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Abstract. Graph Representation Learning (GRL) is a fundamental task
in machine learning, aiming to encode high-dimensional graph-structured
data into low-dimensional vectors. Self-Supervised Learning (SSL) meth-
ods are widely used in GRL because they can avoid expensive human
annotation. In this work, we propose a novel Subgraph Gaussian Em-
bedding Contrast (SubGEC) method. Our approach introduces a sub-
graph Gaussian embedding module, which adaptively maps subgraphs
to a structured Gaussian space, ensuring the preservation of input sub-
graph characteristics while generating subgraphs with a controlled distri-
bution. We then employ optimal transport distances, more precisely the
Wasserstein and Gromov-Wasserstein distances, to effectively measure
the similarity between subgraphs, enhancing the robustness of the con-
trastive learning process. Extensive experiments across multiple bench-
marks demonstrate that SubGEC outperforms or presents competitive
performance against state-of-the-art approaches. Our findings provide
insights into the design of SSL methods for GRL, emphasizing the im-
portance of the distribution of the generated contrastive pairs.

Keywords: Subgraph Gaussian embeddings · graph representation learn-
ing · self-supervised learning · optimal transport

1 Introduction

Graph Representation Learning (GRL) is a fundamental task in machine learn-
ing and data mining, aiming to encode high-dimensional, sparse graph-structured
data into low-dimensional dense vectors [25]. Effective GRL techniques enable
downstream applications such as node classification, link prediction, and com-
munity detection. Self-Supervised Learning (SSL) has emerged as a promising
approach for GRL by reducing the dependence on extensive human annotation
[22]. Among SSL methods, contrastive learning has gained significant attention
due to its ability to learn meaningful representations by distinguishing similari-
ties and differences among data samples. In contrastive learning, positive sample
pairs typically consist of two augmented views of the same data point, which
should be mapped close in the representation space, whereas negative sample
pairs are formed by comparing different data points [5].

Existing graph-based contrastive learning methods primarily generate posi-
tive and negative pairs through structural perturbations [52,41,53] or learnable
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Fig. 1: t-stochastic neighbor embedding (t-SNE) visualizations of previous graph
representation learning methods based on contrastive learning: GCA [53], GSC
[17], and our method SubGEC. Each point corresponds to a node representation
with reduced dimensionality, with colors indicating classes. Unlike GCA and
GSC, which exhibit sharp boundaries, SubGEC maps node representations into
a dense, uniform, and linearly separable space.

transformations [54,17]. However, Figure 1 shows t-stochastic neighbor embed-
ding (t-SNE) visualizations of previous SSL methods, such as GCA [53] and GSC
[17], where we observe uneven node distributions, sharp boundaries, and erro-
neous clusters. These issues suggest that existing approaches struggle to maintain
smooth and meaningful representations, negatively impacting their performance
in GRL tasks.

In this paper, we propose the Subgraph Gaussian Embedding Contrast
(SubGEC) model, a novel framework for graph contrastive learning. Our method
introduces the Subgraph Gaussian Embedding (SGE) module, which maps in-
put subgraphs to a structured Gaussian space, ensuring that the output features
follow a Gaussian distribution using Kullback–Leibler (KL) divergence. This
learnable mapping effectively controls the distribution of embeddings, improv-
ing representation quality. The generated subgraphs are then paired with the
original subgraphs to form positive and negative contrastive pairs, and simi-
larity is measured using Optimal Transport (OT) distances. By leveraging the
Wasserstein and Gromov-Wasserstein distances, our approach enhances robust-
ness and mitigates mode collapse (also called positive collapse [24]), where the
embeddings shrink into a low-dimensional subspace, by controlling the embed-
ding distribution.

Gaussian distributions provide several properties that make them useful in
SSL for graphs. For example, they preserve important mathematical structures,
such as displacement interpolation, which helps in clustering and interpolation
tasks [51,13]. Gaussian smoothing also improves robustness by reducing noise
and stabilizing learned representations [13]. Additionally, their simple parame-
terization using means and covariances makes them computationally efficient,
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enabling scalability to high-dimensional spaces while avoiding excessive com-
putational costs [51,6]. These properties make Gaussian-based OT a valuable
tool in fields such as machine learning, physics, and statistical inference [10]. In
this work, we theoretically and empirically prove the benefits of using Gaussian
embeddings in contrastive learning.

The primary contributions of this paper are as follows:

– We introduce SubGEC, a novel framework that outperforms or remains com-
petitive with state-of-the-art methods across eight benchmark datasets.

– We theoretically and empirically highlight the importance of mapping the
distribution of contrastive pairs into a Gaussian space and analyze its impact
on GRL.

– We conduct extensive ablation and validation studies to demonstrate the
effectiveness of each component of SubGEC.

2 Related Work

GRL has gained significant attention due to its ability to encode structured
data into meaningful representations. Here, we review the recent advancements
in Graph Neural Networks (GNNs), SSL on graphs, and contrastive learning
techniques.

GNNs [49] have been widely adopted for learning representations that cap-
ture both node features and graph topology [25]. Several architectures have been
proposed to improve their learning capabilities. For example, Graph Convolu-
tional Networks (GCNs) [29] leverage a simplification of graph filters to aggregate
information from neighboring nodes. GraphSAGE [16] introduced an inductive
learning framework with multiple aggregation functions, enabling generalization
to unseen nodes. Furthermore, Graph Attention Networks (GAT) [47] integrate
attention mechanisms to dynamically weigh node relationships, improving fea-
ture propagation. However, these models require supervised training.

SSL on graphs aims to design and solve learning tasks that do not require
labeled data, avoiding costly supervised learning methodologies. Based on how
these tasks are defined, SSL methods can be categorized into two main types:
predictive and contrastive approaches.

Predictive methods focus on learning useful representations by generating
perturbed versions of the input graph. For example, BGRL [41] learns node
representations by encoding two perturbed versions of a graph using an online
encoder and a target encoder. The online encoder is optimized to predict the
target encoder’s representation, while the target encoder is updated as an expo-
nential moving average of the online encoder. BNLL [33] improves upon BGRL
by introducing additional positive node pairs based on a homophily assump-
tion, where neighboring nodes tend to share the same label. This is achieved by
incorporating cosine similarity between a node’s online representation and the
weighted target representations of its neighbors. VGAE [28] adopts a variational
autoencoder framework to reconstruct the input graph and its features.
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Contrastive methods, which are the focus of this paper, generally out-
perform predictive methods in SSL for graphs. These methods can be classi-
fied based on how data pairs are defined: node-to-node, graph-to-graph, and
node-to-graph comparisons. For example, GRACE [52] generates two perturbed
graph views and applies contrastive learning at the node level. MUSE [50] re-
fines this approach by extracting multiple embeddings—semantic, contextual,
and fused—to enhance node-to-node contrastive learning. However, node-level
contrastive learning is often suboptimal as it struggles to capture the overall
structural information of the graph.

At the subgraph level, DGI [46] employs node-to-graph contrast, where it
extracts node embeddings from the original and perturbed graphs and adjusts
their agreement levels using a readout function. Spectral polynomial filter meth-
ods like GPR-GNN [7] and ChebNetII [19] offer greater flexibility than GCNs by
adapting to different homophily levels. However, they often underperform when
used as encoders for traditional SSL methods. To address this, PolyGCL [4]
constrains polynomial filter expressiveness to construct high-pass and low-pass
graph views while using a simple linear combination strategy for optimization.
Unlike DGI, PolyGCL applies this contrastive approach to both high- and low-
frequency embeddings extracted with shared-weight polynomial filters.

Subg-Con [23] extends DGI by performing contrastive learning at the sub-
graph level. It selects anchor nodes and extracts subgraphs using the personalized
PageRank algorithm, adjusting the agreement between anchor nodes and their
corresponding subgraphs for positive and negative pairs. However, methods like
DGI and Subg-Con rely on a readout embedding to represent entire graphs,
which disregards structural information. GSC [17] addresses this limitation by
applying subgraph-level contrast using Wasserstein and Gromov-Wasserstein dis-
tances from OT to measure subgraph similarity, ensuring a more structurally-
aware contrastive learning process. From another point of view, FOSSIL [38]
fused Wasserstein and Gromov-Wasserstein distances [42,2] in the loss function
to benefit from both node and subgraph-level features.

SubGEC leverages OT distance metrics to effectively measure subgraph dis-
similarity as in [17]. However, unlike previous OT-based models such as GSC
[17], our approach introduces a novel mapping of subgraphs into a structured
Gaussian space. This design choice is driven by the properties of Gaussian embed-
dings, which enhance representation quality. Our work provides both theoretical
justification and empirical validation for the effectiveness of this approach.

3 Preliminaries

3.1 Mathematical Notation

Consider an undirected graph G = (V, E) with vertex set V and edge set E . The
feature matrix X = [x1, . . . ,xN ]⊤ ∈ RN×C contains node features xi ∈ RC ,
where N is the number of nodes and C is the feature dimension. The adjacency
matrix A ∈ RN×N represents the graph topology, and D is the diagonal degree
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matrix. For the i-th node, let Gi = (Vi, E i) be its induced Breadth-First Search
[3] (BFS) subgraph with ki nodes with adjacency matrix Ai ∈ Rki×ki

and
feature matrix Xi ∈ Rki×C . Our method embeds this subgraph (with the same
sets of nodes and edges) producing adjacency matrix Ãi and feature matrix
X̃i ∈ Rki×F . In this work, we preserve the subgraph topology, so that Ãi = Ai.

The KL divergence [44] is an asymmetry measure between two probability
distributions P and Q. It quantifies the informational loss that occurs when
distribution Q is utilized to approximate distribution P . The KL divergence is
defined as:

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
, (1)

where P (x) and Q(x) are the probability masses of P and Q at each point x in
the sample space X .

3.2 Problem Formulation for Self-Supervised Graph Representation

The goal of self-supervised graph representation learning is to learn graph embed-
dings R through an encoder ε : RN×N ×RN×C → RN×F , where R = ε(A,X;θ)
is parametrized by some learnable parameters θ and F represents the dimension
of the embeddings (representation). This procedure is unsupervised, i.e., it does
not use labels. In this paper, ε(·) is a GNN [25], aiming to effectively capture
both the graph’s feature and topology information within the representation
space.

3.3 Optimal Transport Distance

The Wasserstein distance [37], commonly used in OT, serves as a robust metric to
compare the probability distributions defined over metric spaces. For subgraphs
Gi and Gj , their corresponding feature matrices are denoted as Xi ∈ Rki×C and
Xj ∈ Rkj×C . xi

m ∈ RC and xj
n ∈ RC respectively denote the feature vector of

the m-th and n-th node in the subgraphs Gi and Gj , where m = 1, 2, . . . , ki and
n = 1, 2, . . . , kj . The r-Wasserstein distance between the feature distributions of
these subgraphs is defined as [30,48]:

Wr(X
i,Xj) :=

 min
T∈π(u,v)

ki∑
m=1

kj∑
n=1

T(m,n)d(x
i
m,xj

n)
r

 1
r

, (2)

where π(u, v) represents the set of all valid possible transport plans with proba-
bility distributions u and v responsible for generating xi

m and xj
n, respectively.

These distributions capture the node feature distributions in subgraphs Gi and
Gj . The matrix T ∈ π(u, v) is the OT plan that matches the node pairs of the
two subgraphs. T(m,n) is value of the transportation plan between nodes m and
n, and d(xi

m,xj
n) represents a valid distance metric.
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Fig. 2: Overview of the SubGEC method. Our model employs a graph encoder
to obtain graph embeddings. We randomly select a set of nodes and then extract
corresponding subgraphs using BFS sampling. Therefore, we use the proposed
subgraph Gaussian embedding module using a KL loss to generate contrastive
samples. Finally, we leverage OT distances for contrastive learning.

Similarly, the Gromov-Wasserstein distance [1,45] extends this idea to com-
pare graph-structured data, where internal distances between nodes are taken
into account. For two subgraphs Gi and Gj with adjacency matrices Ai and Aj ,
and feature matrices Xi and Xj , the Gromov-Wasserstein distance is defined as
[45]:

GWr(A
i,Aj ,Xi,Xj)

:=

 min
T∈π(u,v)

∑
m,m̃,n,ñ

T(m,n)T(m̃,ñ)

∣∣∣d(xi
m,xi

m̃)r − d(xj
n,x

j
ñ)

r
∣∣∣
 1

r

,
(3)

where d(xi
m,xi

m̃) and d(xj
n,x

j
ñ) represent valid distance metrics between node

pairs (m, m̃) in subgraph Gi, and (n, ñ) in subgraph Gj , respectively. Note that
the node neighborhoods are considered by the term T, thus relying on the graph
topology.

In this work, for both the Wasserstein and Gromov-Wasserstein distances,
we set r = 1 and define d(xi

m,xj
n) = exp

(
− ⟨xi

m,xj
n⟩

τ

)
, where ⟨·, ·⟩ denotes the

cosine similarity between node features, and τ is a temperature parameter.

4 Subgraph Gaussian Embedding Contrast (SubGEC)

Figure 2 shows an overview of our methodology, where our process begins with
an encoder of the input graph. Subsequently, we obtain subgraphs utilizing BFS
sampling. The embedded node representations within these subgraphs are thus
embedded into a Gaussian latent space, enforced by the KL divergence regu-
larization. Finally, we use the Wasserstein and Gromov-Wasserstein distances
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to measure the dissimilarities in the subgraphs for contrastive learning. Our
methodology is described in more detail in the following sections.

4.1 Graph Encoder

We begin by employing a graph encoder to preprocess the graph data [27,17]. The
output feature matrix of the graph encoder is the desired graph representation.
The graph encoder comprises some graph convolution layers. Further details on
the implementation of these layers are provided in the Appendix A.

4.2 Subgraph Gaussian Embedding (SGE)

Constructing positive and negative pairs is crucial in graph contrastive learning
[26]. The SGE module offers diversity to prevent mode collapse [24]. It also avoids
generated subgraphs from becoming overly similar to the input subgraphs [14].
The SGE module comprises a GraphSAGE [31,16] network and then two GAT
[47] models, representing the mean and variance for the KL loss. The first step
in SGE is as follows:

HGSA = GraphSAGE (Hconv,A) , (4)

where Hconv represents the output of the graph encoder. Following GraphSAGE,
GAT employs its attention mechanism to assign weights to the relationships be-
tween each node and its neighbors. The hidden means and variances are managed
by separate GAT networks and processed as follows:

µ = GATµ (HGSA,A) , logσ = GATσ (HGSA,A) . (5)

In this configuration, µ and logσ are matrices of mean and variance vectors µi

and σi for i = 1, . . . , N , respectively. In our approach, the embedded matrix X̃
is generated using the reparametrization trick [28] to facilitate the differentiation
and optimization of our model as follows:

X̃ = µ+ σ ⊙ ϵ, (6)

where ⊙ states the element-wise multiplication, and the matrix ϵ = [ϵ1, . . . , ϵN ]⊤,
where ϵi ∼ N (0, I) for i = 1, . . . , N , represents Gaussian (normal) noise.

4.3 Kullback-Leibler Gaussian Regularization Loss

In our approach, we introduce a regularization to the SGE module to guide the
embedded subgraph node features toward a Gaussian distribution. This regular-
ization is implemented using the KL divergence. The prior p(X̃) =

∏N
i=1 p(x̃i) is

taken as a product of independent normal distributions for each latent variable
x̃i, i.e., the embedded feature vector of the i-th node. Similarly, by benefiting
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from Gaussianity on the posterior distribution q(x̃i|X,A) = N (µi,diag(σ
2
i ))

[29], we express it on the whole data as:

q(X̃|X,A) =

N∏
i=1

q(x̃i|X,A) =

N∏
i=1

N (µi,diag(σ
2
i )), (7)

where diag(a) is a diagonal matrix with the elements of the vector a on its main
diagonal, and σ2

i obtains by element-wise power operation on the vector . The
expression for the regularization then simplifies to (details in the Appendix B):

LR = β KL
(
q(X̃|X,A)∥p(X̃)

)
. (8)

Here, β is a hyperparameter modulating the influence of the regularization term
relative to the contrastive loss, which we introduce in Section 4.4, enabling pre-
cise control over the balance between data fidelity and distribution alignment.

4.4 Optimal Transport Contrastive and Model Loss

In terms of the architectures available for the contrastive learning loss func-
tion, options include the Siamese network loss [18], the triplet loss [20], and
the noise contrastive estimation loss [15]. Given the presence of multiple sets
of negative pairs in our model, we opt for the InfoNCE loss [34]. Our con-
trastive loss function integrates the Wasserstein and Gromov-Wasserstein dis-
tances into the InfoNCE loss formulation [34], addressing the complexities of
graph-based data. The Wasserstein distance captures feature distribution rep-
resentation within subgraphs. Furthermore, the Gromov-Wasserstein distance
captures structural discrepancies, providing a topology-aware similarity mea-
sure. We define W(τ)(X

i, X̃i) := W (Xi, X̃i)/τ , and GW(τ)(A
i,Xi,Ai, X̃i) :=

GW (Ai,Xi,Ai, X̃i)/τ , where τ is a temperature hyperparameter. The Wasser-
stein (LW) and Gromov-Wasserstein (LGW) contrastive losses are given as fol-
lows:

LW = −
∑
i∈S

log
e−W(τ)(X

i,X̃i)∑N
j∈S,j ̸=i

(
e−W(τ)(Xi,X̃j) + e−W(τ)(Xi,Xj)

) ,
LGW = −

∑
i∈S

log
e−GW(τ)(A

i,Xi,Ai,X̃i)∑N
j∈S,j ̸=i

(
e−GW(τ)(Ai,Xi,Aj ,X̃j) + e−GW(τ)(Ai,Xi,Aj ,Xj)

) ,
(9)

where S is the set of sampled nodes. The model loss L incorporates the con-
trastive and regularization components as follows:

L = αLW + (1− α)LGW + LR, (10)

where α is a hyperparameter that balances the emphasis on feature distribution
and structural fidelity.
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4.5 Theoretical Analysis of the Loss Function

The following theorem illustrates the effect of adding the term KL(·) to the
overall loss function L in (10) with the input x and latent variable z.

Theorem 1. By increasing the number of subgraphs (and consequently their
associate node feature matrices), minimizing InfoNCE loss LW (·) in (9) and
also the KL divergence in (10), the SubGEC model implicitly minimizes:

EX∼p(X|X̃)

[
KL

(
qϕ(X̃|X,A)||p(X̃|X,A)

)]
. (11)

Proof. Firstly, the following theorem from [34] outlines the relationship between
minimizing the InfoNCE loss and maximizing mutual information between the
input x and latent variable z, i.e., I(x, z).

Proposition 1 (From [34]). The equivalence of maximizing the mutual infor-
mation between the input x and latent variable z and minimizing LInfoNCE(N)(x, z)
becomes tighter by increasing the number of input data N as:

I(x, z) ≥ log(N)− LInfoNCE(N)(x, z). (12)

Next, by minimizing KL (qϕ(z|x)||p(z)) leading to qϕ(z|x) ≈ p(z), one can write:

I(x, z) =
∫ ∫

p(x, z) log

(
p(x, z)

p(x)p(z)

)
dx dz =

∫ ∫ p(x|z)p(z)︷ ︸︸ ︷
p(x, z) log

(
p(z|x)
p(z)

)
dx dz

=

∫
p(x|z)

−KL(qϕ(z|x)||p(z|x))︷ ︸︸ ︷[∫
qϕ(z|x) log

(
p(z|x)
qϕ(z|x)

)
dz

]
dx = −Ex∼p(x|z) [KL (qϕ(z|x)||p(z|x))] .

(13)

where we have used the mathematical expectation formula Ex∼p(x) [f(x)] =∫
f(x)p(x)dx for the last equality. Therefore, by increasing the number of in-

puts, minimizing LInfoNCE(N)(x, z) and also KL divergence KL (qϕ(z|x)||p(z)),
the network implicitly minimizes Ex∼p(x|z) [KL (qϕ(z|x)||p(z|x))], which means
that the average distance over the samples from p(x|z) between the paramet-
ric probability distribution qϕ(z|x) and p(z|x) is minimized. Now, by replacing
LInfoNCE(N)(x, z), qϕ(z|x), p(z), p(z|x), and p(x|z) with LW , qϕ(X̃|X,A), p(X̃),
p(X̃|X,A), and p(X|X̃), respectively, the proof is completed.

SubGEC is driven by two key principles: (i) maximizing the mutual informa-
tion between the input and latent variables and (ii) designing a robust encoder
that generates latent embeddings closely aligned with the true latent distribu-
tion. Theorem 1 formally establishes that enforcing the joint minimization of the
OT and KL losses in the overall loss (10) leads to the minimization of the ex-
pected KL divergence EX∼p(X|X̃)

[
KL

(
qϕ(X̃|X,A)∥p(X̃|X,A)

)]
, ensuring an
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Table 1: Overview of selected datasets used in the study.

Dataset Nodes Edges Features Avg. degree Classes

Cora [29] 2,708 5,429 1,433 4.0 7
Citeseer [11] 3,312 4,732 3,703 2.9 6
Pubmed [39] 19,717 44,338 500 4.5 3
Coauthor [40] 18,333 163,788 6,805 17.9 15
Squirrel [36] 5,201 217,073 2,089 83.5 5
Chameleon [35] 2,277 36,101 2,325 31.7 5
Cornell [8] 183 298 1,703 3.3 5
Texas [8] 183 325 1,703 3.6 5

accurate estimation of the true conditional distribution p(X̃|X,A). Simultane-
ously, this optimization strategy increases the mutual information between the
input X and the latent embedding X̃, thereby reinforcing the encoder’s capacity
to preserve essential input characteristics. Theorem 1 thus provides the theoret-
ical foundation for SubGEC’s design. Moreover, it highlights a crucial insight:
minimizing the KL divergence alone does not necessarily maximize mutual infor-
mation and may result in suboptimal performance, an observation we empirically
validate in Section 5.2.

5 Experimental Evaluation

In this section, we present the empirical assessment of SubGEC by comparing its
performance against current state-of-the-art methodologies across various pub-
lic datasets. Additionally, through ablation studies, we verify the efficacy of our
method. These studies analyze the contribution of individual SubGEC compo-
nents to the overall performance. Finally, we analyze the computational cost to
show our method’s scalability to larger graphs. We also explore the sensitivity of
the loss balance hyperparameter β and the size of the subgraph on the model’s
performance in Appendix C.

Datasets. We select several widely used datasets for graph node classifica-
tion to evaluate SubGEC. These datasets encompass various types of networks,
including academic citation networks, collaboration networks, and web page net-
works, providing diverse challenges and characteristics. Table 1 summarizes the
basic statistics of these datasets.

Implementation details. We implement SubGEC using PyG and PyTorch.
Our approach adopts a self-supervised scheme evaluated via linear probing. The
model is trained using the official training subsets of the referenced datasets. Hy-
perparameter tuning involves a random search on the validation set to determine
optimal values for the hyperparameters. The best configuration in validation is
subsequently employed for tests on the dataset. We train our model with the
Adam optimizer. We train our models on GPU architectures, including the RTX
3060 and A40.
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Table 2: Performance comparison of self-supervised and supervised graph repre-
sentation learning methods across eight benchmark datasets.

Method Cora Citeseer Pubmed Coauthor Squirrel Chameleon Cornell Texas

GCN 81.40±0.50 70.30±0.50 76.80±0.70 93.03±0.31 53.43±1.52 64.82±2.32 60.54±3.30 67.57±4.80

GAT 83.00±0.52 72.50±0.30 79.00±0.24 92.31±0.24 42.72±3.27 63.90±2.19 76.00±3.63 78.87±3.78

MUSE 69.90±0.41 66.35±0.40 79.95±0.59 90.75±0.39 40.15±3.04 55.59±2.21 83.78±3.42 83.78±2.79

POLYGCL 84.89±0.62 76.28±0.85 81.02±0.27 93.76±0.08 55.29±0.72 71.62±0.96 77.86±3.11 85.24±1.80

GREET 84.40±0.77 74.10±0.44 80.29±0.24 94.65±0.18 39.76±0.75 60.57±1.03 78.36±3.77 78.03±3.94

GRACE 83.30±0.74 72.10±0.60 86.70±0.16 92.78±0.04 52.10±0.94 52.29±1.49 60.66±11.32 75.74±2.95

GSC 82.80±0.10 71.00±0.10 85.60±0.20 91.88±0.11 51.32±0.21 64.02±0.29 93.56±1.73 88.64±1.21

DGI 81.99±0.95 71.76±0.80 77.16±0.24 92.15±0.63 38.80±0.76 58.00±0.70 70.82±7.21 81.48±2.79

GCA 78.13±0.85 67.81±0.75 80.63±0.31 93.10±0.20 47.13±0.61 56.54±1.07 53.11±9.34 81.02±2.30

GraphMAE 84.20±0.40 73.40±0.40 81.10±0.40 80.63±0.15 48.26±1.21 71.05±0.36 61.93±4.59 67.80±3.37

SubGEC 83.60±0.10 73.14±0.14 84.60±0.10 92.34±0.04 56.39±0.57 69.14±1.12 94.57±2.13 92.38±0.81

Hyperparameter random search. Informed by the findings of [9][43][12],
which indicate the sensitivity of GNNs to hyperparameter settings, we undertake
random searches for hyperparameter optimization. The training proceeds on
the official splits of the train datasets, with the random search conducted on
the validation dataset to pinpoint the best configurations. These settings are
then implemented to evaluate the model on the test dataset. The ranges of the
hyperparameters explored and our code implementation are available1 and will
be made public after acceptance to facilitate replication and further research.

5.1 Classification Results

In our study, we compared our model against five state-of-the-art self-supervised
node classification algorithms: POLYGCL [4], GREET [32], GRACE [52], GSC
[17], and MUSE [50]. Additionally, we include three classic SSL algorithms for a
comprehensive comparison: DGI [46], GCA [53], and GraphMAE [21]. To pro-
vide a broader context, we also report the training results from two supervised
learning models: GCN [29] and GAT [47].

The results in Table 2 highlight the strong performance of SubGEC across
diverse datasets. Our model outperforms other state-of-the-art algorithms on
three out of eight benchmarks while demonstrating competitive results on the
remaining datasets. Notably, it achieves the highest accuracy on the strongly het-
erophilic Squirrel, Cornell, and Texas datasets, exceeding GSC, POLYGCL, and
other baselines. This suggests that the proposed design is particularly robust
in settings where node connectivity patterns deviate from typical homophilic
assumptions. Although POLYGCL slightly surpasses SubGEC on certain ho-
mophilic datasets (e.g., Cora and Citeseer), SubGEC remains comparably strong
there. Overall, these results highlight SubGEC’s robustness in handling het-
erophilic structures while maintaining strong performance on homophilic graphs,
demonstrating its versatility across diverse graph topologies.
1 https://github.com/ShifengXIE/SubGEC/tree/main

https://github.com/ShifengXIE/SubGEC/tree/main
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Table 3: Ablation study on KL regularization and other components. Reg. de-
notes the type of regularization applied, with possible choices including no reg-
ularization (%), KL divergence (KL), and dropout (D.). L1 indicates whether
the L1 norm was used as a reconstruction loss. De. represents whether a de-
coder was included in the model. Cons. refers to whether contrastive loss was
incorporated.

Reg. L1 De. Cons. Cora Citeseer Pubmed Coauthor Squirrel Chameleon Cornell Texas

% % % " 83.00±0.07 71.88±0.07 85.46±0.04 91.96±0.09 42.99±0.17 64.25±0.21 94.58±0.22 75.72±0.40

KL " % % 78.78±1.09 68.33±1.00 75.56±1.65 88.86±0.25 30.52±0.48 48.12±0.63 68.43±0.55 73.83±1.20

KL % " " 82.80±0.07 73.00±0.08 80.26±0.37 92.03±0.13 35.47±0.21 60.30±0.21 93.56±0.64 88.98±0.52

KL " % " 81.60±0.99 69.60±0.10 67.54±0.35 87.03±0.65 30.52±0.48 43.26±0.66 53.29±0.13 63.45±0.48

D. % % " 79.00±0.21 70.60±3.52 80.84±0.05 91.52±0.37 44.24±0.50 58.94±0.72 85.76±0.24 87.98±0.15

KL % % " 83.60±0.10 73.14±0.14 84.60±0.10 92.34±0.04 56.39±0.57 69.14±1.12 94.57±2.13 92.38±0.81

5.2 Ablation Studies

KL divergence and contrastive loss. The first ablation study is concerned
with analyzing some elements of SubGEC such as the architectural choices, the
KL regularization, and the contrastive loss. The outcomes of this ablation study
are presented in Table 3.

The first row in Table 3 analyzes the case where we drop the KL loss from
SubGEC. We observe that in overall the performance decreases, demonstrating
the importance of the KL loss as theoretically proved in Section 4.5. On the con-
trary, the second row in Table 3 includes only the KL loss and L1 reconstruction
loss without including the contrastive loss. This effectively models a Variational
Autoencoder (VAE) type method, where we observe a loss in performance. This
result also aligns with the theoretical findings in Theorem 1, where we show that
solely relying on the minimization of the KL loss does not guarantee the accurate
estimation of the encoder distribution and can lead to performance degradation
compared to using both the KL and contrastive loss functions.

The third model in Table 3 incorporates a decoder into SubGEC, i.e., we use a
VAE-type architecture to generate contrastive pairs. The decoder consists of two
fully connected multi-layer perceptrons. This model achieves competitive results
only on specific databases, illustrating that SubGEC is not merely a combination
of a VAE generative model and contrastive learning training methodologies. The
fourth model includes a norm-1 reconstruction loss, calculated as the norm of
the difference between input and output features, adding a constraint to enforce
similarity between input and output features. The results indicate that enforcing
such similarity is not reasonable. Finally, the fifth model in Table 3 replaces the
KL divergence with the commonly used regularization technique, dropout. The
results show that our method outperforms dropout.

Contrastive loss. The second ablation study examines the impact of the
distance metric used in our contrastive loss, specifically comparing OT distances
with alternative approaches. Table 4 presents the results of this study, evaluating
models with Wasserstein-only, Gromov-Wasserstein-only, and L1-only metrics,
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Table 4: Ablation studies on the choice of the distance metric in the contrastive
loss. W indicates the use of the Wasserstein distance. GW indicates the use of
the Gromov-Wasserstein distance. L1 indicates the use of a simple L1 distance.

W GW L1 Cora Citeseer Pubmed Coauthor Squirrel Chameleon Cornell Texas

" % % 77.00±0.81 66.80±1.39 78.24±1.22 88.65±0.62 49.02±0.85 62.50±0.49 91.29±0.10 87.67±0.09

% " % 76.20±1.56 68.98±0.23 80.20±1.42 91.08±0.28 45.16±0.55 56.17±0.28 90.16±1.52 88.47±0.89

% % " 79.84±0.68 69.80±0.64 79.20±2.54 82.23±1.51 47.10±0.58 58.35±0.92 90.33±1.08 84.59±0.80

" " % 83.60±0.10 73.14±0.14 84.60±0.10 92.34±0.04 56.39±0.57 69.14±1.12 94.57±2.13 92.38±0.81

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00

Number of Nodes

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

ec
on

ds
)

Average Time to Compute Loss per Iteration vs Number of Nodes

Subgraph Size 5
Subgraph Size 14
Subgraph Size 31

Fig. 3: Average time to compute loss per iteration as a function of the number of
nodes. The figure compares the computation times for three different subgraph
sizes (5, 14, and 31).

as well as SubGEC. Our findings indicate that excluding OT distances leads to
suboptimal performance, particularly on heterophilic datasets. Additionally, we
observe that the Gromov-Wasserstein distance slightly outperforms the Wasser-
stein distance on homophilic datasets. Most importantly, incorporating both
Wasserstein and Gromov-Wasserstein distances in the contrastive loss consis-
tently yields the best performance across all datasets.

5.3 Running Time

We employ a subgraph sampling strategy to avoid the high computational com-
plexity of OT computations. Figure 3 shows the average time to compute the
loss per iteration. The running time can vary due to server performance fluctua-
tions, leading to non-monotonic timing variations. We observe that the running
time remains low, increasing modestly as the graph size grows from 100 to 2,500
nodes, with times ranging from 0.1 to 0.2 seconds. We attribute this increase
in computational time to the higher dimensionalities of the adjacency matrices
when subgraphs are sampled. Overall, SubGEC keeps a low running time even
for increasing graph sizes, potentially enabling applications in large-scale graph
SSL tasks.
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6 Conclusion

This paper introduces the SubGEC, a novel GRL framework that leverages sub-
graph Gaussian embeddings for self-supervised contrastive learning. Our ap-
proach maps subgraphs into a Gaussian space, ensuring a controlled distribution
while preserving essential subgraph characteristics. We also incorporate the OT
Wasserstein and Gromov-Wasserstein distances into our contrastive loss. From
a theoretical perspective, we demonstrated that our method minimizes the KL
divergence between the learned encoder distribution and the Gaussian distribu-
tion while maximizing mutual information between input and latent variables.
Our experiments on multiple benchmark datasets validate these theoretical in-
sights and show that SubGEC outperforms or presents competitive performance
against previous state-of-the-art models. Our findings emphasize the importance
of controlling the distribution of contrastive pairs in SSL.
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A Graph Convolutional Network

The graph encoder uses two graph convolution layers, which are mathematically
represented as follows:

H1 = σ
(
(D− 1

2 (A+ I)D− 1
2XΘ1

)
, H2 = σ

(
D− 1

2 (A+ I)D− 1
2H1Θ2

)
.

(14)

B Details of the KL Divergence in Subgraph Gaussian
Embedding

The KL divergence between these two distributions has a well-known closed-form
expression. In our setting, we write [27]:

KL
(
q(X̃|X,A)

∥∥ p(X̃)
)
=

1

2|P|
∑
i∈P

d∑
j=1

(
µ2
ij + σ2

ij − 1− 2 log σij

)
, (15)

where µij and σij represent the j-th components of the latent mean and la-
tent standard deviation for node i. The set P indexes the nodes in the induced
subgraphs under consideration, and d is the dimensionality of the latent space.

C Sensitivity Analysis

To investigate the impact of the regularization constraint on our method, ex-
periments were conducted on the Cora dataset. The influence of regularization
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Fig. 4: The plot displays the mean test accuracy (solid blue line) along with a
shaded confidence region representing the mean ±3 standard deviations. The
analysis illustrates the sensitivity of test accuracy to variations in hyperparam-
eter beta and subgraph sizes.

within the loss function was controlled by varying the hyperparameter β, which
ranged from 10−6 to 102. The results, as illustrated in Figure 4a, indicate sen-
sitivity to changes in β. Specifically, we observe that values of β greater than
or equal to 10−5 have a pronounced effect on the model’s performance. Optimal
results on the Cora dataset are achieved when β was set within 10−3.

To evaluate the sensitivity of SubGEC to the subgraph size hyperparameter,
we conducted a sensitivity analysis on the Cora dataset using subgraph sizes k =
5, 15, 25, and 35. As shown in Figure 4b, the model exhibits robust performance
across a wide range of subgraph sizes, with competitive mean test accuracy and
low variability observed for k = 5 to 25. While k = 15 achieves marginally higher
accuracy, the minimal differences in performance across this range suggest that
the model is not overly sensitive to precise subgraph size selections. A gradual
decline in performance at k = 35 highlights the upper bound of robustness, likely
due to increased noise from redundant structural information.
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