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Abstract. Knowledge Graph Completion (KGC) aims to predict miss-
ing triples in a graph based on known relationships between entities.
However, most KGC methods face the challenge of diversification repre-
sentations among entities, making it difficult for models to link entities ef-
fectively. This article proposes a Joint Knowledge (Structure-Semantics)
Diffusion Model (JKDM) to capture entity diversification relationships.
By leveraging the probabilistic generative capabilities of diffusion models,
JKDM generates diversification outputs that align with the distribution
of target entities rather than producing a single deterministic result. Con-
sidering the insufficient structural information of sparse entities, which
leads to their representations tending toward a smooth distribution, mak-
ing it difficult for diffusion models to learn their probability distributions,
we jointly enhance sparse entity representations using structural and se-
mantic information. Structurally, a Dual-channel Graph Attention Net-
work (DGAT) is introduced to capture structural embeddings of entities
from different perspectives. Semantically, a contextual path strategy is
applied to pre-trained language models (PLMs) to enrich entity seman-
tics. Under the condition of joint embeddings, JKDM gradually denoises
to generate the probability distribution of target entities. Experiments
demonstrate that JKDM outperforms SOTA methods on the FB15k-237,
WN18RR, and UMLS datasets, achieving improvements of 2.3%, 1.5%,
and 0.43% in MRR scores, respectively.

Keywords: Diffusion Models · Knowledge Graph Completion · Atten-
tion Networks · Link Prediction.

1 Introduction

Knowledge Graphs (KG) store real-world facts in triples, represented as (h, r, t).
Although KGs play a crucial role in numerous applications, such as KG-enhanced
LLMs and recommendation systems, they still face the issue of incomplete-
ness. Knowledge Graph Embedding (KGE) is an effective approach for infer-
ring missing triples, such as TransE [1], which map entities and relations into
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low-dimensional vector spaces and use scoring functions to calculate the plausi-
bility of predicted triples. However, these methods struggle to handle the diverse
representations among entities. To address this issue, most KGC methods focus
on encoding tasks or aggregating more information structurally to enhance the
diverse features of entities. For example, CompGCN [2] aggregate neighborhood
information of entities to obtain diverse information. Alternatively, they aim
to semantically understand the meaning behind entity texts, uncovering more
hidden knowledge connections. For instance, KG-BERT [3] leverage PLMs to
capture the contextual features of entities. However, in decoding tasks, using
only KGE for deterministic result computation still struggles to handle the issue
of diverse representations among entities. Diffusion models (DM), by combin-
ing randomness and multimodal modeling capabilities, can generate uncertain
results, enabling them to produce multiple plausible outcomes from the same
input. However, when faced with sparse distribution data, DM often struggles
to generate ideal results due to insufficient precision in the denoising process. In
KG, sparse entities tend to have sparse distributions due to insufficient structural
information, making it difficult for diffusion models to learn their probability dis-
tributions, affecting the generated results.

Fig. 1. The left side illustrates that the "Create" relationship carries multiple potential
associations. The right side demonstrates the different contextual paths in which the
triple exists. On the FB15k-237, WN18RR, and UMLS datasets, the results based on
the RotatE [4] model for entities with different in-degrees and MRR reveal that sparse
entities perform poorly in knowledge reasoning tasks.

Despite significant progress in KGC, limitations still exist. Challenge 1:
Sparse entities in knowledge graphs suffer from insufficient structural informa-
tion. We investigated several widely recognized KGs to explore the relationship
between entity frequency and link prediction, as shown in Fig. 1. It was observed
that there is a correlation between model performance and entity sparsity. To
address sparsity, previous methods often introduce textual features for enhance-
ment but lack a deep understanding of triple context. Some approaches map
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neighboring entities to different representation spaces to enrich structural embed-
dings, yet the neighborhood information of sparse entities remains unchanged,
and the structural features provided are still limited.Challenge 2: The issue of
diverse representations among entities. Due to relationships often encompassing
different semantic levels, entity pairs can exhibit one-to-many, many-to-one, and
other associations. For example, as shown in Fig. 1, the relationship "Create"
carries multiple potential associations. Existing methods primarily rely on KGE
models for deterministic entity prediction, which can only capture specific seman-
tics of relationships but lack the ability to handle diverse relationships between
entities.

We propose the Joint Knowledge Diffusion Model (JKDM) to address these
issues. The diverse representations among entities lead to relationships in KGs
that may be nonlinear and complex. As a probabilistic generative model, DM
enables the generation of complex distributions. Therefore, we designed a Knowl-
edge Diffusion Generation (KDG) module using DM for multi-relational semantic
reasoning, gradually adding noise and learning the reverse process to generate
complex probability distributions. However, sparse entities lack sufficient neigh-
borhood information, causing their representations to tend toward sparse distri-
butions, making it difficult for DM to learn their probability distributions. While
densification techniques can supplement sparse structures, the introduced dense
relationships may affect the original relational features. Therefore, we designed a
Dual-channel Graph Attention Network (DGAT) module consisting of two inde-
pendent GAT networks: RGAT and EGAT. RGAT operates on the non-densified
graph, focusing on neighborhood relation aggregation and capturing interaction
patterns between entities and specific relations. EGAT emphasizes aggregating
neighboring entities in the densified graph, computing the intrinsic interactions
between the central entity and its original neighboring entities and similar en-
tities. Additionally, we designed a Contextual Path Enhancement for Seman-
tics (CPES) module to uncover hidden connections behind knowledge. This
module formulates questions about the target entity using question-answering
templates and answers them using the reasoning paths of the target entity,
thereby enriching the semantics of the target entity through contextual paths.
For example, as shown in Fig. 1, the triple (V anGogh,Create, Sunflower)
is transformed into (What did V anGogh create? Sunflower), and the se-
mantic representation of the entity "Sunflower" is enriched through the path
(V anGogh, Friend, JosephRoulin,Admire, Sunflower). The main contributions
are as follows:

• We propose a Joint Knowledge Diffusion Model (JKDM). The DGAT and
CPES modules enhance the representations of sparse entities from structural
and semantic perspectives, while the KDG module leverages structural and
semantic features to diffusively generate representations of predicted entities.

• To address the issue of incomplete structural information, DGAT enhances
the structural information of sparse entities by leveraging Dense Graph infor-
mation in a dual-channel GAT manner. CPES employs a question-answering
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template format and trains PLMs using a contextual path strategy to en-
hance entity semantics.

• To address the issue of diverse representations among entities, the Knowledge
Diffusion Generation (KDG) module is designed. By leveraging diffusion
models to gradually add noise and learn the reverse process, it enables the
generation of complex probability distributions.

• The model JKDM is evaluated on three datasets. The experimental results
demonstrate that JKDM achieves superior performance.

2 Related Work

2.1 Knowledge Completion

Structure-based methods: Early research applied CNNs to KGC, such as
ConvE [5]. These methods focus on individual triples, overlooking the topolog-
ical structure. Therefore, GNN-based KGC methods, such as CompGCN, have
been proposed, which jointly embed entities and relations into the knowledge
graph using composition operators. SACN [6] designs a weighted GCN by as-
signing different weights to different relation types.
Semantics-based methods: The sparsity of knowledge graphs makes it diffi-
cult for models to learn high-quality entity embeddings. Therefore, researchers
have begun to introduce textual information to enhance entity embeddings.
AATE [7] encodes text and combines it with topological structures to enhance
entity embeddings, but this method lacks the utilization of contextual represen-
tations of triples. In contrast, KG-BERT treats triple text sequences as input to
PLMs to obtain contextual semantic representations of entities.
Structure-Semantics-based methods: The model leverages structural and
semantic information to enhance entity features. For instance, GS-InGAT [8]
considers neighbourhood interactions and global semantics, while SEA-KGC [9]
uses PLMs to learn unified representations from entity structures and text. How-
ever, existing methods lack deep contextual understanding and fail to address
incomplete structural information for sparse entities. These methods rely on de-
terministic entity prediction, capturing only specific relationship semantics and
struggling with diverse entity relationships. This article’s JKDM enhances sparse
entity neighbourhoods with densified graphs and enriches semantics via contex-
tual paths. It also introduces diffusion models to generate complex probability
distributions by adding noise and learning the reverse process.

2.2 Diffusion Model

The diffusion process of diffusion models is implemented through two Markov
chains: the forward noising process gradually corrupts samples into Gaussian
noise, while the reverse denoising process progressively restores the data. In the
past, diffusion models have been primarily applied in computer vision, such as
visual generation, multimodal generation, and image restoration.
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In recent years, researchers have begun to introduce diffusion models for
knowledge graph tasks. For example, FDM [10] utilizes diffusion models to di-
rectly learn the distribution of credible facts from known knowledge graphs.
KGDM [11] transforms entity prediction tasks into conditional fact generation
tasks using diffusion models. However, the methods above overlook the knowl-
edge graph’s topological structure and semantic information, insufficiently rep-
resenting entity features. Therefore, we propose the Joint Knowledge Diffusion
Model (JKDM), which enhances entity representations by combining structural
and semantic features of the knowledge graph. Using the designed Joint Embed-
ding Condition Denoising (JECD) module, JKDM learns the reverse diffusion
process under the joint embedding conditions of entities and relations.

Fig. 2. Step 1: The CPES module aims to obtain contextual semantic; Step 2: The
DGAT module aims to obtain structural; Step 3: The KDM module implements diffu-
sion generation through a forward noising process and a reverse denoising process.

3 Methodology

We treat the KG as a set of triples G =
{(

ei, ru, ej
)}

, where ei and ej denote
the head and tail entities, and ru represents the relation. The architecture of the
JKDM model is shown in Fig. 2. JKDM mainly consists of three modules:

3.1 Graph Densification

Dense Graph(DG): The sparsity of knowledge graphs leads to missing struc-
tural information. Malaviya et al. [12] introduced graph densification techniques
to address this issue. The graph densification process is achieved solely through
semantic similarity between entity texts, neglecting the contextual information
of entities. Liu X et al. [13] indicate that extracting entity semantic embeddings
without context or solely from the [CLS] token is suboptimal. Inspired by this,
We calculate contextual semantic similarity to densify sparse entities. For exam-
ple, the context of the head entity ei in the triple

(
ei, ru, ej

)
is defined as the set
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of triples containing ei, i.e.Cei = {(ei, ru, ej)|(ei, ru, ej) ∈ G ∪ (ej , ru, ei) ∈ G}.
To obtain the semantics of ei in the context of Cei , ei is replaced with [S]ei[/S],
and markers are added at both ends of ei to capture its textual semantic embed-
dings. Using Bert, all marker pairs [S]ei[/S] captured from the context of the
target entity are aggregated through average pooling to obtain the full semantics
of ei in Cei .

Fig. 3. A.(a) EGAT performs attention-based weighted aggregation of the DG from
the entity perspective. (b) RGAT performs weighted aggregation on the KG from the
entity-relation perspective. B.The CPES module encodes TQA and TPath using the
QA_Encoder and Path_Encoder, respectively.

3.2 Context Path Enhance Semantics

Inspired by Pan Y et al. [14], we designed the CPES module to fine-tune PLMs
using contextual paths for semantic enhancement. CPES employs a dual-encoder
structure combining QA_Encoder and Path_Encoder. It formulates questions
and answers in the form of questions-answers templates (QA) for the predicted
entities, transforming the triple into question and answer sequences, denoted as
TQA and TPath, respectively, as shown in Fig. 3(B).

QA_Encoder: Converts
(
ei, ru, ej

)
into a question sequence TQA. For ex-

ample, (V anGogh,Create, StarryNight) is transformed into (What did V anGogh
Create ?). Then, the target entity (StarryNight) is masked, and the question
and mask are concatenated to form the question sequence (What did V anGogh
Create? [MASK]). The formula is as follows:

TQA = Qr(e
i)⊕ [MASK]ej (1)

where ⊕ denotes the concatenation operation, Qr(e
i) denotes the transformation

of triple into a question sequence, and [MASK]ej masks the target entity.
Path_Encoder: Converts the set of contextual paths from entity ei to

entity ej into an answer sequence TPath. The set of contextual paths is searched
using the Breadth-First Search (BFS) algorithm. However, the sparsity of the
knowledge graph may make it difficult to find contextual paths within k hops
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for certain target triples. Therefore, this article conducts path searches on the
DG. The formula for TPath is as follows:

TPath = (ei, ru, ej)⊕ Pei→ej , he = Pool
([
he,1, ..., he,m

])
(2)

where Pei→ej denote the paths from entity ei to entity ej . To obtain the rep-
resentation of the answer entity ej in different paths, visual marker pairs [S][\S]
are added to the answer entity in the path set. For example, (ei, r1, ..., ej) is
marked as (ei, r1, ..., [S]ej [\S]). The semantic representations of entity ej in dif-
ferent contextual paths, denoted as he,1, . . . , he,m, are aggregated using average
pooling Pool to obtain the comprehensive contextual path semantics of entity.

CPES utilizes PLM to encode the TQA sequence and TPath sequence sep-
arately. In a question-answering format, the masked semantics in TQA are se-
mantically aligned with the comprehensive contextual path semantics in TPath

for fine-tuning the PLM. The main idea is to leverage the intrinsic connection
between questions and answers to enhance the semantic understanding capa-
bility of the PLM. A semantic alignment loss Laligned is designed in CPES for
contrastive learning between positive and negative samples. It calculates the dis-
tance between the embedding of [MASK]ej and the contextual path embeddings
in TPath, as well as the distance to negative sample embeddings as follows.

Laligned = max
(
0, d(h[MASK]e , he

)
− d(h[MASK]e , he) + η) (3)

where d calculates the distance between the positive and negative samples and
the masked embedding. h[MASK]e represents the masked embedding in TQA, he

denotes the comprehensive contextual path semantics, he represents the com-
prehensive contextual path semantics of negative samples, and η is the hyper-
parameter for the margin loss. After training, the entity text (e, r) is input into
the trained CPES module, and the hidden state of the [CLS] token is used as
the node semantic embedding, denoted as hS

e = ([cls]|e),hS
r = ([cls]|r).

3.3 Dual-Channel GAT Module

DGAT consists of two independent GAT Networks: the RGAT Network and the
EGAT Network. In the form of a dual-channel GAT, it captures entity structural
features in different feature spaces and employs a gating network for feature
fusion. The overall architecture of this part is shown in Fig. 3(A). The formula
is as follows:

hG
ei =

(
gate ∗ LR

(
Wfuse

(
h
(R)
ei , h

(E)
ei

))
+ (1− gate)h

(R)
ei

)
+ h

(R)
ei (4)

gate = Sigmoid
(
Wgate

(
h
(R)
ei , h

(E)
ei

))
(5)

where hG
ei represents the entity structural embedding, h(R)

ei denotes the entity
embedding of the RGAT layer, h(E)

ei denotes the entity embedding of the EGAT
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layer, and gate represents the gating vector. LR represents the LeakyReLU ac-
tivation function. WgateϵR2×d,WfuseϵR2×drespectively represent the weight ma-
trices of the gating vector generator and the feature fusion module.

RGAT channel: The edges in KG are relationships with specific semantics.
During the message-passing process, RGAT updates the features of the central
entity by considering the features of neighboring entities and the specific rela-
tionship features. The formula is as follows:

h
(R)(l)
ei = δ

 ∑
(u,j)∈Ni

αiujf(hej , hru) +W lh
(R)(l−1)
ei

 (6)

where δ denotes the Tanh activation function, αiuj denotes the relational at-
tention weight of the triple. f

(
h
(R)(l−1)
ej , h

(R)(l−1)
ru

)
denotes the local topological

context aggregation message of the triple, specifically denoting the fusion oper-
ation between h

(R)(l−1)
ej , h

(R)(l−1)
ru , such as hej − hru . αiuj is used to distinguish

the importance of different triples in the neighborhood. αiuj defined as:

αiuj = Softmax
(
W

(l)
1

(
δ
(
W

(l)
2

(
h
(l−1)
ei , h

(l−1)
ru , h

(l−1)
ej

))))
(7)

where δ represents the LeakyReLU activation function, W (l)
1 ϵR1×d and W

(l)
2 ϵR3×d

are learnable parameters in RGAT. h(R)(l−1)
ei , h

(R)(l−1)
ru and h

(R)(l−1)
ej denote the

embedding of the head entity, relation, and tail entity at the l-1-th layer. Then,
the attention score are normalized using Softmax. The relation representation is
also transformed as follows:

hG
ru = h

(l)(R)
ru = W

(l)
rela · h

(l−1)(R)
ru (8)

where hG
ru represents the structural embedding of the relation, and W

(l)
rela ∈ R1×d

is the trainable weight matrix for the relation embedding at layer l.
EGAT channel: The EGA module operates on the DG, capturing the in-

trinsic interactions between the central node and its neighboring nodes, as well
as similar nodes, without considering the relational features within the neigh-
borhood. Specifically, it aggregates the dense neighborhood information of the
central entity in the DG to enhance the structural features of sparse entities.
The formula is as follows:

h
(E)(l)
ei = δ1

 ∑
ej∈Ni

αij · h(E)(l−1)
ej +W lh

(E)(l−1)
ei

 (9)

αij = Softmax
(
W

(l)
1

(
δ2

(
W

(l)
2

(
h
(l−1)
ei , h

(l−1)
ej

))))
(10)

where δ1 represents the Tanh activation function, δ2 represents the LeakyReLU
activation function, αij denotes the relational attention weight of the triple to
distinguish their importance.
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3.4 Knowledge Diffusion Generation

The diffusion model consists of the noise-adding process and the conditional
denoising process, as shown in Fig. 2. Specifically, the noise-adding process dis-
rupts the vector distribution of the target entity by adding noise. In contrast,
the denoising process learns the reverse denoising process step by step, enabling
it to understand the underlying distribution of the target entity.

Noise-adding process: The entity and relation features are defined as Xe =
Cat(hG

e , h
S
e ),Xr = Cat(hG

r , h
S
r ), whereXh, Xt, and Xr represent the head entity,

tail entity, and relation, respectively. The noise-adding process gradually adds
Gaussian noise to the tail entity Xt until the time step Tp = T , at which point Xt

is corrupted by Gaussian noise and mapped to a pure noise embedding, denoted
as X

Tp

t . The formula is as follows:

q
(
X

Tp

t |XTp−1
t

)
= N

(
X

Tp

t ;
√

1− βTpX
Tp−1
t , βTpI

)
(11)

where Tp is the total number of time steps in the diffusion process, and βTp

represents the variance in the diffusion process. After reparameterization, the
output Xk

t at any time step Tp = k takes the form:

Xk
t =

√
ᾱkX0

t +
√
1− ᾱkεk (12)

where αk = 1−βk, ᾱk =
∏k

z=1 α
z, and εk represents as Gaussian noise,εk∼N (0, I).

Conditional denoising process: Conditioned on the known head entity
embedding Xh, relation embedding Xr, and the time step Tp, it gradually de-
noises the pure noise embedding X

Tp

t generated by the noise-adding process.
Finally, the predicted entity Xpre

t is generated in the vector space. The formula
is as follows:

pθ

(
X

Tp−1
t | XTp

t , Tp, Xh, Xr

)
= N

(
X

Tp

t ;µθ

(
X

Tp

t , Tp, Xh, Xr

)
, σ2

Tp
I
)

(13)

where σ2
Tp

is the constant variance, µθ represented as the computed mean of the
normal distribution, θ represented as the reverse conditional denoising process
parameters.

µθ

(
X

Tp

t , Tp, Xh, Xr

)
=

1√
αTp

Xt −
1− αTp

√
αTp

√
1− αTp

εθ

(
X

Tp

t , Tp, Xh, Xr

)
(14)

where βTp is the variance of the forward process, βTp = 1−αTp , αTp =
∏Tp

s−1 α
s

is used to predict the additional noise εkpre at any time step Tp = k. It consists
of the Condition Generation Module (CGModule) and the Condition Denoising
Module (CDModule), as shown in the following formula:

εθ

(
X

Tp

t , Tp, Xh, Xr

)
= CDModule

(
X

Tp

t , Tp,CGModule(Xh, Xr)
)

(15)

CGModule: To ensure that the entities generated during the denoising pro-
cess align more closely with the actual knowledge graph, we employ Knowledge
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Graph Embedding (KGE) methods for deterministic conditional embedding gen-
eration (CGModule), such as TransE. This ensures that the generation process
adheres to the structural constraints of the knowledge graph. For instance, at
each step of the denoising process in the diffusion model, the embeddings of Xh

and Xr are used to compute gradients to adjust the generation direction.
CDModule: It aims to combine noise, conditional embeddings, and time

step embeddings to achieve the denoising process. To fully leverage conditional
embeddings for guidance, parameters α, β, γ are set for scaling and shifting op-
erations to adjust the vector distribution. Additionally, multi-head attention
mechanisms and PoinConv extract and process features at different levels, help-
ing the model better understand and utilize conditional embedding information.
Finally, residual connections enhance the model’s stability and performance.

3.5 Training and Reasoning

Supervised contrastive learning [15] aims to bring the generated embeddings of
the same entity closer together and push the generated embeddings of different
entities farther apart. At the same time, entity category labels guide the model
in learning more discriminative feature representations. The loss is calculated as
follows:

LCL =
∑
t∈T

−1

|Tt|
∑

Xpro
t ϵTt

log
exp(Xpre

t ·Xt/τ)∑
k∈Tt

exp(Xpre
k ·Xt/τ)

(16)

where T represents the entity embeddings, Tt is the set of entity t, and t is a
learnable parameter that controls the balance between uniformity and tolerance.
Xpre

t represents the generated entity embedding from the reverse conditional de-
noising process and scores all candidate entities using the dot product. The
cross-entropy loss is as follows:

LCE = − 1

|T |
∑

(h,r)∈T

∑
t∈E

yt(h,r) · log ŷ
t
(h,r) (17)

where T represents the training triples in the batch, E denotes all entities present
in the KG, yt(h,r) represents the true label, ŷt(h,r) represents the plausibility score
between the generated entity and the candidate entity set, and XeϵR2×d×|E|

represents the joint embedding representation of all entities. The final loss is
optimized by combining the contrastive and cross-entropy losses.

We jointly optimize the two loss objectives L = LCE + LCL, computing the
similarity of diffusion-generated embeddings for the same entity and calculat-
ing the contrastive loss with embeddings of other entities. Simultaneously, we
compute the similarity scores with the candidate entity set and calculate the
cross-entropy loss. During the inference phase, the trained DGAT and CPES
perform coarse-grained aggregation of entities. Then, KDG iteratively denoises
random Gaussian noise conditioned on the entity feature (Xe, Xr) until Tp = T ,
generating the predicted entity Xpre

t in the vector space.
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4 Experiment

4.1 Experimental Setup

Dataset: We considered three widely recognized datasets to evaluate the JKDM.
FB15k-237 [16]: A subset of FB15k with inverse relations removed. WN18RR [17]:
A subgroup of WN18, primarily featuring symmetric/antisymmetric and compo-
sitional relation patterns. UMLS [18]: A collection of medical vocabularies and
standards. For detailed statistical data, please refer to Appendix A.1.
Evaluation metrics: The JKDM is evaluated using link prediction task met-
rics, including Mean Reciprocal Rank (MRR) and Hits@N. MRR represents the
average reciprocal rank of the correct predicted entity from the candidate entity
set, while Hits@k indicates the proportion of correctly predicted entities within
the top k ranks. This work sets k to (1, 3, 10).
Baselines: We evaluate JKDM against the latest knowledge completion models:
GS-InGAT [8], SEA-KGC [9], FDM [10], KGDM [11], TDS [19], KRACL [20],
DRR-GAT [21], MGTCA [22], LCA-KGC [23], SimKGC [24], CSProm-KG [25],
FTL-LM [26], C-LMKE [27], BMKGC [28], HONARL [29], PEMLM-F [30],
Relphormer [31].
Experimental details: The model was trained using a single A40 GPU, with
some hyperparameters set as follows: the time step was set to 40, and the dimen-
sion was set to 400. The url is https://github.com/Irreproachability/JKDM.

Table 1. The experimental results on FB15k-237, WN18RR, and UMLS are as follows.
The best results are highlighted in bold, the second-best results are underlined, and
"-" indicates no result.

Model FB15K-237 WN18RR UMLS
MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

TDN .358 .561 .403 .273 .499 .579 .523 .455 .938 .997 .983 .891
KRACL .360 .548 .395 .266 .527 .613 .547 .482 - - - -

DRR-GAT .361 .549 .415 .268 .468 .579 .508 .421 - 1.00 - -
MGTCA .393 .583 .428 .291 .511 .593 .525 .475 - - - -

LCA-KGC .372 .554 .407 .276 .492 .585 .510 .456 - - - -
SimKGC .336 .511 .362 .249 .666 .800 .717 .587 - - - -

CSProm-KG .358 .538 .393 .269 .575 .678 .596 .522 - - - -
C-LMKE .306 .484 .331 .218 .619 .789 .671 .523 - - - -
CP-KGC .329 .503 .353 .243 .648 .773 .683 .580 .780 .951 .857 .678
BMKGC .332 .514 .365 . 247 .669 .807 .720 .590 - - - -

SEA-KGC .367 .553 .401 .275 .653 .795 .696 .577 - - - -
GS-InGAT .382 .567 .416 .283 .546 .625 .556 .491 - - - -
HONARL .367 .568 .406 .287 .513 .611 .541 .473 .907 .990 .951 .856
PEMLM-F .355 .538 .389 .264 .556 .648 .573 .509 - .997 - -
Relphormer .371 .481 - .314 .401 .591 - .448 - .992 - -

FDM .485 .681 .529 .386 .506 .592 .518 .456 .922 .970 .944 .893
KGDM .520 .708 .566 .423 .516 .593 .519 .457 .909 .973 .937 .872

Our (JKDM) .532 .786 .639 .367 .679 .892 .770 .557 .942 .984 .967 .913
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4.2 Performance Comparison

To demonstrate the effectiveness of JKDM, experiments were conducted on the
WN18RR, FB15k-237, and UMLS datasets, and the performance was compared
with existing models, as shown in Table 1.

Based on observations, JKDM outperforms other baseline models across the
three datasets on most metrics. Specifically, on the FB15k-237, WN18RR, and
UMLS datasets, the MRR scores improved by 1.2% (a 2.3% improvement relative
to KGDM), 1% (a 1.5% improvement relative to BMKGC), and 0.4% (a 0.43%
improvement relative to TDN), respectively, compared to the SOTA models.

Additionally, it is observed that JKDM significantly improves the perfor-
mance on the Hits@10 and Hits@3 metrics, while the improvement on the Hits@1
metric is less pronounced. We analyze that JKDM, by leveraging structural and
semantic enhancements to entity embeddings, captures more patterns and fea-
tures of entities during the diffusion process. This enhanced generalization capa-
bility contributes to improved performance on Hits@3 and Hits@10. However, as
the number of diffusion steps increases, noise may be introduced, or important
information may be lost. This means that even if the initial embeddings contain
rich information, this information may become blurred after multiple diffusion
steps, affecting the final ranking accuracy (Hits@1).

Table 2. Ablation results on FB15k-237 and WN18RR. The best results are highlighted
in bold, the second-best results are underlined.

Model FB15K-237 WN18RR
MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

JKDM w/o K .298 .478 .327 .210 .457 .535 .470 .418
JKDM w/o D .506 .764 .618 .352 .601 .824 .680 .481
JKDM w/o C .497 .753 .616 .338 .628 .818 .699 .524

JKDM w/o C, D .462 .687 .558 .325 .530 .706 .587 .438
JKDM w/o RGAT .512 .793 .651 .346 .648 .868 .739 .525
JKDM w/o EGAT .510 .770 .626 .357 .657 .880 .756 .547
JKDM w/o DG .519 .779 .631 .361 .662 .882 .762 .549
JKDM w/o PE .516 .780 .634 .358 .651 .860 .736 .537

JKDM .532 .786 .639 .367 .679 .892 .770 .557

4.3 Ablation Experiment

Table 2 presents the ablation results of modules. "w/o C" and "w/o D" indi-
cate the removal of the CPES and DGAT modules, respectively. It is observed
that the MRR scores of "w/o C" and "w/o D" decreased by (4.9%, 6.8%) and
(3.3%,10.8%), respectively. This demonstrates that the CPES and DGAT mod-
ules enhance entity features and improve model performance. By observing the
decline ratios, it is noted that on the WN18RR dataset, the MRR metric of
"w/o D" shows a more significant relative decline. In contrast, on the FB15k-237
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dataset, the MRR metric of "w/o C" shows a more significant relative decline.
We analyze that the WN18RR dataset is sparser (as shown in Table 1), mak-
ing the structural feature enhancement by DGAT more significant for WN18RR.
Therefore, the performance decline is more pronounced when the DGAT module
is removed. We also removed CPES and DGAT ("w/o C, D"). It is observed that
all metrics show a significant decline, with the MRR scores decreasing by 11.7%
and 21.4%, respectively. This proves that combining structural and semantic
features can effectively enhance entity embeddings. We conducted a case study
to validate the effectiveness of the multi-model JKDM incorporating DGAT and
CPES. For a detailed introduction, please refer to Appendix A.2.

Next, by removing the Knowledge Diffusion Generation (KDG) module ("w/o
K"), it is observed that the MRR scores decrease by 43.0% and 32.2%, respec-
tively. This indicates that using only KGE cannot effectively address the issue
of diverse representations among entities. It demonstrates that diffusion models
can effectively handle diverse entity representations and generate the distribu-
tion of target entities. Additionally, we conducted further ablation analysis. For
details, please refer to Section 4.4.

4.4 Further analysis of ablation experiment

Explore the effectiveness of DGAT module: "w/o RGAT" indicates the
removal of the RGAT channel. In FB15k-237, the metrics H@10 and H@3 in-
crease while H@1 decreases. We analyze that since FB15k-237 is denser than
WN18RR and contains more relational information, removing RGAT weakens
the model’s ability to capture fine-grained relational features, leading to a de-
cline in the accuracy of precise matching. "w/o EGAT" indicates the removal
of the EGAT channel, and all metrics show a decline. After removing EGAT,
we analyze that sparse entities lack densified neighborhoods, resulting in lower
utilization of neighborhood information and insufficient intrinsic interaction in-
formation between entities. To validate this point, we conducted a densification
ablation experiment ("w/o DG"), and the results show a decline in all metrics.
This result proves that densified graph structures can effectively supplement the
structural information of sparse entities, enhancing the model’s ability to utilize
neighborhood information and thereby improving overall performance.

Additionally, to avoid performance improvements solely due to the stacking
of RGAT and EGAT layers, we conducted hyperparameter experiments on the
number of GAT layers, as shown in Fig. 4. The experiments demonstrate that,
with the same number of layers, the model using DGAT consistently outperforms
the "w/o EGAT" and "w/o RGAT" models. This result validates the effective-
ness of DGAT in better capturing complex relationships in knowledge graphs.
DGAT not only enhances the ability to model relationships but also supplements
the neighborhood information of sparse entities.
Explore the effectiveness of CPES module: "w/o PE" indicates replacing
entity contextual enhancement semantics with entity text semantics. The results
show a decline in all metrics, proving the effectiveness of contextual paths in
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enhancing entity semantics. Specifically, contextual paths contain structured re-
lational information between entities, which helps the model better understand
the semantics and associations of entities. In contrast, entity text semantics
typically only include surface-level descriptions of entities and lack relational
information between entities, resulting in weaker performance when modeling
complex relationships. We conducted experiments on different PLM. For a de-
tailed introduction, please refer to Appendix A.3.
Explore the impact of diffusion parameters on KDG: experiments were
conducted on different time step parameters and the number of CDModules. In
Fig. 4(3), we tested the performance under different time step parameters and
observed that the model performs best when the time step parameter T=40.
Increasing the time step may cause the model to overly rely on specific condi-
tional feature details, reducing its robustness. In Fig. 4(4), we tested different
numbers of CDModules and found that the performance is optimal when the
number of layers is 3. Deeper networks may lead to overfitting, resulting in a
decline in performance. We conducted experiments on different CGModules. For
a detailed introduction, please refer to Appendix A.4.

Fig. 4. (1) and (2) illustrate the performance comparison of different numbers of GAT
layers in the channels of the DGAT. (3) and (4) represent the hyperparameter experi-
ments conducted with varying time steps and numbers of CDModules.

4.5 Performance Evaluation By Relation Type

Next, we analyze the performance of JKDM in FB15k-237 by relation categories
(Wang et al. 2014) [32]. Table 3 shows the MRR for different categories, and the
results indicate that JKDM significantly improves performance when predicting
N-1 tail entities and 1-N head entities. The experimental results suggest that
the JKDM exhibits stronger robustness and generalization capabilities when
handling complex relations, with its performance advantages being particularly
pronounced when dealing with sparse entities. We conducted a case study to
further demonstrate the JKDM’s diverse generative capabilities. For a detailed
introduction, please refer to Appendix A.5.
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Table 3. MRR scores by relation type in FB15k-237, with the best results are high-
lighted in bold, the second-best results are underlined, and "-" indicates no result.

Model Tail Pred Head Pred
1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

TransE .476 .536 .060 .287 .484 .080 .329 .219
DisMult .257 .575 .032 .184 .255 .038 .322 .131
ConvE .366 .762 .069 .375 .374 .091 .444 .261

CompGCN .453 .779 .076 .395 .457 .112 .471 .275
JKDM .522 .782 .424 .525 .523 .263 .623 .528

4.6 Knowledge Sparsity Research

To further validate JKDM’s sensitivity to sparse knowledge graphs, we ran-
domly removed triples from the FB15k-237 training set at varying proportions
(while maintaining the connectivity of the KG) and compared our experiments
with TransE, RotatE, and w/o C, D, as shown in Fig. 5. As the entity de-
gree increases, the performance of all models improves, with JKDM consistently
outperforming the baseline models. This result demonstrates that the JKDM ex-
hibits remarkable robustness when handling sparse entities, effectively addressing
the challenges posed by incomplete information in the KG.

Fig. 5. Performance comparison between JKDM on sparse knowledge graphs and base-
line models on the FB15k-237 dataset.

5 Conclusion

In this article, we propose the Joint Knowledge Diffusion Model (JKDM), which
leverages diffusion models to capture diverse relationships between entities and
generate the probability distribution of target entities. Additionally, we introduce
a dual-channel GAT and a contextual path strategy to enhance the features of
sparse entities, improving the generative capability of diffusion models for such
entities. However, PLMs have limited understanding of entity contextual logic,
while LLMs often increase the model’s time cost. Therefore, in future work, we
will explore knowledge distillation from LLMs to enhance PLMs’ contextual logic
comprehension while maintaining their time efficiency.
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