predictive
accuracy, HMC is preferred over mfVI in all of the combinations of the activation
function and width. However, in terms of uncertainty quantification, the HMC
is inferior to mfVI (with one exception of a BNN with Student-t priors, sigmoid
activation and 2000 hidden units). In our experiment, HMC underestimates the
uncertainty of the signal much more than VI (Figures 2a and 2b). Note that
whilst variational inference is often cursed to underestimate the uncertainty[46],
that is not always the case [3,14]. Markov chain Monte Carlo (MCMC) methods
are known to struggle to effectively explore multimodal posteriors [39,26], and a
lack of uncertainty could be a result of poor mixing of the chain.

General summary. In wider networks, the ReLU is preferred over the sig-
moid activation for both HMC and mfVI. Crucially, when it comes to the
mean-field VI the sigmoid activation should only be used when the
limited width is suitable for the task at hand. It is reasonable to suppose
that the same could be said about any odd (up to adding a constant) activation
function. Further, while the HMC was preferred over the mfVI when looking
at accuracy alone, the required computational resources could be an obstacle.
Moreover, uncertainty quantification is far from ideal for HMC (CIs are too
narrow for the signal); instead, mfVI with the ReLU achieves a good balance
between accuracy, UQ, and time, particularly for wider networks.
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Fig. 2: Predictive performance of BNNs as the width increases.

2.4 Increasing the Depth of the Networks

Consider the data of Section 2.3 and neural networks defined by Equation (1)
with the number of layers L varying from 1 to 6 and a fixed number of hidden
units in each layer Dh = 20. Figure 3a provides the recorded metrics, and Fig-
ure 3b illustrates the predictions of the four combinations of activation and infer-
ence algorithm with L = 6 and Gaussian priors (analogous figures for Student-t
priors are provided in the supplementary). First, observe that overall both RMSE
and empirical coverage of mfVIR approximations improve with the increase of
depth, with one exception of L = 5 and Student-t priors, when the prediction
quality of the network drops drastically. The mfVIS follows a similar pattern,
except for the case of L = 5 and Gaussian priors. Indeed, the approximate poste-
riors of deep neural networks obtained with the mean-field variational inference
were shown to be as flexible as the much richer approximate posteriors of shal-
lower BNNs [10]. We do not obtain the same improvement in the prediction
quality of models trained with HMC: for either choice of priors, the performance
of HMCR falls, whilst the HMCS does not improve as the depth increases. This
undesirable behaviour could be a result of the multimodality of distributions in
overparametrized models combined with the challenges of MCMC in exploring
the high-dimensional space [26,39]. Compared to the findings of Section 2.3, we
note that the deeper NNs are less sensitive to the choice of the activation func-
tion. It is needless to say that the HMC algorithm scales rather poorly, and as
the number of layers changes from L = 1 to L = 6, the time needed to train
HMCR and HMCS gets more than 15 and 30 times greater, respectively. We note
that for models with more than one hidden layer, training of the network with
sigmoid activations takes roughly twice as much time as the network with ReLU.
The striking discrepancy in training times could arise due to the difference in
the leapfrog integrator step sizes [2].
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Fig. 3: Prediction performance of BNNs as the depth increases.

General summary. In terms of the training time, HMC becomes less and
less feasible with the increase in depth. With the need to explore high-dimensional
parameter spaces, multimodality of the posteriors should be kept in mind as an
arising challenge for both mfVI and HMC. In terms of the balance between
accuracy and UQ, the mean-field variational inference with ReLU ac-
tivation function is able to outperform MCMC with the increase in
depth.

2.5 Out-of-Distribution Prediction

While it is not surprising that the accuracy and the quality of uncertainty quan-
tification of any model decreases under a distribution shift, reliable uncertainty
estimates that are robust to the out-of-distribution (OOD) data become ex-
ceptionally important in safety-critical applications. The challenge is especially
intricate since better accuracy and lower calibration error of a certain model
on the in-domain data do not imply better accuracy and lower calibration er-
ror in the OOD settings [38]. Here, we wish to validate the models’ predictive
abilities when the test data points come from previously unseen regions of data
space. The kind of out-of-distribution data we consider could be described as
’complement-distributions’, such data arises in open-set recognition or could be
the result of an adversary [9]. Note that in Section 3.3 as well as in the supple-
mentary, we consider a much milder example with ’related-distributions’ data.
We split the training data used in Sections 2.3 and 2.4 into the train and test
data covering complement regions of the function. Specifically, D = Dc ⊔ D̃c,
the observed data Dc consists of N = 370, the new data D̃c consists of Ñ = 130
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and the observed and the new data are disjoint (see Figure 4):

Dc = {(xn, yn) | xn ∈ [−1.7, 1.7]},
D̃c = {(xn, yn) | xn ∈ [−2.8,−1.7) ∪ (1.7, 1.9)]}.

Strictly speaking, we do not expect any model to be robust to such an extreme
case and, mainly, want to asses and better understand the quality of the uncer-
tainty estimates. In this experiment, we are hoping that the relationship between
the distributions of the observed and the new data makes this challenge some-
what tractable. On Figure 4a we illustrate the metrics for D1 = 20, 200, 1000
and 2000 hidden units; Figure 4b compares non-OOD and OOD predictions
obtained by the BNNs with ReLU activation, Gaussian priors and D1 = 200.
The poor performance of the mfVIS, especially for wider networks, is not sur-
prising, however, we notice that for wide networks HMCS with Gaussian priors
suffers from much higher RMSE than HMCS with Student-t priors and mfVIR
and HMCR with either choice of priors. And while HMCR has a lower RMSE
than any model trained with mean-field VI, the ability of HMC to capture the
uncertainty deteriorates, and it becomes overconfident. Whilst HMCR200 and
mfVIR200 do not show any of the expected increase in the uncertainty, on cer-
tain regions both methods are able to provide accurate predictive mean (see
Figure 4b for examples with Gaussian priors, the right-hand side region of the
function, where x > 1.5). Finally, as the width of the network increases, mfVIR
outperforms all of the methods.
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Fig. 4: Out-of-distribution prediction for the ’complement-distributions’ data.

General summary. In terms of the accuracy alone, the HMC with ReLU is
more robust to the out-of-distribution data, however, that comes with the largest
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computational costs among all the models. We already saw in Section 2.3 that
uncertainty quantification with HMC degrades with increasing width. In OOD
settings, this becomes even more extreme, with very overconfident predictions
that do not cover the truth (an empirical coverage of almost zero). Finally, with
the increase in depth, in the extreme OOD settings, the mfVI with
ReLU becomes almost as accurate as HMC with ReLU and provides
better UQ at a much lower cost.

3 Bayesian Model Averaging and Stacking

3.1 Predictive Methods for Model Assessment

When considering synthetic datasets, we can choose a desired metric and sam-
ple any number of data points, so that evaluation of the model’s performance
becomes trivial. For example, in Section 2.5 we have specifically created an
extreme case when the training data Dc and the new data D̃c were covering
disjoint regions of the true function. In reality, the new previously unseen data
is not available, and one can only estimate the expected out-of-sample predictive
performance. Suppose that we only observe D, the unseen observations D̃ are
generated by pt(D̃), and we wish to be able to assess the generalization ability of
the model without having access to the test data. To keep the notation simple,
we omit the dependency on x and x̃ when writing down the posteriors in this
section. Given a new data point ỹn, the log score log p(ỹn|D) is one of the most
common utility functions used in measuring the quality of the predictive distri-
bution. The log score benefits from being a local and proper scoring rule [48].
Then, the expected log pointwise predictive density for a new dataset serves as
a measure of the predictive accuracy of a given model:

elpd =

Ñ∑
n=1

∫
pt(D̃n) log p(ỹn|D)dD̃n,

where p(ỹn|D) is model’s posterior predictive distribution. In the absence of D̃,
one might obtain an estimate of the expected log pointwise predictive density
by re-using the observed D. Here, we review the approach that employs leave-
one-out cross-validation (LOO-CV), which can be seen as a natural framework
for assessing the model’s predictive performance [47].

To obtain the Bayesian leave-one-out cross-validation (LOO-CV) estimate of
the expected utility êlpdloo and avoid re-fitting the model N times, one could use
importance sampling. However, the classical importance weights would have a
large variance, and the obtained estimates would be noisy. Recently, the problem
was solved with Pareto smoothed importance sampling (PSIS), which allows
evaluating the LOO-CV expected utility in a reliable yet efficient way [47]:

êlpdloo =

N∑
n=1

p(yn|xn,D−n) =

N∑
n

log

(∑S
s=1 r

s
i p(yn|θs)∑S
s=1 r

s
i

)
, (2)
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where rsi are the smoothed importance weights, which benefit from smaller vari-
ance than the classical weights. We refer to the individual logarithms in the sum
as êlpdloo,n. The advantage of PSIS is that the estimated shape parameter of
the Pareto distribution provides a diagnostic of the reliability of the resulting
expected utility. Although methods of model selection which reuse the data can
be vulnerable to overfitting when the size of the dataset is too small and/or
the data is sparse, it is (relatively) safe to use cross-validation to compare a
small number of models and given a large enough dataset [49]. In the supple-
mentary material, we implement êlpdloo in the empirical experiment, where we
additionally consider posterior predictive checks (PPC) and an alternative to
the LOO-CV approach of estimating the expected log pointwise utility.

3.2 Alternatives to Classical Bayesian Model Averaging

Let M = {M1, . . . ,MK} be a collection of models and denote the parameters of
each of the Mk as θk. The assumptions one has on the prediction task and on M
with respect to the true data-generating process can be categorized into three
scenarios: M-closed, M-open and M-complete. If Mk ∈ M for some k recovers
the true data generating process, then we are in the M-closed case. The task
is M-complete if there exists a true model but it is not included in M (e.g. for
computational reasons). Finally, we are in the M-open scenario when the true
model is not in M and the data-generating mechanism cannot be conceptually
formalized to provide an explicit model [48]. The Bayesian framework allows to
define the probabilities over the model space, and for the M-closed case, classical
Bayesian Model Averaging (BMA) would give optimal performance. The BMA
solution provides an averaged predictive posterior as [22]

p(ỹ | D) =

K∑
k=1

p(ỹ | D,Mk)p(Mk | D), (3)

where p(Mk | D) ∝ p(D | Mk)p(Mk). (4)

However, in the M-open and M-complete prediction tasks, BMA is not appro-
priate as it gives a strong preference to a single model and so assumes that
this particular model is the true one. Now, if we replace the weights p(Mk|D)

with the products of Bayesian LOO-CV densities
∏N

n=1 p(yn | xn,D−n,Mk), we
arrive at pseudo-Bayesian model averaging (pseudo-BMA). In other words, the
weights wk of pseudo-BMA are proportional to the estimated log pointwise pre-
dictive density exp(êlpd

k

loo) introduced in Section 3.1. One could further correct
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each êlpdloo estimate of Equation (2) by the standard errors and obtain

wk =
exp(êlpd

k,reg
loo )∑K

k=1 exp(êlpd
k,reg
loo )

,

êlpd
k,reg
loo = êlpd

k

loo −
1

2

√√√√√ N∑
n=1

êlpd
k

loo,n − êlpd
k

loo

N

2

,

where for each model Mk we find êlpd
k,reg
loo by utilizing a log-normal approxi-

mation. Fortunately, we have already seen that these densities can be efficiently
estimated with PSIS.

An alternative way to obtain the averaged predictive posterior given the
set of p(ỹ | D,Mk) is to employ the stacking approach [54]. Define the set
SK = {w ∈ [0, 1]K |

∑K
k wk = 1}, then the stacking weights are found as the

optimal (according to the logarithmic score) solution of the following problem

w = max
w∈SK

1

N

N∑
n=1

log

K∑
k=1

wkp(yn | D−n,Mk),

= max
w∈SK

1

N

N∑
n=1

log

K∑
k=1

wk

(∑S
s=1 r

s
i p(yn | θs

k,Mk)∑S
s=1 r

s
i

)
,

where a PSIS estimate of the predictive LOO-CV density is used, and rsi are the
smoothed (truncated) importance weights.

Finally, we recall that deep ensembles of classical non-Bayesian NNs [30] be-
have similarly to Bayesian model averages, and both lead to solutions strongly
favouring one single model [50]. In contrast, the ensembles of BNN posteriors in
Equation (3) with p(Mk | D) = K−1 can be seen as a trivial case of BMA, which
combines models and does not give preference to a single solution. Alternatively,
when implementing variational inference and combining BNNs, the analogy can
be drawn with the simplified version of adaptive variational Bayes, which com-
bines variational posteriors with certain weights and, under certain conditions,
attains optimal contraction rates [37].

3.3 Ensembles and Averages

We compare three model averaging methodologies: deep ensembles of Bayesian
neural networks, stacking and pseudo-BMA based on PSIS-LOO [54]. We do not
consider the Bayesian Bootstrap (BB) [43] motivated by the recent observation
that in the settings of modern neural networks deep ensembles of non-Bayesian
NNs and BB are equivalent, and both are often misspecified [52]. Combining
several estimates of BNNs can be effective not only when predictions are coming
from different models, but also when dealing with several predictions obtained by
the same model [37]. This is of particular use for multimodal posteriors arising
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in BNNs, where different modes could be explored by random initializations
[54]. Additionally, recall that the ELBO, the objective of variational inference,
is a non-convex function, so that the optimum is only local and depends on the
starting point. We note that combining models trained with HMC and VI would
be meaningless for several reasons. First of all, training a set of HMC models
becomes rather expensive: for instance, training the HMCR20 once takes the
same amount of time as 35 trainings of mfVIR20. Second, the estimates of the
log pointwise predictive densities (provided in the supplementary) for HMC and
VI have different scales and are not easily compared; in this case, the result of
averaging HMC and VI would be equivalent to classical BMA.

Now consider the mfVIR20 model with Gaussian priors and the ’complement-
distributions’ data of Section 2.5. We choose 10 random initialization points,
obtain 10 posterior predictive distributions and compute estimated expected log
pointwise predictive densities. We then construct ensemble, pseudo-BMA and
stacking approximations; the results are illustrated Figure 5. Ensembling and
stacking are superior to pseudo-BMA, which has worse accuracy and fails to
capture any uncertainty. Similar results for the mfVIR20 model with Student-t
priors are provided in the supplementary material. While here we focus only on
models with 20 hidden units, it would be reasonable to assume that not only
do the performance of individual models depend on architectural choices, but
the model averaging techniques are themselves influenced by these modelling
choices (for empirical justification of this claim, the reader is referred to the
supplementary material, where we consider the data simulated when designing a
novel rocket booster [16,42] and provide the results of ensembling and averaging
for various architectures).

Given the nature of the test data we use, the predictions as well as the
êlpdloo estimates may be unreliable. Thus, we consider a simpler data-generating
mechanism in which test data comes from a slightly broader region; such a
scenario could be called an OOD task with ’related-distributions’ [9]. Specifically,
the data are generated as follows:

x ∼ Unif([0, 1]), y = sin(10x)x2 + ϵ, ϵ ∼ 0.05N(0, 1).

The data for training Dr and the testing D̃r consist of N = 450 and Ñ = 50
observations, respectively, where D̃r comes from the broader region than Dr,
i.e. (minn=1...N (xn),maxn=1...N (xn)) ⊊ (minn=1...Ñ (x̃n),maxn=1...Ñ (x̃n)). For
10 posterior predictive distributions of mfVIR20 with Gaussian priors (results
for Student-t priors are provided in the supplementary), we compare ensembling,
pseudo-BMA and stacking in Figure 5 (similar results with having Student-t pri-
ors are presented in the supplementary, where we additionally provide the results
of ensembling and averaging in the deeper networks.). Whilst the total uncer-
tainty estimates of pseudo-BMA are, somewhat, adequate, the model uncertainty
is underestimated. Both stacking and deep ensembles lead to improved predictive
performance and uncertainty quantification, with stacking showing some better
gains compared to deep ensembles (see e.g. improved coverage of stacking on the
right-hand side of Figure 5).
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Fig. 5: Predictions obtained by ensembling, stacking and pseudo-BMA when ap-
plied to mfVIR20 with Gaussian priors in the ’complement-distributions’ (top)
and ’related-distributions’ (bottom) OOD tasks. Pseudo-BMA is worse than the
other methodologies, and stacking provides improvements over DE in uncer-
tainty quantification.

General summary. We observe that, similar to BMA, the pseudo-
BMA is not preferable in M-open and M-complete settings. Namely,
in ’complement-distributions’ and ’related-distributions’ experiments, pseudo-
BMA was confirmed to be inferior to stacking and ensembles of BNNs both in
terms of the predictive accuracy and uncertainty quantification. Stacking and
ensembles of BNNs performed comparable to each other and provided
an improvement, with modest gains for stacking, which is especially
significant in terms of uncertainty quantification in the OOD setting.

4 Discussion

The message of an optimist’s conclusion could question the common belief that
the mean-field variational approximations are generally overly restrictive and do
not capture the true posterior and the uncertainty well. Even with increases in
computing power, the computational costs of sampling algorithms suggest that
it may not be feasible for most modern neural networks and datasets. Moreover,
although HMC is often considered as a gold standard, we have seen this may not
be the case for BNNs due to complexity and multimodality of the posterior. In-
deed, in a variety of experiments considered in Sections 2.3 to 2.5 and 3.3 mfVI
overall provided better uncertainty quantification than HMC, and in
out-of-distribution settings, the empirical coverage of the latter was close to zero.
We note that for single-layer neural networks, HMC outperformed mfVI
only in terms of accuracy. At the same time, for deeper networks and in out-
of-distribution scenarios, the accuracy of mfVI was often comparable to HMC.
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Further, in Section 2.4 we confirmed that even for slightly deeper networks the
time needed for HMC becomes a burden, which makes variational inference a
very attractive alternative to sampling. Nevertheless, in Section 2.3 we observed
that the restrictions imposed by the factorized families can obstruct
models from effectively learning from the data. In real-life scenarios where
one is required to evaluate the future predictive performance of the model before
applying it to the unseen data, the estimate of the expected log pointwise predic-
tive density can serve as a reliable diagnostic and thus, PSIS-LOO estimates can
be beneficial for model assessment and combination. In Section 3.3, stacking
and ensembles of BNNs were shown to be a possible solution when
dealing with multimodal posteriors, helping to both improve accuracy
and uncertainty quantification even in the extreme OOD scenario. We
find that stacked or ensembled variational approximations are competitive to
HMC at a much-reduced cost. Finally, we note that overall in our experiments,
there was no considerable and systematic difference in the performance between
the BNNs with Gaussian and Student-t priors.

This work highlights the model’s sensitivity to architectural choices, namely,
width, depth and activation function. Future work could study the performance
of various more elaborate than Gaussian or Student-t choices of priors placed
on the weights, including sparsity-inducing priors which have been shown to
improve the accuracy and calibration [3,41]. Further, an important avenue for
research is to consider the so-called structured variational inference with less re-
strictive variational families, and more generally, study the trade-off between the
expressiveness of the variational family and scalability. Finally, given the multi-
modal nature of distributions arising in Bayesian neural networks, a promising
avenue for research is to continue improving model combination techniques. This
includes developing a better understanding of the number of models required for
optimal performance with existing ensembling methods, as well as exploring
more advanced approaches such as adaptive variational Bayes frameworks [37]
or hierarchical stacking and pointwise model combination [53].

References

1. Arbel, J., Pitas, K., Vladimirova, M., Fortuin, V.: A primer on bayesian neural
networks: review and debates. arXiv preprint arXiv:2309.16314 (2023) 4

2. Betancourt, M.J., Byrne, S., Girolami, M.: Optimizing the integrator step size for
hamiltonian monte carlo (2015) 7

3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty
in neural network. In: Proceedings of The International conference on machine
learning. pp. 1613–1622. PMLR (2015) 6, 15

4. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: Jax:
composable transformations of python+numpy programs (2018), http://github.
com/jax-ml/jax 5

5. Chatziafratis, V., Nagarajan, S.G., Panageas, I.: Better depth-width trade-offs for
neural networks through the lens of dynamical systems. In: Proceedings of The
International Conference on Machine Learning. pp. 1469–1478. PMLR (2020) 3

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax


16 A.Sheinkman and S.Wade.

6. Coker, B., Bruinsma, W.P., Burt, D.R., Pan, W., Doshi-Velez, F.: Wide mean-field
bayesian neural networks ignore the data. In: International Conference on Artificial
Intelligence and Statistics. pp. 5276–5333. PMLR (2022) 6

7. Deshpande, S.K., Ghosh, S., Nguyen, T.D., Broderick, T.: Are you using test log-
likelihood correctly? Transactions on machine learning research (2024) 5

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: International Con-
ference on Learning Representations (2020) 1

9. Farquhar, S., Gal, Y.: What ’out-of-distribution’ is and is not. In: NeurIPS ML
Safety Workshop (2022) 8, 13

10. Farquhar, S., Smith, L., Gal, Y.: Liberty or depth: Deep bayesian neural nets do not
need complex weight posterior approximations. Advances in Neural Information
Processing Systems 33, 4346–4357 (2020) 7

11. Foong, A., Burt, D., Li, Y., Turner, R.: On the expressiveness of approximate
inference in bayesian neural networks. Advances in Neural Information Processing
Systems 33, 15897–15908 (2020) 2

12. Fortuin, V.: Priors in bayesian deep learning: A review. International Statistical
Review 90(3), 563–591 (2022) 4

13. Fortuin, V., Garriga-Alonso, A., Ober, S.W., Wenzel, F., Rätsch, G., Turner, R.E.,
van der Wilk, M., Aitchison, L.: Bayesian neural network priors revisited (2022) 4

14. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: international conference on machine learn-
ing. pp. 1050–1059. PMLR (2016) 6

15. Gelman, A., Vehtari, A., Simpson, D., Margossian, C.C., Carpenter, B., Yao, Y.,
Kennedy, L., Gabry, J., Bürkner, P.C., Modrák, M.: Bayesian workflow (2020) 2

16. Gramacy, R.B., Lee, H.K.H.: Bayesian treed gaussian process models with an ap-
plication to computer modeling. Journal of the American Statistical Association
103(483), 1119–1130 (2008) 13

17. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: Proceedings of The International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 70, pp. 1321–1330. PMLR (06–11
Aug 2017) 2

18. Gurbuzbalaban, M., Simsekli, U., Zhu, L.: The heavy-tail phenomenon in sgd. In:
Proceedings of the 38th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 139, pp. 3964–3975. PMLR (18–24 Jul
2021) 4

19. Hanin, B.: Universal function approximation by deep neural nets with bounded
width and relu activations. Mathematics 7(10), 992 (2019) 3

20. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015) 5

21. Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre, B., Steiner, A., van
Zee, M.: Flax: A neural network library and ecosystem for JAX (2024), http:
//github.com/google/flax 5

22. Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model aver-
aging: A tutorial. Statistical Science 14(4), 382–417 (1999) 3, 11

23. Hoffman, M.D., Gelman, A.: The no-u-turn sampler: Adaptively setting path
lengths in hamiltonian monte carlo. Journal of Machine Learning Research 15(47),
1593–1623 (2014) 5

http://github.com/google/flax
http://github.com/google/flax


Architecture and Inference Choices in Bayesian Neural Networks 17

24. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2(5), 359–366 (1989) 2, 3

25. Hron, J., Novak, R., Pennington, J., Sohl-Dickstein, J.: Wide bayesian neural net-
works have a simple weight posterior: theory and accelerated sampling. In: Pro-
ceedings of the 39th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 162, pp. 8926–8945. PMLR (17–23 Jul 2022)
3, 6

26. Izmailov, P., Vikram, S., Hoffman, M.D., Wilson, A.G.G.: What are bayesian neu-
ral network posteriors really like? In: Proceedings of the 38th International Con-
ference on Machine Learning. Proceedings of Machine Learning Research, vol. 139,
pp. 4629–4640. PMLR (18–24 Jul 2021) 6, 7

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (May 2017) 1

28. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., Blei, D.M.: Automatic differ-
entiation variational inference. Journal of machine learning research 18(14), 1–45
(2017) 5

29. Kumar, R., Carroll, C., Hartikainen, A., Martin, O.: Arviz a unified library for
exploratory analysis of bayesian models in python. Journal of Open Source Software
4(33), 1143 (2019) 5

30. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems. vol. 30. Curran Associates, Inc. (2017) 12

31. Lipton, Z.C.: The mythos of model interpretability: In machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)
2

32. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural net-
works: a view from the width. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. p. 6232–6240 (2017) 3

33. Matthews, A.G., Hron, J., Rowland, M., Turner, R., Ghahramani, Z.: Gaussian
process behaviour in wide deep neural networks. ICLR (2018) 3

34. Neal, R.: Bayesian learning for neural networks. Springer Science & Business Media
118 (1995) 3

35. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp. 427–436 (2015) 2

36. Oelrich, O., Ding, S., Magnusson, M., Vehtari, A., Villani, M.: When are bayesian
model probabilities overconfident? (2020) 3

37. Ohn, I., Lin, L.: Adaptive variational bayes: Optimality, computation and applica-
tions. The Annals of Statistics 52(1), 335–363 (2024) 12, 15

38. Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lak-
shminarayanan, B., Snoek, J.: Can you trust your model's uncertainty? evaluating
predictive uncertainty under dataset shift. In: Advances in Neural Information
Processing Systems. vol. 32 (2019) 2, 8

39. Papamarkou, T., Hinkle, J., Young, M.T., Womble, D.: Challenges in Markov chain
Monte Carlo for Bayesian neuralnetworks. Statistical Science 37(3), 425–442 (2022)
2, 6, 7

40. Phan, D., Pradhan, N., Jankowiak, M.: Composable effects for flexible and acceler-
ated probabilistic programming in numpyro. In: Program Transformations for ML
Workshop at NeurIPS (2019) 5

41. Polson, N.G., Ročková, V.: Posterior concentration for sparse deep learning. Ad-
vances in Neural Information Processing Systems 31 (2018) 15



18 A.Sheinkman and S.Wade.

42. Rogers, S., Aftosmis, M., Pandya, S., Chaderjian, N., Tejnil, E., Ahmad, J.: Au-
tomated cfd parameter studies on distributed parallel computers. In: 16th AIAA
Computational Fluid Dynamics Conference. p. 4229 (2003) 13

43. Rubin, D.B.: The bayesian bootstrap. The annals of statistics pp. 130–134 (1981)
12

44. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. In: 2nd International Conference
on Learning Representations, ICLR 2014 (2014) 1, 2

45. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave,
E., Lample, G.: Llama: Open and efficient foundation language models (2023) 1

46. Trippe, B., Turner, R.: Overpruning in variational bayesian neural networks (2018)
6

47. Vehtari, A., Gelman, A., Gabry, J.: Practical bayesian model evaluation using leave-
one-out cross-validation and waic. Statistics and Computing 27(5), 1413–1432
(Aug 2016) 10

48. Vehtari, A., Ojanen, J.: A survey of bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys 6, 142 – 228 (2012).
https://doi.org/10.1214/12-SS102 10, 11

49. Vetari, A., Gabry, J., Magnusson, M., Yao, Y., Gelman, A.: Efficient leave-one-out
cross-validation and waic for bayesian models (2019), https://mc-stan.org/loo
11

50. Wilson, A.G., Izmailov, P.: Bayesian deep learning and a probabilistic perspective
of generalization. Advances in Neural Information Processing Systems 33, 4697–
4708 (2020) 2, 12

51. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural
Computation 8(7), 1341–1390 (10 1996) 2

52. Wu, L., A Williamson, S.: Posterior uncertainty quantification in neural networks
using data augmentation. In: Proceedings of The 27th International Conference on
Artificial Intelligence and Statistics. Proceedings of Machine Learning Research,
vol. 238, pp. 3376–3384. PMLR (02–04 May 2024) 12

53. Yao, Y., Vehtari, A., Gelman, A.: Stacking for non-mixing bayesian computations:
The curse and blessing of multimodal posteriors. The Journal of Machine Learning
Research 23(1), 3426–3471 (2022) 15

54. Yao, Y., Vehtari, A., Simpson, D., Gelman, A.: Using stacking to average bayesian
predictive distributions (with discussion). Bayesian Analysis 13(3) (Sep 2018).
https://doi.org/10.1214/17-ba1091 3, 12, 13

55. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM
64(3), 107–115 (2021) 1

https://doi.org/10.1214/12-SS102
https://doi.org/10.1214/12-SS102
https://mc-stan.org/loo
https://doi.org/10.1214/17-ba1091
https://doi.org/10.1214/17-ba1091

	Understanding the Trade-offs in Accuracy and Uncertainty Quantification: Architecture and Inference Choices in Bayesian Neural Networks

