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Abstract. We introduce a novel concept learning scenario that involves
only positive and unlabeled (PU) data and focuses on interpretable mod-
els. Our scenario is motivated by a real-world application learning con-
cepts for music playlists (e.g., ‘relaxing music’). These concepts must be
understood by humans and used as database queries. We demonstrate
that probabilistic circuits offer a compelling solution for PU learning as
they can effectively learn to represent joint probability distributions with-
out the need for negative examples. However, achieving interpretability
and seamless conversion into database queries presents additional chal-
lenges. To address these, we propose a novel approach that transforms
a learned probabilistic circuit into a logic-based discriminative model.
Notably, this is the first study to investigate probabilistic circuits in
a PU learning framework, contributing two key innovations: (1) a new
description length metric called aggregated entropy as a measure for
interpretability; and (2) PUTPUT, an algorithm designed to prune low-
probability regions from the circuit before converting it into a logic-based
model, optimizing for both F1-score and aggregated entropy.

1 Introduction

Our work is motivated by an application in the music streaming industry, in
which music playlists play a crucial role. The automated curation of playlists is
an active area of research [1, 4, 5, 24, 28]. A particularly effective approach is to
represent a playlist as a concept (e.g., ‘relaxing music’) rather than as a fixed
collection of songs. When a playlist is represented as a discriminative model,
it can be automatically populated, allowing for the inclusion of newly released
songs that fit the concept.

Learning a concept in this context involves meeting the following criteria:
(i) it is a PU learning task, i.e., the data is exclusively positive and unlabeled [3];
(ii) the learned model must be convertible into a database query; and
(iii) the model must be interpretable, allowing a music expert to inspect and
validate it. The importance of interpretability is particularly crucial in a business
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Fig. 1. Overview of our approach (in the context of a music playlist). (1) A probabilistic
circuit over variables Style(S), Mood(M) and Version(V) is pruned to only contain the
high probability regions. (2) This smaller circuit is transformed into a logic formula,
acting as a discriminative model that is easier to inspect and verify by a domain expert,
and can be turned into a database query.

setting. For instance, Tunify5 provides a music streaming service specifically
designed for businesses, in which they must ensure the quality of each playlist.
In this context, even a single inappropriate song can disrupt the atmosphere in
environments like wellness centres or funeral homes.

To meet all these criteria, we focus on models that are well-suited to a PU
setting and can be converted into a logic formula. Decision trees and rule learn-
ing algorithms fulfil these requirements, but require that we first augment the
dataset with negative examples while taking into account the PU-learning set-
ting. For instance, the Rocchio classification approach identifies reliable negatives
by selecting examples close to a prototype learned from the unlabeled data [3].

We focus on probabilistic circuits (see Figure 1a) as a competitive alterna-
tive, as they do not require negative examples and are therefore more directly
applicable to and appropriate for the PU learning. These circuits [6] form a uni-
fied framework for tractable probabilistic models, representing a joint probability
distribution while being capable of tractably handling various tasks. However,
these circuits are more challenging to inspect and convert into a database query.
To address this, we propose a new approach that extracts a logical formula
(the discriminative model) from a learned probabilistic circuit, leading to the
following contributions.

1. To the best of our knowledge, we are the first to study probabilistic circuits
in an interpretable PU setting.

2. We propose the aggregated entropy as a new description length that mea-
sures the ease with which a domain expert can inspect the extracted formula.

3. More importantly, we introduce PUTPUT (Probabilistic circuit Understand-
ing Through Pruning Underlying logical Theories). This is a new method
that prunes the low probability regions from the circuit (see Figure 1b), as

5 www.tunify.com
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these are less likely to be part of the intended concept, whilst also considering
the impact on interpretability (the aggregated entropy). After pruning these
regions, we can easily extract a matching logical formula from the circuit
(see Figure 1c) that can be inspected and can function as a database query.

Our evaluation demonstrates the effectiveness of our approach on a real-
world use case of music playlist generation. Furthermore, a user study shows
that aggregated entropy is better fit to measure human interpretability than the
standard description length and evaluation on open-source datasets confirms
that the method is more generally applicable beyond this use case.

The remainder of the paper is structured as follows. First, we provide the
necessary background information and the problem statement in respectively
Section 2 and 3. Then, in Section 4 and 5, we introduce our new description
length called aggregated entropy, and our method, called PUTPUT. The empir-
ical evaluation of these is presented afterwards, in Section 6. Finally, we discuss
related work in Section 7 and conclude in Section 8.

2 Background

We first provide a brief primer on logic formulas, probabilistic circuits and PU
learning.

2.1 Logic Formulas

A literal is a Boolean variable v or its negation ¬v. A propositional logic formula
ψ is inductively defined as a literal, the negation of logic formula ¬ψ1, the con-
junction (read ‘and’) of two logic formulas ψ1 ∧ ψ2, or a disjunction (read ‘or’)
ψ1 ∨ ψ2, with the expected semantics. A clause C is a literal or disjunction of
literals, such as v1 ∨ ¬v2. A formula ψ is said to be in conjunctive normal form
(CNF) iff it is a conjunction of clauses, such as (v1∨¬v2)∧(¬v1). A formula ψ is
said to be in disjunctive normal form (DNF) iff it is a disjunction of conjunctions
of literals, such as (v1 ∧ ¬v2) ∨ (¬v1).

We support categorical variables by admitting Boolean variables that rep-
resent equalities. That is, a Boolean variable could represent style=jazz, while
another variable represents style=rock. We assume an implicit theory that for-
bids both variables to be true at the same time. For convenience, we may write
style=jazz rather than vstyle=jazz. An example in our context is a value assign-
ment to each categorical variable.

The dual graph Gd(ψ) of a CNF formula ψ is a graph that connects clauses iff
they share the same variable [29]. In our context we slightly change this definition
to reason over categorical and binary variables. More formally, two clauses C and
C′ are joined by an edge iff there is a categorical or binary variable that is present
in both clauses.
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Fig. 2. Generation of a probability with given input {m1, v2}. We marginalise over S,
as no value is assigned to S. Dashed lines indicate edges whose weight is irrelevant for
the given input. After performing addition and multiplying with the relevant weights,
the final result, P (Mood = m1,Version = v2), is given at the root node.

2.2 Probabilistic Circuits

A probabilistic circuit (PC) M := (G, θ) is a probabilistic model, representing a
joint probability distribution P(X) over random variables X through a directed
acyclic graph (DAG) G parameterised by θ [6]. Each node in the DAG defines
a computational unit, which is one of three types — an input, sum, or product
node. Every leaf in G constitutes an input node, while every inner node is either a
sum or a product node. An example of a probabilistic circuit is given in Figure 1a.

In our setting, each input node of a PC represents a distribution over a cate-
gorical random variable X. Furthermore, we assume without loss of expressivity
that the distribution has all probability mass over a single value x ∈ X. In other
words, an input node labeled X = x in Figure 1a outputs the probability (0 or
1) that the input is equal to x. Each product node represents a factorisation
of incoming distributions over different random variables, and each sum node
represents a mixture, i.e., a weighted sum over the distributions leading into it.
The weights of the mixture are indicated on the edges in Figure 1a.

Figure 2 shows an evaluation of the PC to compute P (Mood = m1,Version =
v2), marginalising over Style. First, we set the input of the PC. For example, each
input node associated to M has input m1, leading them to output 1 for M=m1

and 0 for M=m2. We marginalise over Style, denoted as S, thus each input node
S=s receives input s and outputs 1. These outputs propagate through the PC,
performing the sum- and product operations, resulting in the output probability
at the root node.

A probabilistic circuit M can easily be converted into a logic formula ψ that
captures the nonzero probability input instances of the circuit. Assuming only
nonzero weights on the edges, ψ can be extracted from M by replacing every
product node with ∧, every sum node with ∨, and removing the weights of every
edge. Additionally, the input nodes are converted into literals such as S=s1.
Figure 3 shows the logic formula ψ extracted from Figure 1a.
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2.3 Learning from Positive and Unlabeled Data

PU learning methods address the task of learning from positive and unlabeled
data [3]. Neural networks, support vector machines, bagging approaches and
density estimators can all be used in this setting [17, 21, 37, 38]. These approaches
however do not result in a classifier that is easily convertable into a database
query and inspectable by a domain expert. As an alternative approach, one
can first enhance the dataset with reliable negative examples before learning a
decision tree or a ruleset – both of which are easier to convert into a query and
inspect. For instance, Rocchio classification identifies reliable negative examples
as examples that are close to a prototype learned on the unlabeled data [3]. A
similar approach, that was also used in the context of music playlist generation,
considers the likelihood to identify reliable negative examples [15].

3 Problem Statement

The motivating use case of our work is a problem occurring in the workflow
of music streaming provider Tunify. They have a database of annotated music
where each song is represented by a fixed set of categorical features. These can
be objective (BPM, Year, Lyricist, . . . ) or subjective (Mood, Feel, . . . ). As one
of their services, they provide a predefined selection of playlists. These playlists
are represented as logical formulas ψ that can be used as queries on a database
to obtain the songs currently matching ψ.

However, Tunify must also be able to assure customers that all playlists are
safe, e.g., to avoid a black metal song appearing in a playlist intended as happy
songs for children, or for a funeral home. Therefore, to enable easier inspection
by a music expert, we wish to extract an interpretable formula ψ that acts as
a discriminative classifier covering the high probability regions of the learned
probabilistic circuit. The focus on high probability regions allows ψ to cover
only the most relevant examples.

Given: a probabilistic circuit M as described in Section 2, a set of examples E ,
a description length DL and a nonzero probability threshold t.

Objective: EHPR ⊆ E are examples in the high probability regions of M, i.e.,
the examples e ∈ E for which PM(e) ≥ t. Using Eψ to indicate all examples
in E that are covered by ψ, the goal is to find formula ψ such that:
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1. Eψ is as close to EHPR as possible 6: argmax
ψ

F1(Eψ, EHPR) (1)

2. whilst minimising the description length of ψ: argmin
ψ

DL(ψ) (2)

4 A New Description Length

The approach that we will propose captures the high probability regions of a
probabilistic circuit as a logical formula that is easier to inspect and understand
by a domain expert. The standard description length, i.e., the number of literals
in the formula, is not fine-grained enough to fully capture interpretability. This
description length fails to account for subtle variations in how users perceive
complexity, leading to weaker alignment with interpretability trends. To address
this limitation, we introduce a new description length measure called aggregated
entropy. Before describing it in detail, we first provide the motivation for its
introduction.

4.1 Motivation of Aggregated Entropy

First, consider that nested logic formulas consisting of multiple levels of ∧ and ∨
are more complex than flat forms such as CNF and DNF. Second, consider that
DNFs are more complex to inspect once categorical variables are involved. This
is due to what Ryszard Michalski, one of the founders of the field of machine
learning, called an internal disjunction: a disjunction over a categorical variable
to indicate its possible values, for example ‘style=jazz ∨ style=rock’. He ar-
gued for their interpretability from a cognitive perspective in a concept learning
setting [20]. We illustrate this using the following example from our application.

(style = jazz ∧ feel = happy) ∨ (style = jazz ∧ feel = exciting)∨
(style = rock ∧ feel = happy) ∨ (style = rock ∧ feel = exciting)

(3)

In this case, a CNF representation is preferred.

(style = jazz ∨ style = rock) ∧ (feel = happy ∨ feel = exciting) (4)

An additional advantage of CNF formulas is that they can easily be extended
to remove undesired examples e (e.g., songs) as examples are conjunctions of
attributes: ψ ∧ ¬e which is equal to ψ ∧ (¬v1 ∨ · · · ∨ ¬vn).

Description lengths provide a quantitative measure of complexity for the
information content within data or models. DUCE [22] and BoolXAI [27], for
instance, use the literal count as a description length for formulas in DNF and
CNF respectively. Similarly, description length finds an application in informa-
tion theory, as illustrated by the Huffman encoding which minimises the number

6 Note that F1-score is preferred over accuracy here, as there can be significantly more
true negatives than true positives.
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of bits required to describe a sentence [16]. These description lengths capture
the length of a logical formula.

Naturally, a longer formula is less desirable from an interpretability stand-
point. Still, we argue these description lengths are insufficient in the context of
this work because they neither consider the complexity that arises when variables
are present in multiple clauses, nor do they consider the categorical variables. We
therefore propose a new description length that we call the aggregated entropy
of a CNF formula.

4.2 Aggregated Entropy

This new description length is based on information theory and keeps two prin-
ciples in mind:

– A CNF formula is easier to understand when a variable is present in only a
few clauses.

– A CNF formula is easier to understand when a categorical variable allows
either very few or many values. As an example, consider a formula that
expresses that a music style is only allowed to be metal, or one that expresses
everything except metal.

Aggregated entropy approximates this by quantifying the number of bits needed
to represent a clause and its directly linked clauses, as a proxy for how much a
user needs to memorise when reading the model.

Definition 1 (Entropy of a variable within a clause). The entropy of a
categorical variable X within a clause C and with ϕ(α) = −α log2(α) is defined
as

Evar (C, X) = ϕ(
|C(X)|
|X|

) + ϕ(
|X| − |C(X)|

|X|
), (5)

with C(X) the set of Boolean variables in C that are associated with X, and
|X| the total number of possible values for X. In other words, |C(X)|/|X| is the
fraction of possible values for X that are mentioned within clause C.

Definition 2 (Aggregated entropy of a clause). The aggregated entropy
DLcl(C) of a clause C is a description length that aggregates the entropy of its
variables,

DLcl(C) =
∑
X∈C

Evar(C, X), (6)

where we use X ∈ C to consider the categorical variables that are present in
clause C.

The ease with which a CNF formula ψ is understood decreases when vari-
ables are present in multiple clauses. Therefore, while considering the aggregated
entropy for each clause C within ψ, we also consider the aggregate of its neigh-
bouring clauses, i.e., the clauses C′ with whom C shares variables.
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Definition 3 (Aggregated entropy of a CNF). The aggregated entropy
DL(ψ) of a CNF formula ψ is

DL(ψ) =
∑
C∈ψ

DLcl(C) + ∑
C′∈ψ|e(C,C′)∈Gd(ψ)

DLcl(C′)

 , (7)

with e(C, C′) ∈ Gd(ψ) denoting the clause neighbour relationships through the
dual graph defined in Section 2.

Example of aggregated entropy Given formula ψ over categorical variables {A,B,X}
with |A| = 5, |B| = 6, and |X| = 7.

ψ = (a1 ∨ a2 ∨ a3)︸ ︷︷ ︸
C1

∧ (a1 ∨ b1 ∨ b2)︸ ︷︷ ︸
C2

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C3

We compute DL(ψ) using the following clause entropies:

DLcl(C1) = ϕ(
3

5
) + ϕ(

2

5
), DLcl(C2) = ϕ(

1

5
) + ϕ(

4

5
) + ϕ(

2

6
) + ϕ(

4

6
)

DLcl(C3) = ϕ(
3

7
) + ϕ(

4

7
)

with ϕ(α) = −αlog2(α). Clauses C1 and C2 both mention categorical variable A,
resulting in an edge e(C1, C2) in the dual graph of ψ. This results in
DL(ψ) = DLcl(C1) +DLcl(C2) +DLcl(C3)︸ ︷︷ ︸

clause entropies

+DLcl(C2)︸ ︷︷ ︸
e(C1,C2)

+DLcl(C1)︸ ︷︷ ︸
e(C2,C1)

≈ 6.21

In the rest of this paper we minimise DL(ψ) to obtain more preferred CNF
formulas ψ.

4.3 User Study

To evaluate whether our newly proposed description length better captures hu-
man interpretability compared to using the number of literals, we conducted a
user study. Participants (N = 46) were asked to answer 12 questions. In each
question, they were given i) a playlist description in the form of a CNF formula,
and ii) a set of songs, each represented as a list of categorical attributes, after
which they were asked to select all songs that were covered by the playlist.

We posit that descriptions that are less interpretable, lead to a longer re-
sponse time. Furthermore, a description length should align with this, similarly
assigning a higher length. Therefore, we compare the aggregated entropy and
the classic description length that is based on the number of literals, by their
ability to align with the trend in response time.

The Spearman correlation between the response time is 0.63 for the aggre-
gated entropy, and 0.55 for the number of literals, indicating the presence of
correlation for both. To determine whether the difference in strengths is statisti-
cally significant, we apply Steiger’s Z-test for dependent correlations, obtaining a
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Fig. 4. The result after pruning the probabilistic circuit from Figure 1a, with the
generative significance method set to eliminate the five nodes with the lowest top
down probabilities (shown in blue).

p-value of 0.03. Since p < 0.05, we conclude that the correlation with aggregated
entropy is significantly stronger, and thus, that it is a more appropriate measure
for human interpretability. Our results further show in a pairwise comparison
that the aggregated entropy aligned with user response trends in 77% of cases,
compared to 61% for the number of literals metric. The full questionnaire and
additional details about the user study can be found in Appendix D.

5 Method

The input probabilistic circuit M is a generative model that can be transformed
into a discriminative one: given an example e, we can compute PM(e)≥ t (with t
the given threshold). However, because the discriminative model must function
as a database query and be inspectable by a domain expert, we instead consider
extracting a logical formula ψ from the circuit using the approach described in
Section 2.2.

Importantly, the resulting formula would be too general as it covers any
nonzero probability instance of the circuit. To solve this problem, we propose to
first prune the probabilistic circuit M in a way that only the high probability
regions remain. Afterwards, we can extract a logical formula ψ from the pruned
circuit and convert it to a CNF. This formula then acts as a discriminative
classifier that indicates whether a given example belongs to the high probability
region of the input probabilistic circuit M.

We propose PUTPUT, a new two-step approach that prunes a probabilistic
circuit while considering the F1-score and aggregated entropy. The first step
eliminates circuit edges that originate from sum nodes, using existing pruning
functions. This results in a circuit only covering the high probability regions. A
second step eliminates input nodes to further decrease the aggregated entropy,
while maintaining the F1-score of the first step as a lower bound.

5.1 Step 1: Pruning Sum Nodes

Pruning functions. Dang, Liu, and Van den Broeck (2022) proposes four prun-
ing functions for a probabilistic circuit. The first function randomly eliminates
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Algorithm 1 Step 2: Pruning input nodes in PC
Input: Pruned PCM′, high-probability examples EHPR, examples E
Output: M′ with pruned input nodes
1: lower_bound = F1(EM′ , EHPR)
2: repeat
3: for each input node n in M′ do
4: M′′ ←M′/n ◁ Prunes node n
5: if F1(EM′′ , EHPR) ≥ lower_bound then
6: M′ ←M′′

7: untilM′ has not changed
8: return M′

sum node inputs, while the second approach eliminates them based on their
corresponding mixture weight. Both of these functions were identified as less
performant so we do not consider them. The third function is based on genera-
tive significance, pruning those sum node inputs that contribute the least to the
circuit output. In Figure 4 we show its application on the circuit of Figure 1a,
annotating each node by its top down probability, i.e., the probability that the
node will be visited when unconditionally drawing samples from the circuit. This
function is parameterised by the number of edges it must eliminate. The fourth
approach is based on circuit flows, which works similar to the third approach but
it first adjusts the sum node mixture weights by conditioning on a given dataset.
In this way, it considers how many samples from the dataset flow through each
node. This pruning function is parameterised by the number of edges it must
eliminate and the dataset on which to condition.

Applying pruning functions. PUTPUT first identifies the preferred values of the
parameters (i.e., the number of edges to eliminate) of the pruning function that
lead to the highest F1-score (Equation 1). This can be achieved exhaustively or
by using a search function such as golden section search [25]. We used the latter
in our evaluation to conclude that pruning based on circuit flows is the preferred
pruning function. The result of step 1 is a pruned probabilistic circuit such that
the F1-score is maximised (see Figure 4).

5.2 Step 2: Pruning Input Nodes

The first step already decreases the aggregated entropy due to its correlation
with circuit size. The second step decreases this even further by considering for
each input node whether it is beneficial to prune them. While the first step prunes
some sum node inputs, the second step prunes them further and in addition also
prunes input nodes that lead into product nodes.

The F1-score resulting from the first step is used as a lower bound in this
second step. Pruning children of a product node may influence whether it is
beneficial to prune a node that was previously considered. PUTPUT therefore
employs an iterative procedure that reconsiders all input nodes until no more



Queryable and Interpretable PU Learning through Probabilistic Circuits 11

changes are made. The pseudocode for this step is shown in Algorithm 1. The
circuit resulting from step 1 is denoted as M′, while EM′ are the examples e ∈ E
for which P ′

M(e) > 0, as these are the examples covered by the logical formula
derived from M′ (see Section 2.2). Note that probability threshold t is implicitly
present in EHPR. If we apply this second step on Figure 4, we obtain Figure 5.
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Fig. 5. The circuit after applying step 2 of PUTPUT, with EHPR =
{(s1,m1, v1), (s1,m1, v2), (s1,m2, v1)}.

6 Evaluation

The proposed PUTPUT method is empirically evaluated to answer the following
research questions:

1. Which pruning function results in the highest F1-score (step 1)?
2. Does pruning of the input nodes improve the aggregated entropy (step 2)?
3. How does PUTPUT perform more generally, including on the music playlist

generation task?

6.1 Setup

Given a dataset of positive and unlabeled examples E , we first learn a proba-
bilistic circuit M using the Hidden Chow Liu Tree method [18] available in the
JUICE package [10]. Next, we find the probability threshold t that identifies the
high probability regions. A higher threshold t leads to a smaller, more precise
region. However, if the threshold t is too high, the resulting formula will over-
fit, leading to lower recall and thus reduced F1-score. The user’s choice of t,
which dictates the trade-off, is therefore important. As this depends on a spe-
cific use case, we instead determine an appropriate value for t through a more
generalized approach, using the elbow method on the generated posterior prob-
abilities, which is inspired by work on finding the reject threshold in pattern
recognition [7].

The elbow method selects a probability threshold t by first ordering all exam-
ples based on their probability, in descending order. More formally, we use E to
denote a set of examples, M to denote a probabilistic circuit, and p(e) to denote
the probability of e ∈ E according to M. Let L = [e1, ..., en] be the examples in
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E , ordered according to probability p(e), such that e1 has the highest probability
and en the lowest. The elbow method then finds threshold t by searching for a
sudden sharper decrease in probability. I.e., find example ei such that

i = argmin
x=1..|E|

(x | p(ex+1)− p(ex)

p(ex)− p(ex−1)
≥ 0.3), (8)

after which the threshold is defined as t = p(ei). The value of 0.3 in the elbow
method is a user-specified parameter. We decided this value by analysing the
results of the music use case in collaboration with a music expert of Tunify. Since
there is no expert for the open-source datasets, we reuse the same threshold t
throughout the experiments.

Fig. 6. The elbow method selects threshold t, identifying high probability regions.

Using this threshold t, we determine the high probability region examples
EHPR ⊆E . Afterwards, we apply PUTPUT to prune M, leading to the discrim-
inative formula ψ.

6.2 Datasets

– Tunify provided real-world data, 360 000 songs, annotated with 14 categor-
ical features having 7 to 120 possible values, and a set of intended playlist
concepts. From this private data 15 classes where constructed, each repre-
senting a different playlist concept that has to be learned. We consider two
types of concepts, based on the playlists used by customers from Tunify.
• Single playlist concept : 5 known product playlist concepts with their

respective songs, e.g., Rock.
• Disjunctive playlist concepts: 10 combinations of two known concepts

that have a disjunctive form, e.g., Rock or Easy Lounge.
– the FMA music dataset [12] used for genre classification (8 classes, 9217

examples), which is the open source dataset that is most similar to the
Tunify dataset.
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– black and white images of
• MNIST (10 classes, 2500 examples) [13],
• fashionMNIST (10 classes, 2500 examples) [36],
• EMNIST letters (26 classes, 2600 examples) [8].

– the mushrooms (2 classes, 8124 examples) [31] and splice (3 classes, 3190
examples) [32] datasets of the UCI machine learning repository.

Setup. A class in a dataset determines the positive labels. We consider a PU
learning setting wherein most of the examples are unlabeled. More specifically,
for each class in each dataset, we create 10 subsets of the data and randomly label
only 5% of the positively labeled examples, resulting in 740 PUTPUT datasets.
We evaluate on the full dataset.

Example. We provide a small example to motivate our goal of extracting a
discriminative classifier, and to illustrate the general applicability beyond music
playlist generation. We learned a probabilistic circuit on black and white images
of MNIST data containing 13 positively labeled examples representing the digit
0. We then applied PUTPUT to obtain the following logical formula ψ with
(W=White, B=Black).

p12,22=W∧p14,15=B∧p14,16=B∧(p8,15=W∨ p8,17=W )∧(p15,9=W∨p13,12=B)

Apparently, the high probability region of the learned probabilistic circuit only
considers seven of the 784 pixels to predict whether an MNIST digit depicts
a 0. Figure 7 shows two MNIST digits that match ψ and are part of the high
probability regions of the probabilistic circuit. The latter can be verified by
evaluating the probabilistic circuit for the given image. In addition to being
more interpretable, the domain expert can also use description ψ as a starting
point to further refine their intended concept.

6.3 Experiments

Experiment 1: comparing pruning methods. To address research question 1, we
evaluate the first step of PUTPUT with the two previously described pruning
functions on the open-source benchmarks. Table 1 indicates that pruning by cir-
cuit flows results in the best average F1-score and circuit size, the latter of which
likely leads to a decreased aggregated entropy. In the following experiments, we
therefore use pruning by circuit flows.

Fig. 7. Two MNIST images matching the logical formula ψ extracted by PUTPUT
from a learned probabilistic circuit.
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Table 1. Results of experiment 1 after the first step of PUTPUT, showing the average
F1-score and circuit size (and standard deviations) in relation to EHPR. The abbrevi-
ation gen. sign. refers to the generative significance method.

Function F1-score Circuit size (# nodes)
no pruning 3086± 1163
circuit flows 0.313± 0.23 1812± 812
gen. sign. 0.285± 0.24 2281± 904

Table 2. Results of experiment 2, showing average and standard deviation for various
metrics, in relation to examples EHPR, after PUTPUT step 1 and 2.

Step F1-score
Aggregated

entropy Precision Recall
PC size
(# nodes)

LC size
(# nodes)

1 0.313 ± 0.23 10168 ± 45798 0.341 ± 0.25 0.363 ± 0.27 1812 ± 812 1168 ± 1242
2 0.362 ± 0.23 287 ± 454 0.341 ± 0.26 0.381 ± 0.26 523 ± 294 92 ± 73

Experiment 2: effect of PUTPUT’s step 2. The second step of PUTPUT prunes
the input nodes to further lower the aggregated entropy. Table 2 shows the
results of PUTPUT applied on the open-source benchmarks. We conclude for
the second research question, that the second step significantly decreased the
aggregated entropy. Furthermore, it also increased the F1-score and recall.

Experiment 3: evaluation of PUTPUT. For all datasets, we evaluate using the
ground truth labels rather than EHPR. To the best of our knowledge, the only
other work that operates in a PU learning scenario and produces an interpretable
model that is convertible into a database query, is the work by Goyal et al. [15].
They learn a decision tree (DT ) by first enhancing the dataset with negative
examples, via either the Rocchio (r) or Likelihood (l) method [3]. In addition to
replicating their work, we also extend their idea by considering inductive logic
programming (ILP): instead of learning a decision tree, we learn logical rules us-
ing RIPPER [9]. Because those methods are not easily convertable into CNF, but
are easily convertable into DNF, we apply them on the reliable negatives as the
positive class, converting the resulting DNF into CNF by negation. Afterwards,
we compare the CNF to the one produced by our method, PUTPUT. To sum-
marize, we evaluate PUTPUT by comparing to both DT and ILP approaches,
using either the Rocchio (r) or Likelihood (l) method.

Figure 8 shows the critical difference diagrams of the experiment. A more
detailed visualization of the results is presented in Appendix B and C. The
most important metric is the F1-score, as the best aggregated entropy can be
trivially achieved with a formula ψ that is always true. This highlights that
PUTPUT outperforms other approaches on the Tunify data. They failed to
learn a meaningful theory, as shown by the mean F1-score: 0.73 for PUTPUT
versus a max mean of 0.125 for l+ilp. On open-source benchmarks, PUTPUT
matches r+DT in F1-score while outperforming in aggregated entropy. These
results show that PUTPUT is broadly applicable beyond the Tunify use case.
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7 Related Work

Probabilistic circuits. Dang et al. proposed several pruning functions for a prob-
abilistic circuit, functions that we utilise within PUTPUT [11]. They used these
functions while devising a prune+grow approach to learn more meaningful prob-
abilistic circuits: insignificant parts are pruned before again growing the remain-
ing part. An earlier application of probabilistic circuits in the field of explainable
AI is by Wang et al., who used them to find explanations that have a high prob-
ability of being correct [35]. Verreet et al. have used probabilistic circuits to
explicitly model PU assumptions, improving the identification of reliable nega-
tives [33]. In contrast to our work, the PC structure was not learned on data,
nor was it used to learn the final model.

Explainability in AI can be tackled in different ways. (1) By limiting to inter-
pretable models, possibly sacrificing accuracy [23]; (2) By transforming a learned
model into a more interpretable one. For example by compiling a Bayesian net-
work classifier into a logical classifier [30]; (3) By transforming part of a model
into an interpretable version. This is the approach followed by LIME [26] and
SHAP [19] where linear models are generated around a point of interest; (4) By
querying the model to identify edge cases or adversarial examples [14]. In this
work we focused on the second strategy, such that the resulting model can easily
be transformed into a database query, and inspected by a domain expert.

Pattern mining. Finding a description of a given set of examples is a problem
setting that occurs in the field of data mining. KRIMP [34] is a pattern mining
algorithm that uses the minimum description length principle to find a code
table that compresses the data. Unfortunately, converting this code table into a
comprehensive logical formula is not trivial. Another example of the use of pat-
tern mining to find descriptions, is constraint-based querying to explore Bayesian
networks [2]. The patterns mined in this work are used to answer explorative
queries explaining the Bayesian network representation.

Fig. 8. The critical decision diagrams of experiment 3. Results closer to 1 are better.
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8 Conclusions

Motivated by a real-world music playlist generation task, we made three key
contributions to queryable, interpretable PU learning. First, we are the first to
apply probabilistic circuits for learning interpretable models from positive and
unlabeled data. Second, we introduced aggregated entropy, a novel description
length that measures the ease with which domain experts can inspect and un-
derstand the extracted logical formulas. Our primary contribution, however, is
PUTPUT, a method that prunes low-probability regions of a probabilistic circuit
to facilitate the extraction of interpretable logic formulas. Evaluation shows that
PUTPUT outperforms competing methods on the playlist generation use case
and that it is broader applicable through experiments on open-source datasets.
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