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Abstract. The use of local differential privacy in federated learning has
recently grown in popularity due to rising demands for increased privacy
in machine learning scenarios. While research into local differentially
private federated learning is vast, the ability for a client to change their
privacy parameter € after training, and have that change reflected in
the global model’s parameters without having to repeat the entire feder-
ated training process, is currently unexplored. In this work, we propose
FLDP-FL (Flexible Local Differential Privacy for Federated Learning),
a simple and efficient technique for federated learning based on influence
functions that enables clients to update their privacy guarantees after
training without incurring extra training overhead by either the global
server or the other federation participants. We show that our influence-
based approach is able to accurately estimate the change in global model
parameters that would occur if the client re-randomized their data under
a stricter € and the federated learning process was repeated. Additionally,
we show that our FLDP-FL approach is able to reasonably estimate the
resulting change when multiple clients update their privacy parameter €.

Keywords: Federated Learning - Differential Privacy - Influence Func-
tions.

1 Introduction

In federated learning, multiple clients jointly train a machine learning model
under the orchestration of a central server without having to explicitly share their
private local data with either the server or the other participants [16]. Despite
being ingrained with an innate sense of privacy due to the clients’ data remaining
decentralized, the use of local differential privacy in federated scenarios has been
widely considered to increase the overall privacy of the federated learning system.
However, the solutions that have been proposed are often rigid, forcing clients
to use the same privacy parameter € and do not provide solutions in the event
that a client has to update their € in order to comply with updated privacy
regulations. Today’s privacy needs are ever changing, and thus it is important
to construct federated learning architectures that are adaptable.

Granting clients the ability to post-hoc change their privacy parameters is
a non-trivial task. For each instance of a client asking to change their ¢, the
federated model would have to be retrained from scratch which is time and
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resource intensive for all parties in the federation — not just the client changing
e. To costly federated retraining, while still offering clients flexibility in updating
their privacy level as needed, we propose flexible local differential privacy for
federated learning (FLDP-FL). We formulate FLDP-FL as an influence function
[4] that is able to properly estimate the true model parameters that would be
obtained if a client’s data was re-randomized under a stronger € and the federated
model was fully retrained. Further, we do so without violating any federated
learning requirements as the clients do not have to share their private data with
the other clients or the global server to use FLDP-FL.

Our contributions are as follows: 1) We propose FLDP-FL, which is based
on influence functions, to offer clients the ability to change their privacy level
¢ after federated training has concluded without requiring the entire federated
training process to be repeated; 2) We extend previous influence function work
and provide a lemma which shows that influence estimates for perturbing a data
point are additive and then, based on the lemma, propose a theory for estimating
the impact of a client modifying their € value on the global model’s parameters;
and 3) We empirically show that FLDP-FL is able to properly estimate the
model that would be obtained if federated training was re-performed under the
client’s updated . We additionally show that FLDP-FL can support multiple
clients altering their privacy parameter post-hoc,. We note, however, that even
though FLDP-FL supports the setting where the client changing € owns a large
portion of the federated dataset, the estimation can degrade beyond a reasonable
amount and in these settings full retraining may be required.

2 Related Works

Differentially Private Federated Learning Differential privacy has been
widely studied in the federated learning setting from the lens of “user-level” se-
curity and multiple approaches to ensuring differentially private federated learn-
ing have been proposed [2I7TI8IT7I24I26]. One of the first works in differentially
private federated learning was [I7] which proposed a noised version of the tradi-
tional federated averaging algorithm (FedAvg, [16]) which satisfies user-adjacent
differential privacy via use of the moments accountant [I] and works by clipping
the gradient updates of each user before they are sent by the client to the server,
and then adding Gaussian noise to the averaged update. Other important dif-
ferentially private federated learning works include [21I] which proposed a local
differential privacy-based parameter aggregation scheme and [8] which proposed
a differentially private approach to crafting personalized models in federated
learning. However, to our knowledge, no previous work has performed research
into how a client can update their privacy parameter ¢ after federated training
has concluded without having to repeat the entire federated training process.

Influence Functions and Federated Learning Influence functions are a
product of influence analysis from the field of robust statistics [4] and were made
popular in machine learning by [I3] which showed how a single training point
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influences the final machine learning model’s parameters and/or the test loss of
a single test point. This work was further extended in [I4] where the authors
showed how influence functions can be used to estimate the influence that a
group of training points has on the model parameters and/or the loss of a single
test point. While both influence functions and differential privacy have strong
ties to robust statistics [6], to our knowledge only two works have been published
utilizing both methods [3JII] and they are both formulated in the centralized
setting, not federated. However, work utilizing influence functions in federated
learning have been proposed [IIBT8ITY], such as [I8] which proposed to filter
and score data used in federated learning according to the sign of the influence
function, [I5] which proposed an influence-based participant selection strategy to
mitigate test error caused by erroneous training data, and [19] which proposed an
adaptive aggregation scheme based on class-level and client-level influence scores.
To our knowledge, our work is the first to use influence functions to enable clients
to change their local differential privacy parameter ¢ after federated training.

3 Preliminaries

In this section, we present the required background information on federated
learning (FL), local differential privacy (LDP), and influence functions (IFs)
needed to understand the discussions of Section 4] We begin by detailing the
notation used through the remainder of the paper. We consider a federated
learning system of N clients (denoted by 4), each of which have a local training
set D;+ made up of data with features x; € A; and a label y; € ); such
that z; = (z; € X;,y; € Vi) € Dy is one of n; training points belonging to
client i. Each client has a local model H;(6), where § € © represents the model
parameters that are shared across the clients during training and we use 6 to
denote the global model parameters obtained at the end of federated training.
We assume that the global model has access to a testing set D;. that is a mixture
of all N client’s data distributions. We use £(z;,6) = ¢(H;(x;;6),y;) to denote the
loss function and L(D; 4, 0) = ni > it £(#i,5,0) to denote the empirical risk and
we assume that the empirical risk is twice-differentiable and strictly convex in 8
for all clients [I3]. Additionally, we use the standard notation from differential
privacy of € as the privacy parameter and P[-] to denote probability.

3.1 Federated Learning

Federated learning is a machine learning setting where multiple clients (e.g., mo-
bile devices, whole organizations, or individuals) collaboratively train a machine
learning model under the orchestration of a central server, while keeping the
training data decentralized. The most popular federated learning algorithm is
Federated Averaging (FedAvg) [I6] which aims to solve:

N
mein h(0) = Z ;Liiﬁ(pi,m 0) (1)

i=1 22j=1"Y
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where N is the number of clients, n; is the number of data points held by client
i, and L(D; 4, 0) = L Z 1 £(# ;,0) is the empirical risk of client 7. Federated
learning can be performed in a cross-device or cross-silo manneIEL but in this
work, we focus on the cross-silo setting [10] and from this point on, when we
refer to “federated learning” we are specifically referring to cross-silo federated
learning. Federated training is carried out in an iterative manner over the course
of T rounds. In each round ¢, the server sends the current model parameters 6
to all N clients, the clients perform R rounds of local training using their dataset
D; tr, and then send their updated model 95“ to the server. The server then
aggregates the received models as:

N

g+l — Z i 9t+1 2)

i=1 1"]

After aggregation, training continues until ¢ = T" at which point we define 6 =0T
to be the final global model parameters.

3.2 Local Differential Privacy

Local differential privacy allows an analyst to learn population statistics without
violating the privacy of individuals. More formally, e-LDP is defined as follows:

Definition 1 (e-LDP [12]). A randomized mechanism M satisfies e-LDP if
and only if for any pair of input values r,v' in the domain of M, and for any
possible output o € Range(M), it holds:

In other words, the probability of outputting o on record r is at most e times
the probability of outputting o on record r’.

Randomized Response One popular method used for LDP is randomized
response (RR)E| Let u be a private variable that can take one of C' values. We
can formalize RR as a C x C distortion matrix P = (puy)oxc where py, =
Plv|u] € (0,1) denotes the probability that the output of the RR process is
v € {1,...,C} when the real attribute value is v € {1,...,C}. Note that the
entries of the distortion matrix are probabilities, and therefore the sum of the
probabilities of each row is 1 [23] Further, P can achleve both optimal utility

and e-DP by setting py, = if u=wv and p,, = otherwise [23].

C—1+e° l—f—e5 c— 1+65

! Cross-device: large federation size (1004 clients, often IoT devices like cell-phones)
where the clients often only participate in a few rounds of training at most. Cross-silo:
small federation size (2-10 clients, often companies or hospitals) where the clients
all participate in every round of federated training.

2 We discuss FLDP-FL under alternate LDP scenarios in our Github repository.
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3.3 Influence Functions

In [I3], the authors proposed the use of influence functions to study machine
learning models through the lens of their training data. Specifically, they showed
that the influence a single training point z = (z,y) € Dy has on the model
parameters can be calculated without actually removing z from the training set
and retraining the model on the resulting dataset. They instead simulate the
removal of z by upweighting it by a small value %L (where n is the total number
of training points). Specifically, they calculate the influence the training point
has on the model parameters as:

Ly o(2) = —H; 'Vgl(2,0) (3)
where Hg_l is the inverse Hessian matrix H@_I = (¢ E?Zl V2U(27,0))"t. We
note that the inverse Hessian matrix can be calculated explicitly or efficiently
estimated using conjugate gradient or stochastic estimation approaches [13].

Eq. [3]is obtained by performing a quadratic expansion around the optimal
parameters 6 which gives an approximation of the function locally using infor-
mation about the steepness (the gradient) and the curvature (the Hessian). Eq.
which gives the effect of training point z on the parameters é, can be used to
estimate the parameters that would be obtained if z was actually removed from
the dataset and the model was retrained. More specifically,

A A1
Oem 0t -T,,,.4(2) (4)

The authors of [I3]| also considered the effect that modifying (rather than

simply removing) a training point has on the model parameters. Consider a
training point z and its modified value zg:

0

Zﬁ,

1 1
—Zz = i ) - ) - )
argmeelnﬁ(Z 0) + nﬁ(z;; 0) nﬂ(z ) (5)

is the ERM of § with zg replacing z in training. The approximate effect of
changing z — zg on the model parameters can be computed as:

Ipert,é(’zﬁ’ _Z) = _H(;l <V9 (K(Zﬁ’ é) - 6(27 é))) (6)

We direct interested readers to [I3] for the full derivation of Eq. |§| from Eq.
Eq. [6] can then be used to approximate the model parameters that would be
obtained under training with zg instead of z as:

s ~ 1
ezg,—z ~ 0+ EI A(Z,37 _Z) (7)

pert,0

In [14] the authors showed that the influence scores calculated in Eq. [3| are
additive. Namely, if we wanted to estimate the effect of a group of data points
G C Dy, on the model, we can calculate:

|G| . ~
Lo i(G)=—H;'Vo [ Y 0(7,0) (8)
j=1
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and use Eq. [f] to estimate the true parameters under the removal of group G.

4 Methodology

In this section, we formulate flexible local differential privacy for federated learn-
ing (FLDP-FL), a technique for local differentially private federated learning
which grants clients the ability to change their privacy parameter € post-training
without requiring the entire federated training procedure to be repeated.

4.1 Problem Formulation

We define our federated setting as follows. We assume a horizontal cross-silo
federated learning scenario where the federation is comprised of a small number
of clients N (where client ¢ has n; data points) that participate every round
and that the data is partitioned horizontally along the examples (i.e., all clients
have the same feature and label domains, however, each client can have a differ-
ent distribution of them). We additionally assume that each client individually
randomizes their data under some client independent e; = {e; s} rcr to form
7.51-7” before participating in federated training where F represents the attributes
(e.g., features and/or label) in D; . to be protected via randomized response.
Let f € F have dy possible values. Further, let e; = oo = {&; y = 00} e F repre-
sent the case where D; 4 = 151-’” (i.e., no randomization occurs). We also assume
that while only ﬁur is used during federated training, clients will have access
to both their un-randomized training set D; ;. and the dataset randomized by
€i (Di,) after training concludes. All N clients work collaboratively together
to train a final global model with parameters 6. After training, client ¢ decides

to change €; to some €] = {&] ;}rer such that Y . e} , <> creiy

4.2 Perturbation influences are additive

We start by noting that while in [I4] the authors showed that the influence scores
calculated to simulate the removal of a point z are additive (see Eq. , it is left
to be shown that influence scores that simulate the perturbation of a point z are
additive. Here, we provide Lemma [I] which does so and provides the basis for
our formulation of FLDP-FL in Section 43l

Lemma 1 (Perturbation influences are additive). For a group G C Dy,

we calculate the influence of perturbing group G to Gg, where for each point
z€G,z— z3 € Gg, as:

|
Zert (G, —C) = ~Hy " -V 3 G (£(z5,0) — 1(=.)) )
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Proof. We rewrite Eq. [0 as:

T ...0(z8,—2) = —H;* (vg ((25,0) — e(z,é))) (10)
= —H'Vyl(z5,0) + H; ' Vyl(z,0) (11)

Using Eq. [§ and letting z € G C Dy, 2 — 25 € G, we rewrite Eq. [TT] as:

|Gsl |G|
T0i(Gs—C) = —H: 'V [ ST 0(.0) | + H vy S 0(z2,0) | (12)

j=1 j=1

|G|

= —H' VY (e(zg,é) e ,é)) (13)
j=1
since |G| = |G| and where the last line yields Eq. [9} O

4.3 FLDP-FL

The influence functions listed so far, including Eq. [0] in Lemma [I} have been
constructed to work in the traditional machine learning setting — meaning that
it is assumed that the training data is located in a centralized location and can
be freely accessed. Therefore, it may seem that these equations cannot be applied
directly in the federated setting. However, by recognizing that each client’s local
dataset ﬁi,tr can be considered as a subset (i.e., group) from the overall federated
training dataset Dy, = {@i,w}ﬁil we can leverage Lemma to allow client 7 to
calculate how changing e; — €} would affect 6 without requiring access to any
other client’s private data or having to send their private data to the global
server. We now derive FLDP-FL as Theorem [1l

Theorem 1 (FLDP-FL). Given a trained federated model 0, we can estimate
the influence of client i changing €; — €} on the parameters 6 as:

TE8 (D Bl = T, 3 [( 5 pfxazfx,é))—m;é»]

2€D; tr fx €Fx
Z€D; 4rr
(14)
where
eSint 1
Die = H L= l 7 Ly, [ 7 (15)
Fefx df —1+e€s dp —1+e"s

Proof. Starting from Lemma (1} let G = 751»7” and Gg = D; 4

TortiPitrs=Diae) = =H;' ¥y - (Uz0) - 0(z0)  (16)

2€D; trs

2€D; 4
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Here, Eq. [16] gives the influence of replacing 751 ¢t With D; 4, during training of
0. However, we are interested in replacing DZ 1, which was randomized under
g;, with D!

it that was randomized under €. Let the expected value of (z,0)

where z € D; 4, is randomized under €} be written as E[é(zeg,é)]. Then:

T o0 i(Ditrs—Digni€h) = —H;1 -V Y (E[ﬁ(zsg,é)]—f(é,éo (17)

z2€D; tp»

z€D1 tr

To find E[E(zsg,é)], let F represent the set of attributes in D;;, to privatize
under e} randomized response, where each f € F has d; possible values as
well as an independent privacy parameter 5;7 - Further, let F, represent the
cartesian productﬂ of f € F and fj represent the original attribute value of f in
data point z € D; ;. Under 52 randomized response, z € D; 4, can take one of

2171 val h with probabilit = g, |—<t
values fx € Fx, each with probability py, erfx F=fo PR +

Tysy, {15,}0] (see Section . The expected value of the loss where z €
D, ¢ is randomized under &} can therefore be written as:

E[¢( ZEv Z prt fov ) (18)

Fx €Fx

where Z and zy, are equivalent minus the attributes in F, which have been
replaced according to f. Substituting the right hand side of Eq. [I8]into Eq. .
yields Eq.[14]

To obtain the estimated global model parameters where a client re-randomizes
their data under ; — €} and federated training is re-performed, we calculate:

A 1 ~
0 = 9+ NiIRR ‘(Dz tryDi tT‘ye'Ii) (19)
Zj:1 n; pert,0 ) )

where Z;\Izl n; is the sum of the data used in the federated learning process by all
N clients. In Section [5] we analyze the setting where m > 1 clients simultaneously
update €; — €} (which could arise in instances where wide sweeping government
regulation is updated). Here, we leverage Lemma which says that perturbation
influences are additive, and calculate the estimated model parameters under the
m clients updating e; — € as:

>
Il
Cb>

Z; 20
ZJ 1”0122 20)

where each client ¢ calculates Z; using Eq. [14] independently.

3 For example, if 7 = {gender, income} where gender= {m, f} and income= {0,1}

then Fyx = {(m,0), (m, 1), (f,0),(f, 1)}
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Here, we show the derivation for Eq.m which enables multiple clients to
update e; — &} simultaneously. Let G; = D; 4, and G, g = D; 4, for all m clients ¢
who desire to change ; — €. Since each G; can be seen as an independent subset
of the overall federated training set Dy, = D~17tr U-- ~U25N7m we can say that the
union of G; is also a subset of Dy,.. lL.e., G = Gy U...G,, C Dy,. Therefore, we
can follow a derivation similar to Theorem [I| to form the optimization function
to support multiple clients updating their privacy parameters simultaneously.

Let Gg = G13U - UG, g and similarly let G = G1 U --- U G,,. Starting
from Eq. [[2]in Lemma [l we can write:

T i(Go,—G) = —H; 'V > U(z3,0)+ H; 'V > U(2,0) (21)
ZﬁGGQ z€G
= —H. 1VQZ Z 27[3, +H 1VQZ Z Zl,
i=1 z; s€G; i=1z,€G;
(22)
=Z —H'Vo Y U(zi,0) — (2,0 (23)
zlzﬁeeglﬁ
(24)

since |G;| = |G, g|. Then, replacing ¢(z; g, 0) with E[¢(ze1, 0)] yields

o, (Gp, —G Z v 3(Gip, —Giel) (25)

and € = {€}}7,. Then, to obtain the estimate for the parameters where all m
clients simultaneously change e; — €}, we can calculate:

=0+ —p— S T (G, —Girel) (26)

ZN ) pert,0
=11 =1

which recovers Eq.

We provide an overview of our FLDP-FL process (specifically for one client
updating ; — €}) in Algorithm |1} Here, the client generates Z according to Eq.
to calculate the influence on the global model of locally updating ; — €/ and
sends it to the server. The server then updates the model parameters 0 according
to Eq. |19/ and distributes it to the clients.

Two natural questions to the derivation of Theorem [1| are: 1) why we use
a weighted variant of the expected loss (Eq. rather than a simple average;
and 2) why Eq. produces the correct weights for the weighted average. To
answer question one, since we do not know a priori which combination fyx € Fy
will be produced by the randomized response process, we need to consider that
the replacement of Z could be done by any combination f« € F.. However, the
probability distribution over Fx is not uniform and therefore taking a simple
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Algorithm 1 FLDP-FL

1: Each client randomizes D; 4 under €; randomized response to produce f)i,tr
2: Traditional FedAvg [16] training is carried out where each client participates with
Di,ir to produce final global model parameters 6

3: if Client i updates €; — €} then
4: Client i computes:
I(——HglVQ Z |:< Z pfxf(ZfX7é)> —é(i;é)):|
2€D4 ¢ fx €Fx
zeD; ¢y
and sends to server
5: Server computes:
o 1
=0+ ———T
Z;‘V:1 nj

and sends to all clients

average of the losses produced by {zy, }r, er, will not produce the true expected

loss. Therefore, to generate the expected loss, we need to multiply ¢(zy,,0)

by its probability ps, generated by Eq. |T_5} This leads to the second question,

which is why the formulation of Eq. [15] produces the correct weights. Since we

assume each attribute in F to/ be independent, we multiply the probability of
eSif

each attribute f € F by T if f is equal to the original attribute value

f—1+66i’

foin z € D, 4 (not Z € D, 4, since we want to randomize the original data, not
the data perturbed by €;) or by ﬁ if f # fo (see Section .
df—1+e i,

4.4 Discussion

Computation and Communication Cost: In [I§], the authors note that us-
ing influence functions in the federated learning setting faces many challenges.
First, the authors point out that even if implicit Hessian-vector products are
used to overcome the cost of forming and inverting the Hessian of the empirical
risk (which costs O(nm? + m?) where n is the number of training points and m
is the number of parameters), it is still communication intensive if the influence
is calculated every round as it requires the transfer of all training data to the
global server. In our work, however, not only does the the influence function have
to be calculated sparingly (i.e., only when the client updates their privacy level
g; — €5), we require the client who desires to update e; — €, to calcu-
late Eq. In the federated setting, the global model does not have access to
the client’s data, which is required when calculating Eq. @ However, the client
naturally has access to the final global model parameters 6 and therefore has all
the required information to calculate Eq. Additionally, this puts the burden
of calculating the influence scores on the client doing the change, not the global
model or the other clients who simply have to update the model parameters.
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Table 1. Time complexity of FLDP-FL versus full federated retraining. X: exact, CG:
conjugate gradient, SE: stochastic estimation, n: total number of training points, n;:
number of training points of client ¢, p: number of parameters, r: recursion depth for SE
estimation, ¢: number of recursions for SE estimation, E: number of federated epochs.

FLDP-FL (X) FLDP-FL (CG) FLDP-FL (SE) Fed. Retrain

O(nip” + p*) O(nip) O(nip + rtp) O(Enp)

We also clarify that not only does Eq. [I4] have to be calculated sparingly, the
computational cost to calculate Eq.[I4] is much lower than that of total feder-
ated model retraining, especially if approaches such as stochastic estimation or
conjugate gradient are used to approximate the Hessian. We point interested
readers to [3JI3] for a more in depth discussion of how these approximations can
decrease the total computation time. We additionally provide concrete exper-
imental results in Section [5] that support this claim and here briefly expound
upon the computational cost of FLDP-FL versus full retraining.

In Table[I} we detail the computational complexity of calculating the influ-
ence function using three different approaches to computing the inverse Hessian
as well as the time complexity of normal training of a logistic regression model
using gradient based learning. Specifically, we detail the complexity of comput-
ing the Hessian for Eq. [14] explicitly and using the conjugate gradient (CG) or
stochastic estimation (SE) approaches to estimate it. While using the explicit
Hessian approach seems to be more computationally complex than retraining, we
note that only the client changing e; — €} has to calculate the Hessian whereas
all clients have to participate in retraining.

One of the main bottlenecks to federated learning is the communication cost
of the clients sending/receiving parameter updates from the server as it is com-
mon that communication will be limited by an upload bandwidth of 1 MB/s
or less [16]. These costs are influence by various parameters such as the client’s
dataset size, the size of the model, and the number of clients participating. Com-
puting Eq. [14] takes minimal communication (i.e., client ¢ ending Z to the server
and the server sending the updated 6 to all clients), whereas in full federated
retraining, each client must participate in all E rounds, and perform both a
download from the global server at the start of the round and send the updated
parameters back to the global server at the end of the round. I.e., FLDP-FL
takes a maximum of N + 1 communications while full federated retraining takes
2EN.

Connection to Machine Unlearning: We also point out that FLDP-FL has
an intuitive connection to machine unlearning. Under new privacy regulations
such as the GDPR, consumers have to be afforded the “right to be forgotten”.
Therefore, in addition to our setting of a client having to update e; — €, it
could also be the case that a client may have to be removed from training entirely.
Machine unlearning, the process of modifying a machine learning model to forget
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parts of data that it was trained on, has risen in popularity to satisfy these new
privacy regulations. Unlearning has also been studied in the federated learning
setting, albeit less extensively than in the standard machine learning setting.

Using influence functions, we can estimate the removal of a client ¢ from
training without having to redo federated training on the smaller client set.
Specifically, using a formulation similar to Eq. [3] we can write:

Irem,é(ﬁi,tr) = _Hé_l -V Z E(gaé) (27)
Z2€D; tr

where § = 0 + —*—T (D; ) gives an estimation of the true model pa-

Ej_\;l n; rem,é
rameters achieved when a client is removed from training entirely.

We note that in this work we do not study the entire removal of a client and
further clarify that the setting where e = 0 = {¢; , = 0}y 7 is not equivalent to
machine unlearning as we are replacing client i’s data with random noise (which
can affect the performance of the global model) and not removing it entirely. This
can be seen by comparing Eq. [I4] with Eq. 27} In Eq. 7, we simply have to take
the gradient of the loss of the data points used in training, which is then used to
simulate the removal of these points from training. In Eq.[I4however, we include
the addition of the expected loss of the training points under perturbation by
;. Even though setting €, = oo would effectively make the clients data pure
noise, and in a sense causes the model to unlearn the true data ﬁi,tr, it will
ultimately negatively affect the performance of the global model due to the
introduction of random noise. On the other hand, removing a client entirely using
Eq. or other techniques proposed by work like [22]25] most likely will not see
significant degradation in performance, especially when additional optimization
is used to preserve model performance under client removal. Our work instead
can be seen as an irregular instance of unlearning where instead of forgetting
certain data points entirely, we instead want to change how well the model is
able to understand the relationship between the data features and label (e.g., by
increasing the noise applied during differential privacy).

5 Evaluation

In this section, we evaluate the ability of our formulated FLDP-FL approach for
estimating the true change in the model that would occur if a client (after initial
federated training) updated their privacy parameter €; — €} and the federated
learning process repeated. Here, we are interested in answering the following:

Q1. Under one client changing €; — €}, how does the model estimated in Alg.
compare in terms of test loss, test accuracy, and distance with the true
model obtained when full federated re-training occurs?

Q2. Is our FLDP-FL approach able to properly estimate the true model when
multiple clients simultaneously change their privacy value from e; — €}?

Q3. How does the size of the client performing the change from e; — &} affect the
ability of our FLDP-FL approach to estimate the true model parameters?
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Q4. How efficient (in terms of computation time) is FLDP-FL compared to full
federated model retraining when one client decides to update g; — &}?

5.1 Datasets, Federated Setting, and Baselines

In this work, we test FLDP-FL using three datasets: ACS Income [5], Glioma
[20], and ACS Public Coverage [5]. We divide the data among the clients ac-
cording to the process described in [I6] such that the clients’ local datasets are
saturated by one label, and therefore, if they attempted to train a model on
their own, they would obtain a model with poor generalization performance.
For Q1/Q2/Q4 all clients are allotted the same number of data points, while
in Q3 we allocate more data points to the client changing e; — &;. We allow
the global model to be made of a single fully-connected layer, use SGD for op-
timization, and use cross-entropy for loss. Further, we set the number of clients
to 5, assume all clients have access to D; ¢ (their un-randomized training set)
and 151-7” ( which is formed by randomizing D; ;- by €;), and each participant
participates in every round of model training. Since we are (to our knowledge)
the first work to consider how a client can change their €; after training, we only
compare against is naive retraining, where for each setting, we re-randomize the
changing client’s data under € and re-preform the federated training procedure.
We test a wide range of e; = = {e; 5 = x} jer values {c0,5,4,3,2,1} as well
as a wide range of €} = z = {5;’f = x}ser values {5,4,3,2,1,0.5,0.1} in the
analysis of Q1-Q4. For simplicity, we have all clients use the same e;/e;. We
run all experiments three times and report the average. Further dataset and
experimental details such as which attributes F were protected under random-
ized response and the selected hyperparameters can be found in our Github
repository https://shorturl.at/qFRJD.

5.2 Evaluation Metrics

We consider three primary metrics to evaluate our proposed FLDP-FL method:
1) average loss difference (ALD), average accuracy difference (AAD), and eu-
clidean distance (ED).

ALD = E(Dte7 HI) - E(Dte, 9514*)5;) (28)
AAD = Acc(Dye, 01) — Acc(Die, e, et (29)
ED = |07~ 01 (30)

where L£(D;.,-) denotes the test loss, Acc(D;e, ) denotes the test accuracy, 67
represents the influence-estimated parameters using Alg.[1} and eei—»s’i represents
the true parameters obtained when client ¢’s data is re-randomized under €} and
federated retraining is re-performed. For all ALD, AAD, and ED, values closer
to zero are desirable. We note that these values are only used for our analysis
of FLDP-FL’s estimation ability and that in practice, they may not need to
be computed. However, when necessary, the global server is the one who would
calculate L(Dye, 07) and Acc(Dye, 07) as the clients do not have access to Dye.
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ACS Income Glioma ACS Public Coverage
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< e <

Fig. 1. Average accuracy difference (AAD, Eq. when one client changes €; — €.

5.3 Analysis

Q1. We begin our evaluation by studying the ability of FLDP-FL to estimate
the model parameters that result from a single client changing ; — &} after
federated training concludes. After training the global model using standard
FedAvg, we randomly select one client to calculate Eq. The server then
calculates the resulting test loss and accuracy under the newly estimated model
parameters (derived using Eq. . We plot the results for AAD in Fig. [1] and
additionally list the results for all metrics (along with their standard deviations)
in Table[2| Across all three datasets, ALD trends closer to zero as €} approaches
€;, however, even in cases when the difference between the two is large (e.g.,
g; = oo and &} = 0.1), the difference in the estimated and true loss is small.
Similar trends hold for both AAD and ED, although the trend for AAD is
slightly weaker (e.g., ACS Income obtains lower AAD for € = 0.1/0.5 than
ei=1). Again, however, even when the difference is large, the AAD value is still
within £5% of the true accuracy. In general, the results for the Glioma dataset
are worse than that of ACS Income or ACS Public Coverage and we attribute
this to the dataset being small (~400 data points). In future work, we plan
to more rigorously analyze how overall federated dataset size affects the ability
of FLDP-FL to generate proper estimations for the model parameters. Overall,
these results support that FLDP-FL is able to estimate the model parameters
resulting from a single client changing e; — &} after federated training.

Q2. To analyze the ability of FLDP-FL in estimating the true model under
multiple clients changing e; — €}, we again follow a setup where first we train
the federated model as normal with each client randomizing their data using
€; randomized response before participating in training. We randomly select
m = {1, 2, 3} clients to change e; — €} and calculate Eq. to obtain Z;. We then
estimate 0 using Eq. We plot the results for all datasets where e; =3 — € =
1 in the top row of Fig. 2] For the two larger datasets, ACS Income and Public
Coverage, the ability of FLDP-FL to estimate the true parameters maintains
consistent as the number of clients changing e; = 3 — €} = 1 increases. On the
other hand, when increasing the number of changing clients on small datasets,
the quality of the estimation provided by FLDP-FL degrades quite significantly.
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, average accuracy difference
ED, Eq. |30) for parameters estimated by

e lel ACS Income Glioma ACS Public Coverage
‘] ALD [ AAD [ ED ALD AAD ED ALD | AAD | ED
0.1]-0.026+0.005 1.69+0.10 0.136+0.040|0.096+0.031 -3.14+1.47 1.462+0.283|-0.014£0.005 2.19+1.52 0.19240.074
0.5]-0.029+0.003 3.39+0.31 0.11140.027|0.066+£0.021 -2.75+3.09 1.321+0.287|-0.014+£0.003 1.81+0.21 0.178+0.010
1 |-0.043+0.007 4.94+0.70 0.132+0.008|0.044£0.023 -5.10+3.64 1.21140.163|-0.007+0.001 2.42+1.21 0.159+0.030
00| 2 |-0.02240.003 4.25+0.49 0.093+0.009| 0.038+£0.040 -1.9612.22 0.90240.495| 0.005+£0.001 0.36+0.62 0.106+0.041
3 |-0.01240.001 3.31+0.71 0.044+0.008|0.009+0.009 0.00+0.96 0.471+0.304|0.005+0.003 0.17+0.14 0.138+0.057
4 1-0.004 +0.002 1.39+0.75 0.023+0.003| 0.00640.010 -1.18+1.66 0.27140.219] 0.00140.001 0.3140.22 0.05710.029
5 1-0.001+0.001 0.42+0.25 0.012+0.002|0.001+0.002 0.39+0.55 0.155+0.075|-0.001+0.00 0.2210.14 0.020+0.008
0.1|-0.017+0.001 1.58+0.12 0.1314+0.038| 0.087+£0.038 -3.9212.22 1.600+0.287|-0.01140.004 1.9241.73 0.18210.064
0.5]-0.02540.002 2-97x0.31 0.10810.026| 0.057£0.025 -0.39x1.11 1.11710.279|-0.010£0.003 1.47+0.37 0.16510.005
5 1 1-0.0384+0.005 4.97+0.21 0.12640.010| 0.035+0.021 -1.57+3.00 1.10740.006|-0.004+0.001 1.83+0.72 0.178+0.022
2 1-0.022+0.005 4.0810.30 0.08310.016]0.02110.026 -1.96+2.93 0.800+0.264| 0.00540.001 -0.17+0.34 0.14510.043
3 1-0.010+0.001 2.58+0.62 0.04410.011|0.002+0.009 -1.96+1.47 0.457+0.156| 0.007+0.003 -0.22+0.04 0.149+0.043
4 |-0.002£0.001 1.0840.68 0.02540.007|-0.00410.006 -0.78+0.55 0.265+0.197| 0.00240.002 0.4210.34 0.057+0.029
0.1|-0.006+0.005 1.33+0.07 0.09440.048| 0.075+0.035 -4.3141.47 1.768+0.046|-0.007+0.004 1.25+1.54 0.188+0.045
0.5|-0.01240.010 2.89+0.41 0.081+0.026| 0.053£0.035 -1.1841.92 1.19740.245|-0.008+0.002 1.114+0.39 0.157+0.014
4] 1 {-0.029+0.004 3.831+0.20 0.119+0.005| 0.028+0.022 -1.96+£2.42 1.05540.126]-0.002+0.001 1.3610.63 0.15210.033
2 1-0.012+0.003 3.00+0.34 0.086+0.005|0.009+0.020 0.78+0.55 0.723+0.176| 0.005+0.001 0.00+0.61 0.108+0.061
3 |-0.008+0.001 2.69+0.55 0.04410.011|-0.002£0.012 -0.0010.96 0.44210.223| 0.00110.001 0.084+0.31 0.07040.032
0.1 0.006£0.007 0-33+0.20 0.107+0.022| 0.060+£0.040 -3.92+2.93 1.47010.328| 0.00810.012 0.67+1.59 0.11810.027
3 0.5/0.005+0.004 1.39+0.08 0.085+0.021|0.039+£0.032 -3.1441.47 1.1674+0.377| 0.005+£0.006 -0.03+0.63 0.105+0.020
1 |-0.01410.006 2.94+0.61 0.10110.005|0.039+0.032 -3.921+2.00 1.230+0.236| 0.0041£0.004 -0.17+1.18 0.16210.042
2 |-0.007+0.003 1.72+0.91 0.053+0.010|0.028+0.033 -3.92+2.22 1.079+0.312(0.010+ 0.009 -0.50+0.72 0.123+0.071
0.1/0.017+0.004 -0.1110.34 0.07240.013| 0.031£0.011 -2.75+1.47 1.29540.197| 0.014+£0.010 -1.3610.98 0.179+0.085
210.5]0.008.£0.004 -0.17+0.54 0.061+0.004| 0.03410.014 -5.10+0.55 1.01810.367| 0.012£0.005 -1.75+0.34 0.25240.055
1 1-0.003+0.003 1.53+1.58 0.064+0.008| 0.027+0.002 -4.71+3.46 1.277+0.163] 0.005+0.001 -0.83+0.72 0.18410.056
1 0.110.010+0.002 0.11+40.27 0.054+0.020|-0.009+0.023 1.9642.22 1.510+0.427|0.00440.005 -0.7840.22 0.18540.008
0.5/ 0.002+0.002 0.61+0.45 0.049+0.006|-0.005+0.022 0.39+3.88 1.394+0.358| 0.00840.007 -0.5840.27 0.17240.048

Specifically, for Glioma, FLDP-FL’s estimated parameters consistently under-
performs the performance obtained under the true retrained parameters (e.g.,
AAD of -17.5% when 3 clients are changed). These results show that FLDP-FL
is able to estimate the true parameters under multiple clients changing e; — &
when the dataset is not excessively small. When the number of clients changing
becomes too high, we recommend retraining the federated model instead of using
estimations provided by FLDP-FL.

Q3. To analyze the ability of FLDP-FL to estimate the true model parameters
when the client changing e; — & makes up a large portion of the overall fed-
erated dataset, we still perform federated training as normal. However, instead
of all clients having a relatively equal amount of data points, we allocate the
changing client X% of the overall federated dataset and distribute the remaining
1-X% to the other four clients. We show the results when €; = 3 — s; =1in
the bottom row of Fig. [2] There is an obvious trend of the estimation provided
by FLDP-FL becoming worse as the dataset percentage makeup of the changing
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ALD
AAD

Income Glioma Public Coverage Public Coverage

Fig. 2. Average loss difference (ALD, Eq. , average accuracy difference (AAD, Eq.
, and Euclidean distance (ED, Eq. when €; = 3 — &} = 1 for: Top: multiple
clients changing; and Bottom: different changing client dataset size.

client increases. This is not surprising as there is a degree of randomness to the
FLDP-FL estimation, and increasing the size of the dataset changing increases
the amount of noise in the estimation. However, ALD degrades gracefully, es-
pecially in cases where the dataset is large (i.e., ACS Income and ACS Public
Coverage). AAD suffers however when more than 50% of the data belongs to
the changing client. In cases where the client changing owns the majority of
the federated data, it may be advantageous to perform federated retraining over
estimation via FLDP-FL.

Q4. In Table [3] we report the average time to train one full federated learning
model and the time to compute Eq. [I4] using an explicit Hessian calculation
(e.g., no estimation approaches that would further reduce the computational
time were used) under one client changing e; — €. We note that due to our
training setup (see our Github repository) each client performed local training
sequentially, not simultaneously (which would be standard in real world settings),
which increased the computation time for full federated training. However, even
when dividing the time by the number of clients (5) to get a better estimate, the
times for full training on all three datasets are still significantly larger than that
of estimating the parameters with FLDP-FL (ACS Income: 284.70s, Glioma:
9.88s, ACS Public Coverage: 143.64s). These results reinforce the discussion in
Section [4.4] that using FLDP-FL offers the benefit of being more efficient that
full federated re-training. We also point out that the time for full federated re-
training will inevitably increase as the federated dataset and model grow larger,
or if multiple clients decide to change e; — €}, while the time of computing
FLDP-FL will remain relatively stable as only the client(s) updating &; — &}
must calculate Eq. [14] based on their own local dataset.
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Table 3. Time in seconds to perform full federated training with 5 clients on each
dataset compared with one client calculating FLDP-FL via Eq. [[4]

Full Fed. Training[FLDP-FL (Eq. [14)
ACS Income 1423.51412.40 8.2410.38
Glioma 49.4144.13 0.9310.13
ACS Public Coverage 717.32+8.08 87.40+4.38

6 Conclusion

In this work, we proposed Flexible Local Differential Privacy for Federated
Learning (FLDP-FL), a technique based on influence functions for local dif-
ferentially private federated learning which allows clients to change their pri-
vacy parameter £ post-training without having to retrain the federated model.
Through empirical evaluation on three datasets, we show that FLDP-FL is able
to estimate the true parameters that would be obtained if the client’s data was
re-randomized under their new e value and federated retraining was repeated.
Further, we also show that FLDP-FL is able to support multiple clients chang-
ing their € value after training when the dataset is of sufficient size and can also
generate reasonable estimations when the client performing the change owns a
large portion of the overall federated dataset. Future work will include utiliz-
ing second-order influence functions instead of first-order estimations to see if
better loss difference, accuracy difference, and euclidean distance between the
estimated and true parameters can be obtained as well as using local differential
privacy methods beyond randomized response.
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