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Abstract. In Multi-objective Reinforcement Learning (MORL) agents
are tasked with optimising decision-making behaviours that trade-off be-
tween multiple, possibly conflicting, objectives. MORL based on decom-
position is a family of solution methods that employ a number of util-
ity functions to decompose the multi-objective problem into individual
single-objective problems solved simultaneously in order to approximate
a Pareto front of policies. We focus on the case of linear utility functions
parametrised by weight vectors w. We introduce a method based on Up-
per Confidence Bound to efficiently search for the most promising weight
vectors during different stages of the learning process, with the aim of
maximising the hypervolume of the resulting Pareto front. The proposed
method demonstrates consistency and strong performance across various
MORL baselines on Mujoco benchmark problems. The code is released
in: https://github.com/SYCAMORE-1/ucb-MOPPO

Keywords: Multi-objective Reinforcement Learning · Upper Confidence
Bound · Mujoco benchmark problems.

1 Introduction

In many real-world control and planning problems, multiple and often conflict-
ing objectives arise. These objectives are interrelated, requiring trade-offs that
significantly affect the overall quality of decision-making [30, 24]. Such learning
objectives are usually represented as weighted reward signals, where conflicting
rewards can lead to divergent optimisation directions [35]. Consequently, the clas-
sic reinforcement learning (RL) methods are inadequate, as training individual
policies to align with each preference weight vector across multiple rewards re-
sults in an impractical computational burden [13, 10]. Therefore, Multi-objective
reinforcement learning (MORL) has become an increasingly recognised method-
ology for handling tasks with conflicting objectives, enabling the simultaneous
optimisation of multiple criteria [31, 3, 36]. In cases where the objectives conflict
with each other, the best trade-offs among the objectives are defined in terms
of Pareto optimal. A policy π is said to dominate π′ if

(
∀ i : Vi

π ≥ Vi
π′) ∧(

∃ i : Vi
π > Vi

π′)
, and it is Pareto optimal if there is no other policy that

dominates it. The set of Pareto optimal policies is called the Pareto front (PF).
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In many real-world applications, an approximation to the PF is required by a
decision maker in order to select a preferred policy [13]. A real-world use case
is the multi-objective optimisation of wireless networks [11]. In this case, four
primary objective classes, i.e.,throughput, coverage, energy efficiency and utili-
sation are considered. This is a very challenging problem that motivates further
research to advance the state-of-the-art (SOTA) in MORL.

One prevalent category of MORL approaches is Multi-Objective Reinforce-
ment Learning with Decomposition (MORL/D) [10]. A Pareto-optimal solution
to a multi-objective sequential decision-making problem can be interpreted as
an optimal solution to a single-objective problem, defined with respect to a util-
ity function u : Rm → R. This utility function aggregates m objectives into
a scalar reward, mapping the multi-objective value of the policy into a scalar
value, expressed as V πu = u(Vπ) [8]. Therefore, the approximation of the PF can
be reformulated as a set of scalar reward sub-problems, each defined by a utility
function. This approach unifies MORL methods [13] with decomposition-based
multi-objective optimisation techniques [34], collectively termed MORL/D.

MORL/D offers several advantages, including scalability to many objectives,
flexibility in employing various scalarisation techniques, and the ability to par-
allelise sub-problem training, thereby reducing computational overhead [9, 10].
SOTA MORL/D methods can be broadly categorised into single-policy and
multi-policy approaches [10]. Single-policy methods [1, 2, 18, 32] aim to learn a
single policy conditioned on the parameters of the utility function, i.e., scalari-
sation vector w, where ∀i : wi ≥ 0, and

∑
i wi = 1.0. However, these methods

face two major challenges: (1) single-policy methods require large neural net-
works and extensive training time to accurately reconstruct the optimal PF;
and (2) they may struggle to generalise effectively to unseen w [33]. In contrast,
multi-policy approaches maintain a separate policy for each w [17, 19]. Param-
eter sharing improves the sample efficiency of single-policy methods and en-
hances generalisation to new objective preferences [1, 32]. However, multi-policy
methods often require maintaining various suboptimal policies to adequately
cover the preference space, which can be highly memory-intensive [17]. Existing
MORL/D approaches share common limitations. As the number of objectives in-
creases or the granularity of the weight space becomes finer, the total preference
space grows exponentially. This exponential growth renders prefixed scalarisa-
tion weights inefficient and degrades the quality of the approximated PF.

To address the limitations of MORL/D, particularly in the multi-policy
paradigm, this work introduces an Upper Confidence Bound (UCB) acquisition
function to identify promising scalarisation vectors w ∈ W at different learning
stages, guided by the Pareto front quality metric of hypervolume (HV) [9]. Ex-
tending [1], we use a weight-conditioned Actor-Critic network πθ(s, w) trained
with Proximal Policy Optimisation (PPO) [26] for C iterations, instead of a
Q-network Qθ(s, a,w).

We adopt a multi-policy approach, each πθ(s, w) specializes in a sub-space of
W, enabling time-efficient and parallel optimisation with a compact parameter
size. Inspired by [17], we frame HV maximisation as a surrogate-assisted opti-
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misation problem, where a data-driven surrogate predicts changes in objective
values to select weight vectors that improve HV. We extend [17] by incorporating
prediction uncertainty into the UCB acquisition function, balancing exploration
and exploitation. Further, we replace large Pareto archives with scalarisation-
vector-conditioned policies πθ(s, w), reducing memory overhead while ensuring
efficient PF coverage.
In summary, two contributions distinguish our work from previous systems of
MORL/D:

1. A two-layer decomposition enables policies to specialize in different subspaces
of the scalarisation vector space, with conditioning refining sub-problems
within each subspace. This facilitates generalisation across local scalarisation
neighbourhoods, enhancing HV metrics [9].

2. The use of a UCB acquisition function for selecting from a finite set of evenly
distributed scalarisation vectors to balance exploration and exploitation.

The rest of the paper is structured as follows. Background knowledge is intro-
duced in Section 2. Prior work on gradient-based MORL is reviewed in Section
3. The proposed method is described in Section 4. Experiment configurations on
six multi-objective benchmark problems are outlined in Section 5, and SOTA
results on these problems are discussed in Section 6. Finally, we conclude in
Section 7 with directions for future research.

2 Preliminaries

2.1 Policy-gradient Reinforcement Learning

Policy gradient methods are a class of RL algorithms that optimise policies
directly by computing gradients of an objective function with respect to the
policy parameters. The objective function J(θ) for a parameterised policy πθ(a|s)
can be expressed as the expected return, the policy gradient is then computed
as:

∇θJ(θ) = Eτ∼πθ

[
∇θ log πθ(at|st)Ât

]
,

where Ât is the advantage function [29], which measures the relative value of
taking action at in state st.

Proximal Policy Optimisation (PPO) [26] improves upon traditional policy
gradient methods by introducing a surrogate objective that prevents overly large
policy updates, ensuring stable learning. The PPO objective is defined as:

LPPO(θ) = Et
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability ratio, and ϵ is a hyperparameter con-
trolling the clipping range. By clipping the ratio, PPO limits deviations from
the current policy, leading to improved stability and sample efficiency. These
advancements have made PPO one of the most widely used algorithms for con-
tinuous and high-dimensional control tasks.
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2.2 Definition of MORL

A multi-objective sequential decision making problem can be formulated as
a multi-objective Markov Decision Process (MOMDP) defined by the tuple
⟨S,A, P, γ, ρ0, r⟩ with state space S, action space A, state transition probabil-
ity P : S × A × S → [0, 1], discount factor γ, initial state distribution ρ0, and
vector-valued reward function r : S × A → Rm specifying one-step reward for
each of the m objectives. A decision-making policy π : S → A maps states into
actions, for which a vector-valued value function Vπ is defined as:

Vπ = E

[
H∑
t=0

γtr(st, αt)|s0 ∼ ρ0, at ∼ π

]
(1)

where H is the length of the horizon.
The space of utility functions for a MORL problem is typically populated

by linear and non-linear functions of Vπ. In this work we focus on the highly
prevalent case where the utility functions are linear, taking the form of u(Vπ) =
w⊤Vπ, where scalarisation vector w provides the parametrisation of the util-
ity function. Each element of w ∈ Rm specifies the relative importance (pref-
erence) of each objective. The space of linear scalarisation vectors W is the
m-dimensional simplex:

∑
i wi = 1, wi ≥ 0, i = 1, . . . ,m. For any given w, the

original MOMDP is reduced to a single-objective MDP.

2.3 Convex Coverage Set (CCS)

Linear utility functions enable MORL to generate a Convex Coverage Set (CCS)
of policies, which is a subset of all possible policies such as there exists a policy
π in the set that is optimal with respect to any linear scalarisation vector w:

CCS ≡
{
Vπ ∈ Π | ∃ w s.t. ∀ Vπ′

∈ Π,Vπw⊤ ≥ Vπ′
w⊤

}
(2)

CCS is a subset of PF defined for monotonically increasing utility functions [13].
At the same time, the underlying linear utility function space (space of scalar-
isation vectors W) is easier to search than that of arbitrarily-composed utility
functions, where one has to search for the overall function composition out of
primitive function elements. The sampling of scalarisation vectors w ∈ W im-
pacts the quality of the CCS in approximating the PF. Vectors can be sampled
uniformly at random [1, 6, 18, 20, 32], selected from a predefined set [4, 17], or
adapted via search methods [2, 19]. A small step size is required for high-quality
CCS when using predefined vectors [25].

3 Related Work

A thorough review of MORL can be found in [13]. In this section we highlight
previous work that employs gradient-based with a linear utility function, which
can be classified into three main categories.
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In the first category, a single policy [21, 27] is trained using a linear scalari-
sation function when the user’s preferences are known in advance. For example,
[4] proposes a novel algorithm that trains a single universal network to cover the
entire preference space. The approach utilises preferences to guide network pa-
rameter updates and employs a novel parallelisation strategy to enhance sample
efficiency.

In the second category, when user preferences are unknown or difficult to
define, a CCS of policies is computed by training multiple independent policies
with different scalarisation vectors to capture various trade-offs between objec-
tives [16, 18]. The work of [19] proposes Optimistic Linear Support, a method
that adaptively selects the weights of the linear utility function via the concepts
of corner weights and estimated improvement to prioritise those corner weights.
[2] introduces a sample-efficient MORL algorithm that leverages Generalised
Policy Improvement (GPI) to prioritize training on specific preference weights.
By focusing on corner weights with higher GPI priority, the method iteratively
learns a set of policies whose value vectors approximate the CCS. The work
of [17] maintains a Pareto archive of policies by focusing on those scalarisation
vectors that are expected to improve the hypervolume and sparsity metrics of
the resulting PF the most.

The third category of methods maintains a single policy conditioned on the
scalarisation vector w. Several works aim to train such policies for few-shot adap-
tation to varying objective preferences [1, 6, 32]. [1] uses a scalarisation-vector-
conditioned Q-network trained on randomly sampled w to solve single-objective
RL sub-problems, generalizing across changing objective preferences. Similarly,
[32] applies Envelope Q-learning to train a Q-network for few-shot adaptation
to new scalarisation vectors. [6] proposes a PPO-based meta-policy trained col-
laboratively with data from policies specialized to sampled scalarisation vectors,
enabling PF construction via few-shot fine-tuning. Other works directly approx-
imate the CCS using a single scalarisation-conditioned policy. [18] enhances Soft
Actor Critic with an entropy term to train scalarisation-conditioned policies and
Q-networks, while [4] extends [17] by incorporating scalarisation-conditioning,
replacing a Pareto archive with a single policy.

Existing methods demonstrate notable strengths but face challenges in scala-
bility, computational cost, generalisation, and performance consistency. By com-
paring these methods to UCB-MOPPO, we highlight its key advantages: 1) Pref-
erence space decomposition enables scalable, efficient parallel training with com-
pact policies. 2) The UCB-driven surrogate model selects scalarisation vectors
to maximise hypervolume. 3) Integration of PPO enhances stability and sample
efficiency. 4) The weight-conditioned network reduces memory overhead.

4 Methods

The key technical characteristics of the proposed MORL/D algorithm, named
UCB-MOPPO, are as follows:
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MORL/D as scalar RL sub-problems. The overall scalarisation weight
W is divided into K sub-spaces as shown in Figure 2a. A separate policy πk is
trained for each sub-problem, conditioned on scalarisation vectors sampled from
the corresponding sub-space Wk ⊂ W, where k = 1, . . . ,K.

Scalarisation-vector-conditioned Actor-Critic. A policy network πθ, a
value network vπϕ , and a scalarisation vector w (

∑
i wi = 1, wi ≥ 0, i = 1, . . . ,m)

are used to maximise the weighted-sum of expected rewards, denoted as J(θ, ϕ,w) =∑m
i=1 wiV

π
i . Following [1, 18, 32], both πθ(s,w) and vπϕ(s,w) are conditioned on

w. This enables a single policy to express different trade-off between objectives
by generalising across a neighbourhood of scalarisation vectors.

Surrogate-assisted maximisation of CCS hypervolume. An acquisi-
tion function based on UCB [28] is used to select scalarisation vectors for training
from each sub-space Wk. During training, the chosen scalarisation vectors are
those expected to maximise the hypervolume of the resulting CCS most effec-
tively.

4.1 Two-layer decomposition of MORL problem into scalar RL
sub-problems

At the first layer of problem decomposition, a set of K evenly distributed scalari-
sation vectors, named as pivots, are defined within the scalarisation vector space
W. These pivot vectors effectively divide W intoK different sub-spaces as shown
in Figure 2a. The system allows to independently train multiple pivot policies
with different random seeds in order to improve the density of the resulting
CCS. At the second layer of problem decomposition, for each sub-space Wk,
k = 1, . . . ,K, a number of M evenly distributed scalarisation vectors are de-
fined in turn. Therefore the overall MORL problem is decomposed into a total
of K ∗M scalar RL sub-problems, defined as follows for a fixed w:

π(·,w) = argmax
π′(·,w)

E

[
H∑
t=1

γtw⊤r(st, αt)

]
(3)

A separate policy πk (i.e., pivot policy) is independently trained for each sub-
space Wk ⊂ W by conditioning on the corresponding scalarisation vectors. As
an example, for a bi-objective problem with w = [w1, w2] in Figure 2a, for two
sub-spaces Wi, Wj with i > j,

(
wi,n1 > wj,n1

)
∧

(
wi,n2 < wj,n2

)
, n = 1, . . . ,M .

The solutions of the K ∗M sub-problems compose a CCS.

4.2 Scalarisation-vector-conditioned Actor-Critic

The neural network(NN) architecture of the Actor-Critic is illustrated in Fig-
ure 1. The state vector s concatenated with the scalarisation vector w form the
input layer. w is also concatenated with the last shared layer through a resid-
ual connection [14]. Residual connections aim at improving the sensitivity of NN
output to changes in w in a similar vein with reward-conditioned policies in [15].
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Fig. 1: Scalarisation vector w conditioned actor-critic network.

4.3 Surrogate-assisted maximisation of CCS hypervolume

Overview The learning algorithm proceeds in stages of C iterations each. At
every stage, K pivot policies πk, k = 1, . . . ,K are trained in parallel using PPO,
each conditioned on a subset of N scalarisation vectors out of M in total that
are defined for each corresponding sub-space Wk, k = 1, . . . ,K, with N ≪ M .
The selection of N scalarisation vectors to train on at each stage is performed
via surrogate-assisted maximisation of the hypervolume of the CCS. First, a
data-driven uncertainty-aware surrogate model is built in the scalarisation vec-
tor space to predict the expected change in each objective after training πk
conditioned on said scalarisation vectors for C iterations. Second, an acquisition
function is defined as the UCB of the CCS hypervolume that is expected by
including a scalarisation vector to the policy’s conditioning set at each train-
ing stage. Maximising the acquisition function selects the scalarisation vectors
that are expected to improve CCS hypervolume the most. Pseudo code can is
provided in supplementary material, section 1, algorithm 3.

Warm-up phase The algorithm starts with a warm-up stage performed using
Algorithm 1. For an m-objective problem, a set of K evenly distributed pivot
vectors {wi}Ki=1 are generated, where

∑
i wi = 1, wi ≥ 0, i = 1, . . . ,m. Accord-

ingly, a set of K pivot policies, each conditioned on a separate pivot vector, is
trained using Algorithm 1 for a number of epochs.

Surrogate model Let πk,z+1 be the policy that results from the kth policy πk,z
during the zth training stage of C iterations. Let∆V πk,(z→z+1)

j,w = V
πk,z+1

j,w −V πk,z

j,w
be the change in the value of the jth objective for the kth policy conditioned on
scalarisation vector w trained with PPO for C iterations. For each pivot pol-
icy πk, k = 1, . . . ,K, and for each objective j = 1, . . . ,m, a separate dataset
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Dk,j
surrogate is created using policy’s πk evaluation data of objective j that are col-

lected from the simulation environment during a number of consecutive training
stages Z, as follows:

Dk,j
surrogate =

{(
w,

(
V
πk,z+1

j,w − V
πk,z

j,w
))}Z

z=1

(4)

A surrogate model fk,jbagging : Rm → R is trained on Dk,j
surrogate to predict

∆V
πk,(z→z+1)
j,w as a function of the scalarisation vector w, for m number of ob-

jectives. The training is incremental while additional tuples are appended to
Dsurrogate from consecutive training stages. The surrogate model takes the form
of Bagging [5] of linear models fψ(w) =

∑m
i=1 ψiwi + ψ0 with elastic net reg-

ularisation [37]. Bagging trains independently B linear models {f bψ}Bb=1 on B
bootstrap samples of the original training data and predicts using their average,
that is fk,jbagging(w) = 1

B

∑B
i=1 f

b
ψ(w). An estimate of the epistemic uncertainty

of the prediction can be computed using the variance of the component model

predictions [12], that is σ2
k,j(w) = 1

B

∑B
i=1

(
f bψ(w)− fk,jbagging(w)

)2

.

(a) Decomposition of MORL problem
into scalar sub-problems.

(b) Surrogate-assisted maximisation of
CCS hypervolume.

Fig. 2: Overview of the proposed approach for UCB-driven utility function search
for MORL/D.

UCB acquisition function maximisation For each policy k and each objec-
tive j a surrogate model can predict the expected objective values by condition-
ing a policy on scalarisation vector w during a training stage z as follows:

V̂
πk,z+1

j,w = V
πk,z

j,w + fk,jbagging(w) (5)

with a corresponding vectorised prediction, denoted as V̂
πk,z+1

w = Vπk,z
w +fkbagging(w)

over j objectives and the accompanying vectorised uncertainty estimate σ2
k(w).
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At the beginning of each training stage z the algorithm needs to select those
N scalarisation vectors out M evenly distributed vectors in each sub-space Wk,
k = 1, . . . ,K that are predicted via the surrogate model to improve the hyper-
volume of the resulting HV(CCS ) the most. HV(·) is a function that computes
hypervolume as in [9]. The scalarisation vectors are selected one at a time with-
out replacement in a sequence of N invocations of a process that maximises a
UCB acquisition function defined on HV(CCS ) as:

w∗
k = argmax

wk,j∈{wk,j}M
j=1

HV
(
Pareto(Vk,j)

)
, (6)

Vk,j = V̂
πk,z+1

wk,j
+ βt′ · σk(wk,j), k = 1, . . . ,K.

where Pareto(·) is a function computing the CCS from a set of objective vectors.

The dynamic parameter of current training step,i.e., βt′ =
√

log(2t′)
t′ ensures that

scalarisation vector with higher uncertainty (standard deviation) are explored
early, but the focus shifts towards exploiting the ones with high mean rewards
as confidence improves, assuming maximisation of objectives. Once selected, a
scalarisation vector w∗

k is removed from the candidate set {wk,j}Mj=1 for the
current training stage. The process of selecting scalarisation vectors that are
expected to maximise the hypervolume of the resulting CCS is illustrated in
Figure 2b.

4.4 Baseline Methods

Algorithm 1 Fixed-MOPPO
1: Input: State st, weights w
2: Initialize: K Actor-Critic networks πk, vπk ; scalarisation spaces Wk; buffer E of

size D.
3: for k = 1 to K do
4: for t = 1 to D do
5: wpivot ← get_pivot_weight(Wk)
6: at ∼ πk(st,wpivot), st+1, rt ← simulator(st, at)
7: E ← E ∪ ⟨st, at,wpivot, rt, st+1⟩, st ← st+1

8: end for
9: Sample ⟨st, at,wpivot, rt, st+1⟩ ∼ E

10: θ ← θ + η∇θ log πθ(st, at;wpivot)A
π(st, at;wpivot)

11: ϕ← ϕ+ η∥V πk (st;wpivot)− (rt + γV πk (st+1;wpivot))∥2
12: E ← ∅
13: end for

Seven baseline methods are introduced for comparison, including three pro-
posed MOPPO baseline methods for ablation studies and four SOTA MORL
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methods: 1) PG-MORL [17], 2) PD-MORL [4], 3) CAPQL [18], and 4)
GPI-LS [2]. These baselines are used to evaluate the benefits introduced by
PPO and the UCB-driven search of the scalarisation vector space. A brief de-
scription of the proposed MOPPO baselines is as follows:

Fixed-MOPPO in Algorithm 1, which trains K policies, each conditioned
on a fixed scalarisation vector wpivot ∈ Wk corresponding to subspace k (see
Figure 2a).

Random-MOPPO (see supplementary material, section 1, algorithm 2)
which is similar to Fixed-MOPPO, K policies are trained, with each πk condi-
tioned on scalarisation vectors uniformly sampled from Wk. These vectors are
periodically re-sampled to ensure diversity during training.

Mean-MOPPO which is identical to UCB-MOPPO, except that the acqui-
sition function ignores uncertainty by setting βt′ := 0,∀t′ in Equation 6.

5 Experiment Setup

We evaluate the performance of all seven baselines on six continuous control
multi-objective RL problems: Swimmer-V2, Halfcheetah-V2, Walker2d-
V2, Ant-V2, Hopper-V2, and Hopper-V3 (the only problem with three
objectives). Detailed descriptions of the objectives, as well as the state and ac-
tion spaces, are provided in the supplementary material, section 2. Each method
is evaluated on three different random seeds for each problem, consistent with
[17]. For a fair comparison, we use raw reward outputs and assess the results
using the hypervolume (HV) and Expected Utility (EU) metrics [2].

Table 1: Decomposition setup for two-objective and three-objective problems.
Parameter Objective UCB Mean Random Fixed

K (pivot vectors) 2-objective 10 10 10 10
3-objective 36 36 36 36

N (sub-space selection) 2-objective 10 10 10 1
3-objective 10 10 10 1

M (sub-space vectors) 2-objective 100 100 10 10
3-objective 117 117 36 36

Step-size (layer 1) 2-objective 0.1 0.1 0.1 0.1
3-objective 0.1 0.1 0.1 0.1

Step-size (layer 2) 2-objective 0.01 0.01 0.1 0.1
3-objective 0.05 0.05 0.1 0.1

For UCB-MOPPO and the proposed MOPPO baselines, hyperparameters
for policy neural network initialisation and PPO are aligned with the values
recommended in Stable-Baselines3 [22]. Detailed hyperparameters are provided
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in the supplementary material, section 3. Proposed problem decomposition is
based on scalarisation vectors generated via discretisation of space W with a
fixed step size. The overall parameters of problem decomposition for 2- and 3-
objective problems are summarised in Table 1. SOTA baselines are reproduced
using the MORL-Baseline library [9].

6 Results Analysis

6.1 Quality of Pareto Front

Pareto front(PF) are evaluated in HV and EU, which are reported in Table 2.
PF coverage and HV convergence speed are visualized in Figure 3.

Table 2: Evaluation of HV and EU metrics for continuous MORL tasks over
three independent runs. Due to table size limitations,environment and method
names are abbreviated, and only mean values from three runs are reported.
The full detailed table is provided in supplementary material, section 4.

Metric UCB Mean Rand- Fix- PG- PD- CAP- GPI-

Swimmer HV (104) 5.60 4.72 4.56 4.45 1.67 1.77 2.40 4.75
EU (102) 2.18 2.16 2.08 2.11 1.23 1.24 1.79 2.14

Halfcheetah HV (107) 1.78 1.60 1.21 1.12 0.58 0.62 2.20 2.16
EU (103) 3.88 3.58 3.55 3.44 2.30 2.42 4.47 4.30

Walker2d HV (107) 1.40 1.29 1.15 1.13 0.44 0.56 0.18 1.22
EU (103) 3.54 3.42 3.34 3.30 1.98 2.24 1.50 3.40

Ant HV (107) 1.07 0.92 0.65 0.60 0.61 0.66 0.45 0.81
EU (103) 2.96 2.61 2.35 2.21 2.28 2.41 2.03 2.84

Hopper2d HV (107) 0.84 0.81 0.79 0.76 0.23 0.25 0.25 0.80
EU (103) 2.77 2.84 2.77 2.71 1.48 1.51 1.46 2.75

Hopper3d HV (1010) 3.62 2.83 2.90 2.64 0.63 0.11 0.31 0.65
EU (103) 3.20 3.19 3.28 2.90 1.70 1.74 1.52 2.14

UCB-MOPPO delivers consistent performance and outperforms all base-
lines except in Halfcheetah-V2. Notably, PGMORL produces a dense PF by ac-
cumulating a large number of policies in the archive, yet it achieves significantly
lower HV and EU compared to the proposed MOPPO baselines. PDMORL
achieves slightly higher HV and EU than PGMORL while using only a single
network; however, it struggles with three-objective problems. CAPQL achieves
the best performance in Halfcheetah-V2 but struggles significantly on Walker2d-
V2 and Hopper-V3 due to learning only a limited dynamics of those problems.
GPI-LS delivers the most competitive results and requires the longest GPU
time for training. it performs better than the proposed MOPPO baselines in
Halfcheetah-V2; however, it fails to explore a spread CCS in the Ant-V2 and
Hopper-2d/-3d environments.
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Fig. 3: Comparison of PF and HV evaluation for six MORL tasks. The top row
shows PF plots, and the bottom row shows HV comparisons. Shaded areas in
HV plots represent the standard deviation over three seeds.

The consistent performance of the proposed method can be partially at-
tributed to the integration of PPO, which provides enhanced stability and sam-
ple efficiency by employing trust region enforcement compared to vanilla policy
gradient methods. As shown in Figure 3, UCB-MOPPO demonstrates supe-
rior convergence across most tasks (except for HalfCheetah-V2). The proposed
method achieves rapid early-stage convergence by efficiently identifying scalar-
isation vectors that improve hypervolume. Additionally, the MOPPO baselines
exhibit stable convergence without overfitting and dropping, ensuring robust
performance across diverse multi-objective tasks.

6.2 Analysis of Ablation Experiments

Fixed-MOPPO is the simplest baseline, conditioning policies on pivot scalari-
sation vectors. It provides quick insights into a new MORL problem but results
in a sparse PF.

Random-MOPPO achieves higher hypervolume and a denser PF than
Fixed-MOPPO by randomly selecting scalarisation vectors under sub-space dur-
ing training. However, it is inefficient, failing to explore promising regions effec-
tively.

Mean-MOPPO improves search efficiency but yields a less dense PF than
UCB-driven methods. The less coverage of PF can be attributed to the greedy
selection of scalarisation vectors based solely on the mean predicted hypervolume
improvement from the surrogates, without awareness of the uncertainty.

6.3 Comparison of the Policy Archive

UCB-MOPPO constructs a satisfactory PF with a consistently low number of
policies compared to the baselines across all tested environments. The total num-
ber of policies after convergence is shown in Table 3. Some challenging problems
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Table 3: Number of archived policies after the hypervolume converges.
Environment PGMORL CAPQL GIPLS UCB-MOPPO

Swimmer-v2 168 33 41 30
Halfcheetah-v2 285 35 83 30
Walker2d-v2 412 51 52 30
Ant-v2 64 26 27 30
Hopper-v2 206 30 45 30
Hopper-v3 4023 82 89 108

result in a large number of policies in the archive (e.g., Walker2d-V2 and Hopper-
V3).

Fig. 4: Growth in policy archive size in PGMORL.

A key advantage of all the MOPPO methods is that they maintain a small,
fixed set of policies, unlike PGMORL, where the policy archive size grows lin-
early, as depicted in Figure 4. Therefore, an efficient search in UCB-MOPPO is
complemented by a memory-efficient implementation, which can be an important
consideration in production environments with tight resource constraints.

6.4 Interpolating in scalarisation vectors spaces

An analysis was carried out to assess the ability of policies trained via UCB-
MOPPO to interpolate in a more fine-grained discretisation of vector space W,
discretised using smaller step-sizes than those considered during training.

Each of the K policies, corresponding to the K sub-spaces, is evaluated on
N = {10, 20, . . . , 50} ∪ {100, 150, . . . , 500} scalarisation vectors. The results are
shown in Figure 5, where we present the hypervolume and sparsity curves.
The plots reveal a general trend: as N increases, the hypervolume improves, in-
dicating a better approximation of the PF. Simultaneously, sparsity decreases,
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Fig. 5: Hypervolume and sparsity achieved by UCB-MOPPO improve with more
scalarisation vectors conditioning the policies.

signifying a more uniform PF coverage. This suggests that increasing the granu-
larity of scalarisation vectors leads to a more comprehensive and higher-quality
representation of the PF, all without requiring additional training. This advan-
tage is not shared by PGMORL or other MORL/D approaches, which often need
further training to achieve similar results. Thus, the proposed method offers a
distinct benefit in improving PF quality with minimal computational overhead.

7 Conclusion

This paper presents a method for efficiently searching scalarisation vectors that
maximize the quality of the CCS. The key findings are: (1) the proposed method
outperforms competitive baselines in terms of CCS hypervolume and Expected
Utility in most cases, (2) it requires maintaining a minimal number of policies
to produce high-quality CCS, making it well-suited for resource-constrained en-
vironments, and (3) the CCS hypervolume and sparsity metrics improve as the
scalarisation vector step-size decreases, demonstrating effective generalisation
across scalarisation vector neighbourhoods. For future work, we plan to explore
acquisition functions that leverage additional Pareto front quality indicators [7]
and search algorithms designed for non-linear utility function spaces [23].
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