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Abstract. ControlNet enables fine-grained control over image layout in promi-
nent generators like Stable Diffusion. However, it lacks the ability to take into ac-
count localized textual descriptions that indicate which image region is described
by which phrase in the prompt. In this work, we enable ControlNet to use local-
ized descriptions using a training-free approach that modifies the cross-attention
scores during generation. For doing so, we adapt and investigate several existing
cross-attention control methods and identify shortcomings that cause failure or
image degradation under some conditions. To address these shortcomings, we de-
velop a novel cross-attention manipulation method. Qualitative and quantitative
experimental studies demonstrate the effectiveness of the proposed augmented
ControlNet.
Keywords: localized descriptions · layout-to-image · diffusion models

1 Introduction

Diffusion-based text-to-image models like Stable Diffusion [23] can generate high-quality
images of various types of subjects from textual description. However, they lack fine-
grained control over the composition of the generated image, which would increase their
usefulness in various applications. The default training method does not address gen-
eration scenario’s where additional control inputs can be used to describe the desired
composition of the image (e.g., using line art or segmentation maps). Recent work has
explored fine-tuning adapters (e.g. ControlNet [34], GLIGEN [15], T2I-Adapters [20])
to the diffusion model’s U-Net that enable precise control over the layout of the generated
images. Arguably the most popular and effective among these is ControlNet. However,
it lacks the ability to use localized descriptions that specify which objects should be
generated in the different parts of the image.

Therefore, in this work, we extend the pre-trained segmentation-based ControlNet
for controlling image layout with cross-attention control as a means to improve the as-
signment of objects and reduce missing or misplaced objects and concept bleeding that
frequently occur when ControlNet is used for more complicated scenes with multiple
similar objects. Cross-attention control methods have the advantages that they neither
require significant computational overhead nor additional training and that they can be
easily plugged into existing models. Specifically, the contributions of this work are three-
fold. Firstly, we investigate several training-free attention-based extensions of Control-
Net to improve its grounding with a given localized textual description and identify



2 D. Lukovnikov and A. Fischer

(a) “wooden table” (b) “gold coin”

(c) “blue crystal ball” (d) “red tennis ball”

(e) Desired output image for prompt “A
photo of a {blue crystal ball}𝑐 , a {red
tennis ball}𝑑 and a {gold coin}𝑏 on a
{wooden table}𝑎”

Fig. 1: An example of the task. The input consists of masks (a)-(d) and the annotated
prompt in the caption of (e). The desired output is shown in (e). See Sec. 2.

important characteristics of such methods. To the best of our knowledge, this investi-
gation presents the first in-depth comparison of this family of methods in the context
of ControlNet. Secondly, we develop a novel cross-attention (CA) control method that
facilitates better object alignment between the text prompt and the generated image,
while minimizing image quality degradation. Lastly, we conduct an extensive empirical
study using the newly developed SIMPLESCENES dataset as well as COCO2017 [17].
Qualitative and quantitative experiments demonstrate the effectiveness of CA control in
conjunction with ControlNet, as well as improvements compared to other CA control
methods and other baselines that do not rely on ControlNet.

2 Task: Layout-to-Image with Localized Descriptions

The focus of this work lies in improving the faithfulness of a generated image of height
𝐻 and width 𝑊 to a localized description. The input for this task consists of (1) a
prompt 𝑋 consisting of 𝑁 tokens, (2) a collection of 𝑅 region masks {𝐁𝑟}𝑟=0,…,𝑅,
where 𝐁𝑟 ∈ {0, 1}𝐻×𝑊 1, and (3) region-token alignments 𝑓RT ∶ [1‥𝑁] → [0‥𝑅]
2 that specify which region each token in the text prompt belongs to. As an example,
consider the prompt “A photo of a {blue crystal ball}1, a {red tennis ball}2, and a {gold
coin}3 on a {wooden table}4”, where each colored sub-sequence is associated with the
corresponding mask shown in Figs. 1a to 1d.

The goal is to generate an image where (1) object boundaries follow mask boundaries
and (2) where the objects described by the region-specific parts of the prompts (i.e, the
region descriptions) are generated in the parts of the output image associated with their
region description. The desired output for our example is given in Fig. 1e.

1 The region mask 𝐁𝑟 contains the value 1 for pixels where the object should be present.
2 Region 0 is the entire image, so a token assigned to region 0 is relevant everywhere in image.



Enabling ControlNet to follow Localized Descriptions using Cross-Attention Control 3

3 Background

In this section, we briefly review the diffusion-based text-to-image generation process,
ControlNet, and some existing cross-attention control methods designed for using local-
ized descriptions with diffusion models (DMs).

3.1 Text-to-Image with Denoising Diffusion

In text-to-image DMs, first, a textual description 𝑋 of 𝑁 input tokens is encoded by the
text encoder, producing the text embeddings 𝐗 = {�⃗�𝑛}𝑛=0..𝑁 , where each �⃗�𝑛 ∈ ℝ𝑑𝑥 .
Here, 𝑑𝑥 is the dimensionality of the embedding. Stable Diffusion uses CLIP [22] as
encoder, which is a transformer pre-trained on a text-image similarity task.

Then, a denoising model is used to iteratively denoise an initial 𝑧𝑇 ∼  (0, 𝐼) into an
image 𝑧0 using some solver, such as DDIM [27]. At every iteration, the solver computes
𝑧𝑡−𝛿 = 𝑠(𝑢(𝑧𝑡, 𝑡,𝐗), 𝑡, 𝛿), where 𝑡 is the denoising step, 𝑢(⋅) is the denoising model, 𝑠(⋅)
is the solver algorithm, and 𝛿 is the step size. The denoising model can be implemented
as a U-Net [24], which is conditioned on both the input text 𝑋, and the noisy image 𝑧𝑡.Conditioning on the text can be accomplished by using a cross-attention mechanism
between the token embeddings 𝐗 ∈ ℝ𝑁×𝑑𝑥 and pixel-wise features 𝐇 ∈ ℝ𝐻×𝑊 ×𝑑ℎ :

𝐀 = sof tmax
(𝐐𝐊𝑇

√

𝑑

)

and 𝐂 = 𝐀𝐕 . (1)

Here, 𝐐 = 𝑓𝑄(𝐇) ∈ ℝ(𝐻 ⋅𝑊 )×𝑑 are the query vectors computed by projecting the pixel-
wise feature maps 𝐇. 𝐊 = 𝑓𝐾 (𝐗) ∈ ℝ𝑁×𝑑 and 𝐕 = 𝑓𝑉 (𝐗) ∈ ℝ𝑁×𝑑 are the key
and value projections of the token embeddings. 𝐀 ∈ ℝ(𝐻 ⋅𝑊 )×𝑁 are the cross-attention
scores. Note that we omit layer and head indexes for clarity and that the dimensions 𝐻
and 𝑊 as well as the size of feature vectors 𝑑 and 𝑑ℎ vary depending on the layer.

3.2 ControlNet

ControlNet [34] was recently proposed to improve control over the image composition.
In addition to the prompt 𝑋, ControlNet expects an image 𝑐img as part of the input for
the generation process. In order to incorporate conditioning based on 𝑐img, first a con-
trol model is defined that copies the down-sampling and middle blocks of the latent
diffusion model’s U-Net. The control model also contains an additional block of con-
volutional layers that encodes the control signal 𝑐img and is trained from scratch. The
features computed by the control model are added to the features computed by its sib-
ling in the main U-Net before feeding them into the up-sampling blocks of the main
U-Net. We refer the reader to Supplement C and to the original work [34] for a more
detailed explanation. ControlNet supports different types of conditioning input, such as
segmentation maps, depth maps or human pose. Each type requires the training of a sep-
arate control model dedicated to that type of conditioning. Combining several control
signals [35] is an active research area.

Note that while ControlNet allows us to control the image layout using segmentation
maps, it lacks a mechanism to precisely control what object is generated inside each
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region. As a consequence, when faced with ambiguous layouts or improbable region
assignments, plain ControlNet can not correctly process the prompt, as illustrated in our
qualitative study in Sec. 5.1.

3.3 Cross-attention control

Modifying cross-attention [2] scores in the transformer [29] blocks of the U-Net can
provide a degree of spatial control and attribute assignment. Here we give a brief in-
troduction to previously proposed methods aimed at implementing the ability to follow
localized descriptions via cross-attention control. In addition to the token embeddings
�⃗�𝑛, these methods expect the region masks 𝐁𝑟, as well as the region-token alignments
𝑓RT as inputs. In general, CA control mechanisms stimulate cross-attention from the
specified region to the corresponding set of tokens and/or prevent from attending to the
descriptions of other regions.

eDiff-I (community edition) The first cross-attention control method we consider is a
re-implementation [26] of the approach proposed by Balaji et al. [3]. It takes the region-
annotated prompt and the region masks, and forces cross-attention to attend to certain
words from the corresponding regions by modifying the cross-attention scores to3

𝐀 = sof tmax
(

𝐖 + 𝐐𝐊𝑇
√

𝑑

)

, with (2)

𝐖 = 𝑊 ′ ⋅ log(1 + 𝜎2) ⋅ std(𝐐𝐊𝑇 ) ⋅ 𝐁𝑓RT . (3)
Here, 𝐖 is scheduled to decrease as the denoising process progresses, due to the depen-
dence on 𝜎, which is a scalar specifying the current noise level. 𝑊 ′ is a hyper-parameter
controlling the overall degree of attention change and 𝐁𝑓RT ∈ {0, 1}(𝐻 ⋅𝑊 )×𝑁 are the
masks 𝐁𝑟 stacked according to 𝑓RT.

CAC Instead of boosting cross-attention scores between regions and their descriptions
in the prompt, CAC [9] applies a binary mask that eliminates attention between regions
and non-matching region descriptions. The binary mask is applied after softmax nor-
malization, that is4

𝐀 = sof tmax
(𝐐𝐊𝑇

√

𝑑

)

⊙max(1 − 𝐁𝑅,𝐁𝑓RT ) , (4)

and thus attention weights are no longer normalized after applying the mask. 𝐁𝑅 ∈
{0, 1}(𝐻 ⋅𝑊 )×𝑁 is a mask that is set to one for all tokens that belong to any region de-
scription.

3 Note that this formulation by the community slightly differs from the one proposed by [3]. We
use this formulation since in our early experiments, we found it to perform slightly better.

4 Since the source code for [9] has not been made available at the time of this writing, we had to
rely on the descriptions given in the paper for our implementation.
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DenseDiffusion In this variant of cross-attention control [12], attention scores for the
tokens describing a region are increased while attention scores to other tokens are de-
creased. In addition, the method also proposes to scale the degree of change by the region
size fraction 𝑆 and uses a schedule that decreases polynomially. Cross-attention scores
are modified by redefining 𝐖 from Eq. 2 as follows

𝐖 =𝑊 ′ ⋅
( 𝑡
𝑇
)5

⋅ (1 − 𝑆) ⋅ (𝐁𝑓RT ⊙𝐌+ − (1 − 𝐁𝑓RT )⊙𝐌−) , (5)

where 𝐌+ and 𝐌− specify the maximum increase and decrease for every token, i.e.
𝐌+ = max(𝐐𝐊𝑇 ) −𝐐𝐊𝑇 and 𝐌− = 𝐐𝐊𝑇 − min(𝐐𝐊𝑇 ) . (6)

In addition to cross-attention control, DenseDiffusion [12] also includes self-attention
control using a similar method.

4 Approach

In this work, we use the segmentation-based ControlNet on top of Stable Diffusion as it
already provides us with a means to control image layout with high precision by spec-
ifying segmentation maps. Note that even though the image layout is controlled, it still
leaves the model with freedom how to assign the objects mentioned in the text prompt
to the regions. In this work we focus on investigating cross-attention control methods in
conjunction with ControlNet to enable it to solve the task described in Section 2.

4.1 Cross-Attention Control in ControlNet

In a first attempt to enable ControlNet to solve the task defined in Section 2, we adapt and
integrate several representative cross-attention control methods into ControlNet. More
precisely, we implement the methods described in Sec. 3.3, and apply cross-attention
control in both the control network as well as the main diffusion U-Net. Note that differ-
ent layers of the U-Net work at different resolutions as the network consists of a stack of
down-scaling layers, followed by up-scaling layers. Therefore, we down-scale the mask
𝐁𝑟 as necessary.

4.2 Cross-Attention Control Design Considerations

The previously discussed cross-attention control methods have certain shortcomings.
Firstly, most methods are sensitive to the selection of the time steps during which at-
tention manipulation is performed and to what degree it is performed. Most methods
studied here rely on the assumption that the image layout is determined in the initial de-
noising steps and do not modify attention in later generation stages. Such methods (e.g.,
DenseDiffusion and eDiff-I) therefore place a high degree of control in the initial stages
of decoding and quickly drop it to near-zero values by roughly 𝑡 = 750 (if generation
starts with 𝑡 = 𝑇 = 1000). However, this procedure can still lead to concept bleeding
in highly ambiguous cases, for example when generating objects of similar shapes and



6 D. Lukovnikov and A. Fischer

Fig. 2: A diagram illustrating attention redistribution and attention boosting.

color. After the initial heavily controlled stage, the model becomes uncontrolled and
fine details such as object texture can no longer be clearly assigned when multiple sim-
ilar objects are present. Thus, it is desirable to have an attention control method that
remains active throughout the denoising process while still minimizing image quality
degradation.

A second consideration is that at different heads of different layers and at different
generation stages, the attention weights behave differently and indiscriminate boosting
of attention can lead to a decrease in image quality and a higher sensitivity to the at-
tention control schedule. The exception is CAC, since it only disables attention to the
descriptions of irrelevant regions throughout the entire generation process.

Thirdly, when simply disabling attention to irrelevant tokens, like CAC, the attention
“mass” is either mostly transfered to the most probable tokens or is lost. This can be
problematic when the initial random image 𝑥𝑇 leads the model to mostly attend to the
wrong region descriptions, in this case, attention to the wrong regions is dropped but
the attention weights to the correct region remain at their initial (possibly low) values.
In addition, in CAC-style control, the attention weights no longer sum to one.

4.3 Attention Redistribution

To address these shortcomings, we propose a cross-attention manipulation method that
we refer to as cross-attention redistribution (CA-Redist) and that redistributes atten-
tion from irrelevant region descriptions to the relevant one. Concretely, this is accom-
plished by (1) computing the total amount of region-specific attention 𝑚, which can vary
across heads and layers, (2) separately normalizing region-specific and region-agnostic
attention weights to obtain 𝐀local and 𝐀global, respectively, and (3) mixing the two re-
sulting attention distributions using 𝑚 ∈ [0, 1]𝐻 ⋅𝑊 . Note that this is done separately for
every pixel, and that it is assumed that every pixel in the image is assigned to exactly one
region description. Fig. 2 provides an illustration of CA-Redist. This method is defined
as follows:

𝐀 = 𝑚 ⊙ 𝐀local + (1 − 𝑚)⊙ 𝐀global , with (7)
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𝐀local = sof tmax
(

log(𝐁𝑓RT ) +
𝐐𝐊𝑇
√

𝑑

)

, (8)

𝐀global = sof tmax
(

log(1 − 𝐁𝑅) +
𝐐𝐊𝑇
√

𝑑

)

and (9)

𝑚 =
𝑁
∑

𝑛=0
𝐀[⋅, 𝑛] ⋅ 𝐁𝑅[⋅, 𝑛] , (10)

where 𝐀 is defined as in Eq. 1, 𝐀[⋅, 𝑛] is its 𝑛-th column, and 𝐁𝑅 and 𝐁𝑓RT are as defined
earlier in Section 3.3. Thus, 𝐀global computes an attention distribution over all tokens
except those in any region description and 𝐀local is zero everywhere except the correct
region description. The mixture between the two makes sure to retain the same attention
weights for the non-region tokens (in other words, keeping 𝐀global ≈ 𝐀 for tokens where
𝐁𝑅 is zero).

The attention to relevant region-specific parts of the prompt can further be increased
by replacing 𝑚 with 𝑚∗ as defined below, where 𝑚 can be modified in two ways, using
hyper-parameters 𝑊𝑚 ≥ 0 and 𝑊𝑎 ≥ 0 that boost the attention to relevant parts of the
prompt multiplicatively or additively, respectively.

𝑚∗ = min
(

1,max
(

0, 𝑚 ⋅ (1 +𝑊𝑚 ⋅𝑊 ′′) +𝑊𝑎 ⋅𝑊
′′ ⋅ (1 − 𝑆)

)

)

, (11)
where 𝑆 is the fraction of the surface area that a region occupies in the image (same as
defined for DenseDiffusion) and 𝑊 ′′ specifies the schedule of attention boost in CA-
Redist and depends on the current denoising step 𝑡:

𝑊 ′′ =

⎧

⎪

⎨

⎪

⎩

1 if 𝑡 ≥ 𝑇s
1
2 +

1
2 sin(𝜋 ⋅ 𝑡−𝑇thr

𝑇s−𝑇e
) if 𝑇s > 𝑡 > 𝑇e ,

0 if 𝑇e ≥ 𝑡
(12)

with 𝑇s = 𝑇thr + 𝑅𝑇 ∕2 and 𝑇e = 𝑇thr − 𝑅𝑇 ∕2 . (13)
This schedule is controlled by the threshold step 𝑇thr ∈ [1‥𝑇 ] and the threshold soft-
ness 𝑅 ∈ [0, 1]. Unless otherwise specified, in our experiments, we set 𝑇thr = 𝑇 . This
simplifies the schedule to the following:

𝑊 ′′ =

{

1
2 +

1
2 sin(𝜋 ⋅ 𝑡−𝑇

𝑅⋅𝑇 ) if 𝑡 > 𝑇 ⋅ (1 − 𝑅∕2)
0 otherwise .

(14)

In Eq. 12, 𝑡 starts from 𝑇 so attention boost is active more in the initial stages of
denoising with a value between zero and one and gradually decays to zero as denoising
progresses. This schedule for 𝑅 = 0.4 is illustrated in Fig. 3.

Multiplicative manipulation using 𝑊𝑚 is stronger for heads with higher attention
weights to region descriptions and remains low for those that attended to tokens outside
of any region description. Additive manipulation using𝑊𝑎 forces attention to increase to



8 D. Lukovnikov and A. Fischer

Fig. 3: CA-Redist schedule 𝑊 ′′ if 𝑇thr = 𝑇 and 𝑅 = 0.4.

Fig. 4: Layouts used for qualitative comparison throughout this paper (Fig. 5 and Fig. 6).

region-specific tokens in all heads. Note that the computational overhead this attention
manipulation introduces is similar to other attention control methods, and is negligible
compared to the computational requirements of running the diffusion model.

5 Experiments

We compare the following methods of cross-attention control on top of the (lightly fine-
tuned) ControlNet: (1) eDiff-I, (2) CAC, (3) DenseDiffusion (DD), and (4) CA-Redist.
We also compare against the original implementations of GLIGEN 5 and DenseDiffu-
sion 6 as points of reference of related work that does not rely on ControlNet. Note that
we used the main variant of GLIGEN that takes as input bounding boxes and localized
descriptions.7 Comparison with SceneComposer [33] and SpaText [1] was not possible
because the code and data have not been publicly released at the time of this writing. It
must also be noted that both these approaches have been extensively trained, whereas our
proposed method also works training-free with segmentation- and scribble-based Con-
trolNet. In our experiments, we did minimal fine-tuning of a small part of ControlNet on
a readily available dataset to align color schemes since we found it slightly improved im-
age quality in our early experiments. To adapt to the task, we fine-tuned the segmentation
ControlNet on panoptic segmentation data from COCO2017 [17] using randomized col-
ors. More details on the experimental setup can be found in Supplement A.2. Our code
is available at https://github.com/lukovnikov/ca-redist.

5.1 Qualitative study

A qualitative comparison of the different attention control methods is presented in Fig. 5.
The layouts used are specified by the first three images in Fig. 4, where the numbers cor-

5 As provided in the Huggingface Diffusers library
6 https://github.com/naver-ai/densediffusion
7 GLIGEN also provides a variant that takes a segmentation map as conditioning but it does not

use localized textual descriptions so it is unfit for comparison.
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Fig. 5: A qualitative comparison of different cross-attention control methods in
ControlNet-extended Stable Diffusion 1.5. See Fig. 4 for layout specification.
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respond to the numbered phrases in the prompts in Fig. 5. For a qualitative comparison
using ControlNet trained for sketch conditioning (scribbles), please see Supplement D.

Comparison of baselines: The baselines that don’t rely on ControlNet appear to fail at
the task with challenging inputs. Note that GLIGEN [15] only allows to use bound-
ing boxes for conditioning in image generation with localized descriptions, so the exact
layout is not expected to match. But despite enabling its adapter throughout the entire
generation process (𝜏 = 1), GLIGEN mostly failed to assign the right textures and col-
ors to objects for the challenging prompts involving multiple round objects. This can be
speculated to be attributable to the fact that during training, GLIGEN is insufficiently
exposed to such challenging examples and doesn’t learn to take into account localized
descriptions in later generation steps.

In comparison, the original implementation of DenseDiffusion [12] is better at as-
signing objects to regions. However, we see it fail in examples where the shape and col-
ors in the early generation stages are ambiguous, as illustrated in the last two columns
of Fig. 5. Also, it seems to ignore smaller object masks and does not adhere to mask
boundaries as precisely as ControlNet (however, it must be noted that DenseDiffusion
is completely training-free).

Finally, plain ControlNet, pre-trained with semantic segmentation labels, and fine-
tuned on COCO2017 data for panoptic segmentation with randomized colors (referred
to as ControlNet* in the figures and tables), can already assign the correct description to
the correct region if the mask shapes are distinctive enough. This is illustrated in the fifth
column, where all shapes can be unambiguously matched with a region description (e.g.
“fire ball” is a circular shape, “doll house” is a trapezoid shape). However, when faced
with ambiguity in layout specification (e.g. three circles), plain ControlNet randomly
assigns objects and colors and suffers from concept bleeding (for example, assigning
“gold” to a ball whereas we described a gold coin). Additionally, it can struggle when
faced with improbable descriptions, such as a rabbit mage standing on clouds.

Comparison of attention control methods: For CAC-style control, we observe that it
does help resolve ambiguity and improve grounding behavior, but not very consistently
across different seeds. In the first column, for example, the assignment completely failed.
We also see that it does not resolve the issue of improbable assignments, leaving the
images largely the same as plain ControlNet for the rabbit example. We also observed
that small objects are sometimes not generated.

The other methods appear to provide satisfactory degree of control over object as-
signment in most cases. However, as we can see in the last two columns of Fig. 5, for
the prompt “an apricot, a pumpkin, and an orange”, DenseDiffusion and eDiff-I suffer
from the aforementioned control scheduling problems, where objects of similar color
and shape are not assigned correctly. Both generate two or three pumpkins, ignoring
other described objects. We observed similar behavior with other test cases.

In contrast, CA-Redist adheres to localized descriptions better than DenseDiffusion
and eDiff-I in more challenging control scenarios (objects of similar shape and color)
while maintaining image quality.
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Ablation: The bottom three rows of Fig. 5 show an ablation of CA-Redist, which shows
it is still effective when only 𝑊𝑚 is non-zero (CA-Redist (m)) or only 𝑊𝑎 is non-zero
(CA-Redist (a)). When both are zero (CA-Redist (none)), the images don’t always satisfy
all region descriptions. This shows that some form of attention boosting is still necessary.
Qualitative analysis with objects from COCO-2017: A comparison of different methods
using object shapes from COCO-2017 examples is shown in Fig. 6. Note that baselines
(+CAC, +DD, +eDiff-I) fail to always assign the correct descriptions to the right loca-
tions and properly separate features. For example, for cats and dogs, +DD generates two
cats and eDiff-I, while largely performing quite well still assigns a mixture of cat- and
dog-like features to the region annotated as a “grey dog”.

5.2 Quantitative study

Automatic evaluation for this task is challenging because of the inherent difficulty of
evaluating image quality and faithfulness to a localized description. Moreover, there is
a lack of standardized open-sourced datasets and evaluation methodology. Neverthe-
less, to be able to perform a quantitative analysis, we constructed a challenging dataset
of simple scenes with multiple objects (SIMPLESCENES) that allows to estimate image
faithfulness of localized descriptions as well as image quality, and additionally investi-
gate image quality on COCO2017.
SIMPLESCENES Our goals are two-fold: measuring (1) image quality to detect image
degradation and (2) faithfulness to localized descriptions.8 Since COCO images fre-
quently contain objects with overlapping bounding boxes, these could pollute metrics
for measuring conformity to localized descriptions.

8 ControlNet follows segmentation map conditioning very well so we do not evaluate this.

Table 1: Image quality and localized prompt faithfullness using our SIMPLESCENES
dataset. Arrows indicate if higher (↑) or lower (↓) is better. The format is
MEAN±STD(BEST), over five seeds.

BRISQUE ↓ LAION Aest ↑ LocalCLIP
Logits ↑ Prob. ↑

GLIGEN (𝜏 = 1) 30.56 ± 1.78 (10.23) 5.51 ± 0.04 (6.08) 21.60 ± 0.17 (23.19) 0.33 ± 0.01 (0.50)
DD (original) 32.69 ±1.14 (12.96) 5.76 ±0.03 (6.33) 21.52 ±0.06 (22.83) 0.45 ±0.01 (0.58)
ControlNet* 25.23 ±1.46 (7.65) 5.70 ±0.02 (6.25) 20.99 ±0.12 (22.60) 0.25 ±0.01 (0.41)
+CAC 26.97±1.02 (8.99) 5.71±0.05 (6.29) 22.28±0.23 (23.84) 0.44±0.02 (0.61)
+DD (w=0.5) 24.50±1.94 (8.39) 5.74±0.05 (6.21) 22.93±0.11 (24.18) 0.48±0.02 (0.59)
+eDiff-I (w=0.5) 23.75±1.15 (10.86) 5.73±0.02 (6.22) 23.36±0.13 (24.43) 0.58±0.02 (0.68)
+CA-Redist (m+a) 25.40±2.29 (10.10) 5.74±0.02 (6.22) 23.77±0.11 (24.89) 0.62±0.01 (0.73)
+CA-Redist (m) 27.37±2.00 (10.54) 5.68±0.05 (6.18) 23.70±0.13 (24.80) 0.62±0.01 (0.72)
+CA-Redist (a) 24.86±1.33 (8.41) 5.69±0.01 (6.20) 23.52±0.07 (24.74) 0.58±0.01 (0.70)
+CA-Redist (none) 25.13±1.54 (8.14) 5.65±0.04 (6.20) 23.26±0.04 (24.60) 0.56±0.01 (0.70)
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Dataset: For this reason, and to focus on more challenging cases, we create the SIM-
PLESCENES dataset. The dataset consists of 124 examples, each containing 3-4 objects
and randomized descriptions, which proved to be challenging for the tested methods.
The dataset is described in more detail in Supplement A.1.
Metrics: We use the following evaluation methodology for this dataset. For measuring
general image quality, we use reference-free (since we don’t have reference images) im-

Fig. 6: A qualitative comparison with complex shapes. In the example for cats and dogs,
region 1 corresponds to the bottom left region and region 2 to the region on the right. In
the example for cows and zebras, region 1 corresponds to the animal shape on the right
and region 2 to the animal shape on the left. For exact layout specifications, see Fig. 4.
We can observe some concept bleeding for different methods, especially evident in the
cows and zebras examples, even for CA-Redist. Concept bleeding is more severe for the
DenseDiffusion and eDiff-I baselines while the CAC baseline generated a brown animal
instead of a black and white cow.
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age quality assessment methods, such as BRISQUE [19] and MANIQA [32], as well
as the LAION Aesthetics Score predictor [25]. For measuring conformity to localized
description, we use the localized CLIP (LocalCLIP) Logits and Probabilities, which are
computed as follows: For every object mask, we crop the image to contain only the
masked region of the generated image, and use CLIP to compute text-image similarities
between all the localized phrases (e.g. ”blue crystal ball”) and all the cropped object im-
ages. The reported CLIP Logits correlate linearly with the similarities while the reported
CLIP Probabilities result from normalizing the logits over all objects in the image.
Results: The numbers reported in Table 1 demonstrate that CA-Redist does not suffer
from image quality loss, with all image quality metrics being on par with plain Con-
trolNet. BRISQUE values are significantly lower than that for GLIGEN and DenseD-
iffusion. Regarding MANIQA numbers, all tested methods achieved MANIQA scores
of 0.665 ± 0.015, thus not showing any measurable image quality differences among
the tested methods. We did not report these numbers in Table 1 because of space con-
straints. On the other hand, the LocalCLIP metrics indicate that CA-Redist is superior
when it comes to conformity to localized descriptions: while plain ControlNet achieves
lower values than GLIGEN and DenseDiffusion, ControlNet with CA-Redist leads to a
significant improvement in LocalCLIP scores.
Ablation: From the three ablation settings (CA-Redist variants (a), (m) and (none)), it
appears that moderately boosting attention does not result in measurable image qual-
ity decrease. However, no attention boost (CA-Redist (none)) results in slightly lower
faithfulness to the localized prompt (as indicated by the localized CLIP metrics), which
confirms our qualitative observations.
COCO2017 To further investigate image quality, we report FID [10] and KID [5] scores
between 5000 samples generated using the segmentation maps from the COCO2017 val-
idation set and the corresponding 5000 real images in Table 2. Even though ControlNet
has worse FID and KID than GLIGEN, the addition of CA control does not result in
quality loss measurable by these metrics. Note that GLIGEN and DenseDiffusion don’t
always adhere to the masks as closely as ControlNet since GLIGEN only uses bounding
boxes instead of segmentation maps as input, and DenseDiffusion uses self-attention
control. Thus, both don’t follow the input segmentation maps as closely as ControlNet.

Table 2: FID and KID w.r.t. COCO2017 validation images.
FID ↓ KID (×103) ↓

GLIGEN (𝜏 = 1.0) 23.84 4.289
DD (original) 37.68 7.923
ControlNet* 28.84 5.150

+CAC 27.42 4.916
+DD (w=0.5) 28.30 5.422
+eDiff-I (w=0.5) 28.72 6.074
+CA-Redist (m+a) 27.11 5.276
+CA-Redist (m) 27.78 5.547
+CA-Redist (a) 26.15 4.618
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Fig. 7: A qualitative comparison between sketch-based ControlNet with and without CA-
Redist. See Supplement D for a full comparison.

Fig. 8: Image quality with increasing control strength for eDiff-I and DenseDiffusion
cross-attention control with ControlNet.

5.3 Image quality vs control strength

In Fig. 8 are shown some images generated using eDiff-I-based and DenseDiffusion-
based attention control. We can observe that at lower attention control strengths (con-
trolled by the inference hyper-parameter 𝑊 ′), eDiff-I does not correctly follow localized
descriptions. Fidelity increases with increasing 𝑊 ′, however, it comes at a cost to image
quality, which is particularly noticeably for higher values. For DenseDiffusion, increas-
ing 𝑊 ′ to its maximum value of 1.0 does not improve fidelity to localized descriptions
but also introduces more subtle image quality changes.

5.4 CA-Redist for sketch-based control

We performed additional analysis into using sketch (scribble) conditioning instead of
segmentation maps, as well as using more complex shapes. In Fig. 7, we show that CA-
Redist also performs well with ControlNet trained for sketch conditioning (scribbles).
A full qualitative comparison is provided in Supplement D.



Enabling ControlNet to follow Localized Descriptions using Cross-Attention Control 15

6 Related Work

Since the early works on controllable image synthesis [11, 7], the emergence of neural-
network based generative models opened new frontiers for this task, especially with
methods like ControlNet [34] and GLIGEN [15]. Several works have addressed tasks
similar to ours with GANs [28, 39, 16]. However, these works either do not use descrip-
tions or are limited to a restricted set of object classes.

More recently, several works have proposed methods [36, 33, 1, 4, 12, 9, 3, 6, 21, 31,
8, 18] for image synthesis with localized descriptions and regions specified by masks or
bounding boxes. Several works [33, 1, 38, 30, 14] modify and train the diffusion model
or adapters to condition on localized prompts (and localized reference images). Several
training-free methods for this task have also been proposed [4, 12, 9, 3, 6, 21, 31, 8, 18],
many of which rely on manipulating cross-attention (and self-attention) in some way.

7 Conclusion

The analysis performed in this work indicates that ControlNet is able to interpret region
descriptions when mask shapes are un-ambiguous. However, when faced with similarly
shaped masks, it no longer has sufficient information to correctly interpret the prompt. In
such cases, additional input from the user can be used to specify which objects should be
generated where. However, ControlNet is not able to process such inputs. As we demon-
strate, this can be solved by integrating cross-attention control. We found, however, that
some design choices are crucial in more ambiguous conditions, such as when generat-
ing multiple different objects of similar shape and color. To cover these cases better, it
is important to prevent cross-attention from attending to tokens from irrelevant region
descriptions throughout the entire generation process. Taking these considerations into
account, we develop a novel cross-attention control method that shows superior genera-
tion results in our qualitative and quantitative analysis. For the latter we created a small
but challenging data set, which can serve as a testbed for future work.

An interesting avenue for future work would be looking into hierarchical regions
with localized descriptions that specify the objects as well as their parts (e.g. specifying
where a tiger should be drawn and where its eye). It is not clear how well the current
attention control methods support overlapping regions. In addition, the segmentation-
based ControlNet we used for most of our study does not support overlapping regions
and tries to strictly follow the region outlines.
Acknowledgments. We would like to thank all the anonymous reviewers for their feedback,
which helped improve this work. This work was funded by the Ministry of Culture and Science
of Northrhine-Westphalia as part of the Lamarr Fellow Network.
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