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Abstract. Triangle counting is a fundamental and widely studied prob-
lem on static graphs, and recently on temporal graphs, where edges carry
information on the timings of the associated events. Streaming process-
ing and resource efficiency are crucial requirements for counting triangles
in modern massive temporal graphs, with millions of nodes and up to
billions of temporal edges. However, current exact and approximate al-
gorithms are unable to handle large-scale temporal graphs. To fill such
a gap, we introduce STEP, a scalable and efficient algorithm to approx-
imate temporal triangle counts from a stream of temporal edges. STEP
combines predictions to the number of triangles a temporal edge is in-
volved in, with a simple sampling strategy, leading to scalability, effi-
ciency, and accurate approximation of all eight temporal triangle types
simultaneously. We analytically prove that, by using a sublinear amount
of memory, STEP obtains unbiased and very accurate estimates. In fact,
even noisy predictions can significantly reduce the variance of STEP’s es-
timates. Our extensive experiments on massive temporal graphs with up
to billions of edges demonstrate that STEP outputs high-quality estimates
and is more efficient than state-of-the-art methods.

Keywords: Temporal networks · Temporal triangle counting · Stream-
ing algorithm.

1 Introduction

Temporal graphs model complex systems [13], including social networks [38] and
databases [8], by associating each event in the system with its timing of occur-
rence. Temporal graph analysis provides a deep understanding of the underlying
complex systems and their properties [14] through various problems such as
temporal community detection [19], core decomposition [33], and pattern iden-
tification [10].

Temporal motifs and temporal triangles [21,29] are fundamental patterns
defined by i) a subgraph representing a given topological property, ii) an ordering
over the edges, capturing the timing of occurrence of the subgraph edges, and
2 † denotes equal contribution.
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iii) a temporal proximity constraint assuring that all events occur close in time.
The counts of temporal motifs and temporal triangles are crucial for a plethora
of graph analyses such as graph classification [39], anomaly detection [2], dense
subgraph identification [36], and more [10]. Counting temporal motifs can be
much more challenging than counting static subgraphs. In fact, identifying a
single star-shaped temporal motif is NP-hard, unlike static graphs where all
star-shaped subgraphs can be counted in polynomial time [20,37].

Given the importance of temporal triangle counting, both exact [22,30] and
approximate [34] algorithms have been developed. However, exact approaches
do not scale to modern-sized temporal graphs [29,9,22,18,30]. In addition, ap-
proximate sampling methods, which often need full-access to the input data,
require the processing of large sample sizes due to their pessimistic worst-case
analysis, which is extremely inefficient and impractical [41,35,20]. Overall, both
exact and approximate temporal triangle counting methods require substantial
resources to handle large temporal graphs, and designing scalable and efficient
algorithms is an extremely challenging open problem.
Main contributions. We introduce STEP, a new algorithm for approximate
temporal triangle counting in large temporal graphs. STEP processes temporal
graph edges in a single pass stream [25], that is a challenging and practical set-
ting. Streaming processing, in fact, enables analyzing massive temporal graphs,
characterized by a high volume of interactions recorded over time [13,14], while
limiting the memory available for storing the data. STEP uses a randomized sam-
pling approach coupled with the information provided by a suitable predictor to
identify and retain the most important edges over the stream. We prove that our
design yields accurate estimates with sublinear memory and rigorous approxi-
mation guarantees, i.e., the output is a relative ε-approximation for small ε. Our
extensive experimental evaluation shows that STEP saves up to 19× memory
and 200× time compared to existing state-of-the-art methods while computing
highly accurate estimates. Our key contributions are as follows:

1. We design STEP, a randomized, single-pass streaming algorithm to accurately
estimate all temporal triangle counts simultaneously. STEP uses a sampling ap-
proach coupled with a predictor, resulting in low run time and memory usage.

2. We rigorously analyze STEP, proving that: i) it produces unbiased estimates
independent of the prediction quality, ii) the predictor significantly decreases the
variance of the estimates, and iii) estimates remain robust and of high quality
even under reasonably noisy predictions.

3. We design a practical and efficient predictor that allows STEP to obtain high
accuracy and small memory usage, despite being domain-agnostic.

4. We perform an extensive experimental evaluation on large temporal graphs to
validate STEP and show that: i) it outperforms state-of-the-art (SotA) methods
for temporal triangle counting, achieving highly accurate results while reducing
resource usage by orders of magnitude; ii) STEP is the only method capable of
obtaining accurate estimates on a three-billion-edge temporal graph; iii) STEP
works in an online setting, using a predictor learned from historical data.
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Fig. 1: (a): temporal graph G = (V,E), with V = {v1, . . . , v5} and E =
{(v2, v3, 1), . . . }. (b): stream τ of the temporal edges of G. (c): the sequence
⟨(v2, v3), (v3, v4), (v4, v2)⟩ is a δ-instance of temporal triangle T4 (δ = 20). (d):
all distinct temporal triangles and the number of their δ-instances in G (δ = 20).
Edge labels ti, i = 1, 2, 3 (with t1 < t2 < t3) denote the ordering of edges in the
sequence σ (Def. 2). (e): some temporal triangles in G: δ-instances of T4 for
δ = 20 are marked with ✓, while ✗ denotes edges that are not δ-instances.

2 Preliminaries

We start by introducing the key definitions and concepts used in our work.

Definition 1. A temporal graph is a pair G = (V,E) where V is a set of n
vertices and E = {(u1, v1, t1), . . . , (um, vm, tm) : ui, vi ∈ V, ui ̸= vi and ti ∈ R+}
is a set of m directed temporal edges. Each temporal edge e = (u, v, t) ∈ E has
a timestamp t ∈ R+ denoting the time of the (static) interaction (u, v).

Fig. 1(a) shows an example of a temporal graph G with n = 5 and m = 10.
We use the term static edge to denote an edge (u, v) ∈ V 2 with no timestamp.
Similarly, a graph formed by static edges is a static graph.3 Our focus is to count
temporal triangles [29,20], fundamental patterns for analyzing temporal graphs.

Definition 2 ([29,20]). A temporal triangle is a pair T = ((VT , ET ), σ) where
(VT , ET ) is a static graph with |VT | = 3 vertices and |ET | = 3 edges, and σ is
an ordering of the edges in ET .
3 The static graph of G = (V,E) is obtained by considering all edges in E as static.
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A temporal triangle T captures both structural (i.e., a triadic interaction) and
temporal properties (i.e., the temporal ordering of edges). We denote each dis-
tinct temporal triangle with Ti, i ∈ [8]4 (see Fig. 1(d)), while T will denote an
arbitrary temporal triangle.

Definition 3. Let T = ((VT , ET ), σ) be a temporal triangle where ⟨(x1, y1), (x2,
y2), (x3, y3)⟩ is the sequence of edges of ET ordered according to σ. Given a
temporal graph G = (V,E) and a time duration δ ∈ R+ we say that a sequence
of temporally-ordered edges S = ⟨(u1, v1, t1), (u2, v2, t2), (u3, v3, t3)⟩ from E is
a δ-instance of the temporal triangle T if: 1) there exists a bijection f on the
vertices such that f(ui) = xi, f(vi) = yi for i ∈ {1, 2, 3}; 2) the time-duration of
the sequence S is at most δ, that is t3 − t1 ≤ δ.

Given a time-duration δ ∈ R+, a δ-instance S represents an occurrence of the
temporal triangle T within δ-time. See Fig. 1(c) and Fig. 1(e) for detailed ex-
amples. For Ti, i ∈ [8], and a time-duration δ, we let Ti = {∆ ∈ E3 : ∆ is a
δ-instance of Ti in G} be the set of δ-instances of Ti in G, and |Ti| be the count
of triangle Ti. Note that for a temporal graph with m temporal edges, the count
|Ti| of a triangle Ti can be as large as Θ(m3), and, in contrast to static graphs,
m may not be polynomial in n (due to the edges timestamps).

Streaming model. We consider the following restrictive streaming computa-
tional model: 1) the temporal graph G is accessed as a stream τ of temporal
edges; 2) edges on the stream τ are temporally ordered, i.e., if e1 = (u1, v1, t1)
precedes e2 = (u2, v2, t2) on τ , then t1 < t2; and 3) each temporal edge can be
processed only once, in a 1-pass over τ . See Fig. 1(b) for an example of a stream.

The streaming model we consider is a challenging and restrictive compu-
tational model for processing temporal graphs, of high practical utility. Our
computational model is much more restrictive compared with existing works,
that allow for multiple passes over τ [41], or complete random access to the
graph [30,29,9,18]. In fact, modern temporal graphs have massive sizes, e.g.,
they are collected from high-throughput systems such as IP networks or social
networks, requiring a streaming access model, as in our model [13].

Computational problem. The exact computation of all temporal triangle
counts is extremely challenging, inefficient, and resource demanding [30,22,29,9].
In contrast, we focus on computing accurate estimates of all counts |Ti| simul-
taneously, as formalized by the following problem.

Problem 1 (Temporal triangle estimation problem). Given a 1-pass stream τ of a
temporal graph G, a time-duration δ ∈ R+, an approximation error ε > 0, and a
small constant η, output estimates ci such that P[|ci−|Ti|| ≥ ε|Ti|] ≤ η,∀i ∈ [8].

Prob. 1 requires the simultaneous computation of estimates ci for triangle counts
|Ti|, i ∈ [8], with guaranteed accuracy (i.e., relative ε-approximation) and bound-
ed error probability η, over a challenging 1-pass stream τ . We also require that

4 We use i ∈ [a], a ∈ N to denote i ∈ {1, . . . , a}.
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an algorithm for Prob. 1 must use limited total memory since temporal trian-
gle counting is extremely memory-demanding [22,35,41]. Restricting the total
memory to be sublinear is very common in streaming settings [42,27]. In our
setting, we require a total memory sublinear in mδ, i.e., the maximum number
of temporal edges of the stream τ occurring in any time-window of length δ.

3 STEP algorithm

3.1 Overview

We first introduce the techniques and design choices behind our algorithm STEP.
We design STEP to achieve sublinear memory guarantees (see Sec. 3.3), by build-
ing on ideas from state-of-the-art streaming algorithms for sublinear counting of
static triangles and subgraphs [37]. That is, 1) STEP stores, probabilistically, a
small sample of edges from the stream τ ; 2) STEP computes unbiased estimates ci
simultaneously for each count |Ti|, i ∈ [8] based on the retained random sample.
The above approach allows STEP to use sublinear memory and to obtain unbi-
ased estimates ci, i.e., E[ci] = |Ti|. However, the estimates ci may be far from
|Ti|, especially when the random sample retained by STEP is not representative.
To compute estimates ci close to their expectations |Ti|, we build on ideas from
the Algorithms with Predictions literature for static graphs [7,4]: i) we empower
STEP with a predictor Q(·) that enables the identification of important edges on
the stream τ—yielding representative samples retained by STEP and highly accu-
rate estimates ci; ii) we design a predictor for the simultaneous estimation of all
temporal triangle counts, relating STEP’s accuracy with the quality of predictions
of Q(·). We prove that perfect predictions as well as noisy predictions result in
very accurate estimates ci and sublinear space complexity (Thm. 1), improving
over the state-of-the-art (that does not leverage predictions). In addition, we
also design a practical and efficiently computable predictor Q(·) for STEP.

All missing proofs and subroutines are in our extended version [40].

3.2 Algorithm description

STEP leverages a randomized approach by sampling edges over the stream with
a fixed probability p ∈ (0, 1], similarly to state-of-the-art methods for estimating
temporal subgraph counts [20,35,41]. In addition, STEP employs a predictor Q(·),
that classifies edges on the stream τ as either heavy or light. Heavy edges are those
predicted to occur in many temporal triangles, and thus important to retain to
collect a representative sample. The edge classification provided by Q(·) is then
used to obtain strong guarantees on small memory usage and high estimation
accuracy. More in detail, STEP works as follows. First, it initializes two sets, H
and SL, for storing heavy and (sampled) light edges, respectively (line 1). It
then initializes counters ci,j for each triangle type Ti, i ∈ [8], j ∈ [0, 2] (line 2).
All counters are used to output the unbiased estimates ci for |Ti|. STEP then
processes the stream τ (line 3), and for each edge e = (u, v, t): 1) it removes
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Algorithm 1: STEP
Input: Stream τ of temporal edges, time-duration δ, predictor Q(·), sampling

probability p ∈ (0, 1].
Output: Estimates ci of |Ti| for i ∈ [8].

1 H ← ∅; SL ← ∅;
2 ci,0 ← 0; ci,1 ← 0; ci,2 ← 0 for i ∈ [8];
3 foreach e = (u, v, t) ∈ τ do
4 H ← CleanUp(H, t− δ);SL ← CleanUp(SL, t− δ);
5 ∨H,H ,∨H,SL ,∨SL,SL ← CollectWedges(H,SL, e);
6 ci,0 ← UpdateCounts(ci,0,∨SL,SL , e) for i ∈ [8];
7 ci,1 ← UpdateCounts(ci,1,∨H,SL , e) for i ∈ [8];
8 ci,2 ← UpdateCounts(ci,2,∨H,H , e) for i ∈ [8];
9 if Q(e) = 1 then H ← H ∪ {e};

10 else if BiasedCoin (p) = true then SL ← SL ∪ {e};
11 return ci =

ci,0
p2

+
ci,1
p

+ ci,2 for i ∈ [8];

edges from H and SL with timestamps smaller than t − δ using the CleanUp
procedure (line 4). The CleanUp procedure simply updates the sets H and SL

by retaining only edges e′ = (u′, v′, t′) with t′ within δ time from the timestamp
of the current edge e, that is, t − t′ ≤ δ. 2) it collects all wedges in the sample
H ∪SL;5 3) all collected wedges are partitioned into three subsets (line 5): ∨H,H

(wedges with both edges in H), ∨SL,SL
(both edges in SL), and ∨H,SL

(one edge
in H, the other in SL); 3) the counters ci,j are updated using the UpdateCounts
procedure (lines 6-8), tracking occurrences of triangles Ti with 0, 1, or 2 heavy
edges. STEP then calls the predictor Q(e) to determine whether e is heavy or
light: if Q(e) = 1, e is added to H (line 9); otherwise, e is added to SL with
probability p (line 10). Finally, STEP outputs estimates ci for i ∈ [8] by combining
and weighting the counters ci,j , j = 0, 1, 2 (line 11).

3.3 Analysis

Time complexity. First, we briefly consider the expected time complexity of
STEP. Given the input to Algorithm 1, the expected time complexity of STEP
is O(m(pmδ + |H|)2), where: mδ is the maximum number of edges over τ that
occur in any time-duration of length δ, and |H| is the number of heavy edges in
H during the execution of the algorithm (see our extended version [40]). When
|H| = o(mδ) and p ≪ 1 (e.g., as in our experiments), STEP is much more efficient
than previous approaches (see Sec. 5). That is, STEP scales to large datasets,
where previous approaches become impractical (see results in Sec. 4).
Unbiasedness. We prove that STEP computes unbiased estimates ci of the
counts |Ti|, for i ∈ [8], independently of the quality of the predictions of Q(·).

5 A wedge is a pair of distinct edges sharing a vertex.
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Lemma 1. Given a stream τ of a temporal graph G = (V,E), a time-duration
δ, and a predictor Q(·), each estimate ci, i ∈ [8] reported by STEP is an unbiased
estimate of the count |Ti|, that is E[ci] = |Ti|.

Embedding predictions. We now analyze the impact of the predictor Q(·) for
our algorithm STEP. We first propose a practical model for a predictor, formaliz-
ing a ranking predictor. Our model is motivated by the fact that most machine
learning models are highly optimized for ranking metrics, e.g., Kendall’s tau or
Spearman’s correlation [43,11]. More in detail, a ranking predictor ranks edges
e ∈ τ according to their importance for counts |Ti|. We show analytically that
both a perfect ranking predictor and a noisy one yield accurate estimates and
sublinear space complexity for STEP.

Perfect predictor. Let ω(e, Ti) = |{∆ : e ∈ ∆,∆ ∈ Ti}| be the number of
triangles in Ti, i ∈ [8] containing edge e ∈ E, and W (e) =

∑
i∈[8] ω(e, Ti) be the

total edge weight of e. Let W
.
= ⟨eW1 , . . . , eWm ⟩ be the edges in E ordered by

non-increasing values of their weights W (e), ties broken arbitrarily. Given two
distinct edges e, e′ ∈ E, we use e ≺ e′ to denote that e comes before e′ in the
ordering W. With a slight abuse of notation, we denote with e≺j

the edge in
the j-th position in W, and with W(e,≺) the position of edge e ∈ E in W.

(Ranking predictor) Given an integer value K > 0, a ranking predictor
Q(·)K is such that Q(e)K = 1 iff W(e,≺) ≤ K.
A ranking predictor requires as unique input a parameter K, i.e., the number
of edges to classify as heavy. Clearly, K corresponds to the maximum number
of edges to be retained deterministically by STEP.6 A ranking predictor does not
require the knowledge of a threshold over edge weights W (e), e ∈ E to classify
heavy edges, in contrast with previous literature [7]. That is our predictor model
is required to output the ranking W without having explicit access to the weights
W (e), e ∈ E, as this would not be practical.

We next introduce a more practical noisy ranking predictor.
Noisy predictor. Given two parameters α and K, we let Π({1, . . . ,m})(α,K)

be the set of permutations of m elements where three blocks of elements are
fixed, i.e., blocks [1, . . . ,K − α− 1], [K − α, . . . ,K + α] and [K + α+ 1, . . . ,m].
That is, elements from one block can only be permuted inside the same block.

(Noisy ranking predictor) Given a parameter K > 0 and 0 ≤ α ≤
min{m−K+1,K−1}, an α-noisy K-ranking predictor outputs Wπ = ⟨eWπ1

, . . . ,
eWπ|E|

⟩, that is the vector W permuted according to π ∼ U(Π({1, . . . ,m})(α,K)),
where U(·) denotes the uniform distribution over the elements of a set.
Therefore an α-noisy K-ranking predictor is such that it correctly classifies the
top-(K−α−1) edges in W, and the edges with small weight W (e) (i.e., all edges
in position j ≥ K + α + 1). While, a noisy ranking predictor can be arbitrarily
wrong in classifying edges in position K − α, . . . ,K + α over W. Where, α is
a noise parameter : a larger value for α corresponds to a less accurate ranking
predictor. Our noisy predictor definition closely reflects machine learning models
6 The set of heavy edges H used by STEP has size trivially bounded by K.
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or recommenders with high recall. Note that a 0-noisy predictor corresponds to
a ranking predictor (without noise). Let ∇ = maxi∈[1,m−1]{W (e≺i

)−W (e≺i+1
)}

be the maximum difference of the weights for two adjacent edges in the vector
W. Finally let ∇a = ∇ · (a+ 1), a ≥ 0.

We now show that STEP computes a relative ε-approximation of all the tem-
poral triangle counts |Ti|, i ∈ [8] with controlled error probability and sublinear
memory usage in mδ. We consider both perfect and noisy predictors.7

Theorem 1. Consider an execution of STEP, with ε > 0 and K = o(mδ). There
exist constants C > 1, γ ∈ (0, 1

2 ) such that:

1. when Q(·)K is a ranking predictor then if p ≥ C
√
mδ

ε|Ti|1/2−γ , STEP uses

O(ε−1m
3/2
δ /|Ti|1/2−γ) memory in expectation;

2. when Q(·)K is an α-noisy K-ranking predictor for α ≥ 1 then if p ≥
C
√
∇αmδ

ε|Ti|1/2−γ , STEP uses O
(
ε−1m

3/2
δ

√
∇α/|Ti|1/2−γ

)
memory in expectation.

In both cases, STEP is a one-pass streaming algorithm with P[∃i ∈ [8] : |ci−|Ti|| ≥
ε|Ti|] ≤ 1/3 using sublinear memory.

Consider case 1. and the following event E = “count |Ti|1/2−γ is sufficiently large,
for each i ∈ [8]”. Then Thm. 1 indicates that the sampling probability p can be
set to a sufficiently small value, as

√
mδ/|Ti|1/2−γ ≪ 1 under E. Consequently,

the expected memory usage of STEP becomes sublinear in mδ, aligning with
established results in concentration theory [5]. Clearly, if E does not hold, then
counts |Ti| are small enough to be obtained with high accuracy using the set H
identified through Q(·). Now, consider case 2. from Thm. 1, under E, a noisy
predictor increases STEP’s expected memory usage by a factor

√
∇α (compared

to case 1.). That is STEP may miss some triangle counts due to noisy predictions,
requiring a larger value for p to achieve the accuracy guarantees. Nonetheless,
if the predictor effectively ranks important (heavy) edges (i.e.,

√
∇α is not too

large), then STEP achieves accurate estimates with reduced variance compared
to classical algorithms while maintaining an expected sublinear memory usage.
In our extended version [40] we show, as a corollary of Thm. 1 case 1., that if
the first K edges in W capture a sufficient number of triangles then Var[ci] is a
factor O(|Ti|) smaller compared to when STEP does not use a predictor.

3.4 A simple and practical predictor

We now introduce a simple and practical noisy ranking predictor. That is, we
describe a temporal min-degree predictor which can be built efficiently with a
single pass on the input stream, and can be used within our algorithm STEP.
We define the temporal degree of node u ∈ V within a time interval [ta, tb] as
d(u, ta, tb) = |{(x, y, t′) ∈ E : (x = u or y = u) and t′ ∈ [ta, tb]}|. That is, the

7 We assume that there exists an arbitrarily large constant R for which |Ti| = R ·
|Tj |, i, j ∈ [8]. Such assumption can be avoided replacing |Ti| with

∑
i |Ti|.
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temporal degree is the number of edges incident to u within the given time
interval. Next, given a temporal edge e = (u, v, t) ∈ E and a time duration δ let
wm−d(e) = min{d(u, t−δ, t+δ), d(v, t−δ, t+δ)} be the temporal min-degree weight.
That is, wm−d(e) is the minimum between the temporal degrees of the nodes of
edge e. Intuitively, the temporal min-degree weight accounts for the temporal
activity of nodes over the graph, which is crucial for our goal of designing a
highly accurate predictor for STEP. Let Wm-d be the edges e ∈ E ordered by
non-increasing values of their weight wm−d(e), ties broken arbitrarily. Then, for
any edge e ∈ E, the temporal min-degree ranking predictor classifies Q(e)K = 1
if e is within the first K edges of Wm-d, and Q(e)K = 0 otherwise. Therefore, the
temporal min-degree predictor uses the temporal min-degree weights wm−d(e) as
a proxy for the unknown values W (e) of a perfect predictor. Clearly, the temporal
min-degree predictor may not be accurate when the rankings of Wm-d and W
do not align. Note that the temporal min-degree predictor can be computed
extremely efficiently, with a single pass over the stream, and avoiding exact
temporal triangle counting. Finally, note that our temporal min-degree predictor
leverages both structural and temporal properties in the data—in contrast with
predictors for static triangle counting [7,4], that do not consider time. In our
extended version [40], we provide an empirical comparison for STEP coupled
with different predictors, showing the superior performance of our temporal min-
degree predictor compared with state-of-the-art static predictors.

4 Experimental evaluation

Our extensive experiments investigated the following questions:
Q1. How does STEP compare to SotA approaches in terms of accuracy of its

estimates and computational resources (time and memory)?
Q2. What is the impact of the predictor Q(·) on the estimates of STEP?
Q3. How does STEP perform in an online setting. Namely, when a predictor

Q(·) is learned on historical data, and then used on previously unseen data?
Datasets and environment. We considered four massive publicly available
temporal graphs (Tab. 1), which are extremely challenging for Problem 1 and
used by previous works [28,9,36,30]. More details on the used datasets and the
setting of our experiments can be found in our extended version [40]. Our code
is publicly available online.8

Baseline methods. We compared STEP with the following SotA algorithms:
Degeneracy [30], an exact algorithm for computing the counts of all temporal
triangles; FAST-Tri [9], an exact algorithm specifically tailored to temporal tri-
angles; MoTTo [18], a recent SotA exact algorithm for counting 3-nodes 3-edges
motifs, including triangles; and EWS [41], the SotA approximate method for solv-
ing Prob. 1.9 We also compared with the sampling approach of STEP without a

8 https://github.com/VandinLab/STEP.
9 EWS requires two parameters pEWS and qEWS that we set as suggested by the au-

thors [41] (see [40] for further details).

https://github.com/VandinLab/STEP
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Table 1: Datasets. We report: n = |V | the number of nodes; m = |E| the number
of temporal edges; the precision of the timestamps; and the total timespan.

Dataset n m precision timespan

Stackoverflow (SO) 2.6M 63.5M sec 7.60 years
Bitcoin (BI) 48.1M 113.1M sec 7.08 years
Reddit (RE) 8.4M 636.3M sec 10.06 years
EquinixChicago (EC) 11.1M 3.3B µ-sec 62.00 mins

Table 2: Peak RAM memory, in GB, of a representative run for the largest δ.
OOM denotes out of memory.

Dataset NAIVE-S STEPP STEPTMD EWS Degeneracy FAST-Tri MoTTo

SO 0.78 0.74 0.74 8.04 5.10 5.81 12.07
BI 1.70 1.81 1.74 27.05 15.40 17.43 34.08
RE 14.68 14.74 15.53 103.75 71.30 79.59 159.74
EC 63.46 62.70 63.47 OOM OOM OOM OOM

predictor that we denote with NAIVE-S. Note that all exact approaches consid-
ered cannot process the input in streaming, requiring therefore large memory.
Memory and runtime. We measured the peak RAM memory (in GB) of each
algorithm over a representative run. The runtime is an average over ten runs,
unless otherwise stated. Since EWS counts triangles independently, its runtime is
an average of the aggregated time to process all triangles, across ten runs.
Parameters. We select a small, a medium, and a large value for the parameter
δ according to the precision of each dataset. We set on SO, BI and RE δ ∈
{3 600, 86 400, 259 200}, while for EC we set δ ∈ {1 × 105, 2 × 105, 3 × 105}.
We set the parameter K to m

100 . The sampling probability pNS of NAIVE-S is
set to obtain, in expectation, the same number of edges retained by STEP (i.e.,
|SL| + |H|). All the parameters used in our experiments are in the extended
version [40].
Ranking predictors. We considered two ranking predictors for STEP: 1) a
perfect predictor that exactly classifies the K edges with the highest weights
W (e), e ∈ E as defined in Sec. 3.3, and 2) a temporal min-degree predictor, as
described in Sec. 3.4. We denote the resulting methods with STEPP and STEPTMD
respectively. The perfect predictor allows us to evaluate the performance of STEP
when the edge weights correspond to the actual number of temporal triangles an
edge is involved in—this is not of practical interest but provides a lower bound
on the error of the estimates of STEP. The temporal min-degree predictor (TMD)
is instead simple, general, domain-agnostic, and can be computed from simple
structural properties in the data. The TMD uses the temporal min-degree as edge
weight to classify the top-K most heavy edges to retain, as described in Sec. 3.4.
The resulting method, STEPTMD is simple and of practical interest, given that the
TMD can be computed efficiently.
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4.1 Comparison with state-of-the-art methods

We first compared STEP with SotA baselines to answer question Q1. For such
comparison, we fixed the parameters of all the approximation algorithms (STEP,
NAIVE-S, and EWS) to ensure comparable runtime and MAE. Specifically, we ran
STEP with the same sampling probability as EWS (p = 0.01) on all datasets ex-
cept for SO, where p = 0.1 was used since STEP is much faster than EWS. When
discussing results for STEP, we focus on STEPTMD. Tab. 2 reports the peak mem-
ory usage for each algorithm, and Tab. 3 presents the runtime of all algorithms
except STEPP and NAIVE-S (see [40] for additional results). Fig. 2 shows the ac-
curacy of each approximate method on SO, BI and RE datasets for the largest
values of δ (exact methods always report 0 MAE). While Fig. 3 reports the ac-
curacy of the STEPP, STEPTMD and NAIVE-S approaches on the EC dataset (EWS
is not reported since it violates the RAM budget, see Tab. 2). Results for other
values of δ are available in the extended version [40]. On the SO dataset, STEPTMD
requires substantially less memory than EWS, Degeneracy, FAST-Tri and MoTTo
while achieving more accurate estimates than EWS for all values of δ and for most
temporal triangle counts. On the RE dataset, STEPTMD similarly demonstrates a
significant reduction in memory usage compared to EWS, Degeneracy, FAST-Tri
and MoTTo, and often provides higher-quality estimates than EWS. On the BI
dataset, STEPTMD is much more memory efficient compared to EWS, Degeneracy,
FAST-Tri and MoTTo. For larger values of δ, when the estimation problem be-
comes more challenging, STEPTMD obtains more accurate estimates than EWS. For
smaller values of δ, the estimates provided by STEPTMD are comparable but slightly
less accurate than those of EWS. In terms of runtime, STEPTMD consistently outper-
forms Degeneracy, FAST-Tri and MoTTo, and, in most cases, also EWS, with the
exception of δ = 259 200 on the BI dataset. The BI dataset contains almost 40
billion δ-instances, most of which are counted deterministically by STEPTMD (over
H). Hence, STEPTMD outputs tight estimates but requires a high execution time
(see our extended version [40] for further analyses on the time-accuracy trade-
off). Finally, on the EC dataset, that has more than 3 billion temporal edges,
all SotA baselines cannot terminate their execution within the maximum mem-
ory allowance (200GB). Instead, STEPTMD requires less than 65GB of memory,
achieves an average MAE below 0.1, and runs in less than ten minutes, even for
the largest δ. In summary, these results show that STEPTMD enables the efficient
and accurate estimation of all temporal triangle counts with remarkably small
memory usage, especially on massive datasets where existing SotA approaches
cannot scale their computation due to high resource usage.

4.2 Impact of the predictor

To answer Q2, we consider STEPP, STEPTMD, and NAIVE-S, and set their param-
eters so that they sample the same number of edges in expectation (see our
extended version [40]). Fig. 2 and Fig. 3 show that both STEPP and STEPTMD
provide much more accurate estimates than NAIVE-S on all datasets, with the
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Table 3: Average runtime (in sec). “✗” denotes out of RAM memory (200 GB).
Exact algorithms are run once due to their high runtime, hence we do not show
their variance. The best runtime is in bold. SU denotes the speed-up of STEPTMD
compared to each baseline (N/A is used when the speed-up cannot be computed).
Dataset δ STEPTMD EWS Degeneracy FAST-Tri MoTTo

Time Time SU Time SU Time SU Time SU

SO
3600 4.9 ± 0.0 30.4± 0.8 6.2× 348.4 71.1× 15.1 3.1× 174.5 35.6×
86400 6.3 ± 0.1 32.0± 0.5 5.1× 355.2 56.4× 41.8 6.6× 254.5 40.4×
259200 7.5 ± 0.1 35.6± 0.9 4.7× 356.3 47.5× 76.3 10.2× 378.9 50.5×

BI
3600 6.1 ± 0.1 67.7± 5.1 11.1× 422.1 69.2× 189.0 31.0× 1113.7 182.6×
86400 43.8 ± 0.4 115.9± 1.7 2.6× 421.3 9.6× 4287.7 97.9× 18045.1 412.0×
259200 278.2± 5.5 198.5 ± 5.9 0.7× 424.8 1.5× 13804.3 49.6× 55494.2 199.5×

RE
3600 69.7 ± 2.0 570.7± 50.3 8.2× 18656.8 267.7× 1708.7 24.5× 6406.0 92.0×
86400 103.5 ± 4.4 943.1± 67.6 9.1× 18528.1 179.0× 7479.5 72.3× 23085.0 223.0×
259200 164.9 ± 2.1 1121.8± 79.1 6.8× 18950.0 115.0× 11165.8 67.7× 29680.1 180.0×

EC
1× 105 425.6 ± 16.8 ✗ N/A ✗ N/A ✗ N/A ✗ N/A
2× 105 497.4 ± 8.6 ✗ N/A ✗ N/A ✗ N/A ✗ N/A
3× 105 580.3 ± 0.9 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

exception of δ = 3600 for the BI dataset where STEPTMD and NAIVE-S are com-
parable (see our extended version [40]). Moreover, the variance of the estimates
by both STEPP and STEPTMD is always smaller compared to NAIVE-S, especially
for the larger datasets RE and EC. In terms of runtime, NAIVE-S is the fastest
method (see [40]): in fact, NAIVE-S counts fewer triangles than STEP, yielding
estimates with higher variance—highlighting a key trade-off, i.e., more accurate
estimates require larger execution times for STEP. It is worth noting that on
the EC dataset, STEPTMD requires more time to execute than STEPP, in contrast
to all other datasets. This is due to the structure of the EC dataset, on which
the temporal min-degree does not provide a good proxy for the weights W (e) of
temporal edges (see our extended version [40]). Nevertheless, STEP still computes
more accurate estimates than NAIVE-S while being highly memory efficient. To
summarize, by employing a predictor STEPP and STEPTMD significantly improve
the accuracy and reduce the variance of NAIVE-S’s estimates. However, such
higher accuracy may lead to higher execution times compared to NAIVE-S, due
to the processing of more occurrences.

4.3 Online estimation

To address Q3, we developed a practical approach for learning a predictor from a
training stream of temporal edges (τ tr) and used it to estimate temporal triangle
counts on a test stream (τ ts). The training stream τ tr consists of the first 75%
of edges appearing on the stream τ . The predictor is based on a threshold value
ϕ, obtained from the temporal min-degree weight (see Sec. 3.4) of the K-th edge
in the non-decreasing ordering induced by wm−d(e), e ∈ τ tr. When processing
the test stream, edges in τ ts with temporal degree wm−d(e) ≥ ϕ are classified as
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Fig. 2: MAE and standard deviation for STEP, NAIVE-S and EWS on SO, BI and
RE datasets from Tab. 1, for the largest values of δ and for each temporal triangle
(see Fig. 1(d)).
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Fig. 3: MAE and standard deviation for STEP, NAIVE-S and EWS on EC dataset
from Tab. 1, for the largest values of δ and for each temporal triangle (see
Fig. 1(d)).
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Fig. 4: Accuracy comparison (MAE and standard deviation) for online estimation
over τ ts, between NAIVE-S and STEPTMD (trained over the historical data τ tr).
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heavy and retained by the algorithm.10 The underlying idea is that the threshold
ϕ classifies important edges to retain over τ ts whenever the training stream τ tr

is sufficiently representative (for τ ts). The results for BI, RE and EC for the
largest value of δ are shown in Fig. 4 (see the extended version [40]). We observe
that STEPTMD provides more accurate estimates than NAIVE-S on the RE and BI
datasets. On the EC dataset, STEPTMD and NAIVE-S achieve similar accuracy, as
the learned predictor (i.e., ϕ) does not align well with a perfect classification over
τ ts (similarly to the results in Sec. 4.2). We study such aspects in the extended
version [40]. Overall, our findings highlight that STEP effectively leverages simple
predictors learned from historical data, often outperforming NAIVE-S in most
configurations. Therefore, even under noisy and inaccurate predictions, STEP
achieves good estimates, supporting its usage in practical applications.

5 Related work

To the best of our knowledge, our work is the first to solve the temporal triangle
counting problem using predictions. We now survey the works most relevant to
this paper; for overviews on temporal motifs and algorithms with predictions
see [21,10,26].
Temporal motif and triangle counting. There exist several definitions of
temporal motifs, including temporal triangles [21,23]. We adopt the definition
introduced by Paranjape et al. [29], for which various counting algorithms exist.
Exact methods. Paranjape et al. [29] introduced a method with complexity
O(|E′|3/2 + m|E′|3/4), where |E′| is the number of edges in the static graph
of a temporal graph, that is impractical on large temporal graphs. Gao et al. [9]
and Li et al. [18] improved the work in [29] introducing various pruning tech-
niques yielding a time-complexity of O(mm2

δ), matching the complexity of the
exhaustive enumeration algorithm in [22]. In fact, most recent works do not scale
to large temporal graphs [18,9], as shown by our experimental evaluation (Sec.
4). Pashanasangi and Seshadhri [30] developed an exact method with complex-
ity O(mκ logm), where κ is the degeneracy of the static graph [24]: such an
approach can be impractical on large real-world graphs where κ is in the order
of hundreds or thousands [30]. Moreover, all existing exact approaches remain
computationally impractical and extremely memory-intensive, as they require
access to the temporal graph, and cannot work in streaming [9,30,18].
Approximate methods. Approximate approaches are based on randomized sam-
pling. Most methods only approximate a single temporal motif count, either by
collecting subgraphs within specific time windows [35,20] or by sampling tem-
poral edges [41] or paths [28]. Some techniques can estimate multiple temporal
motifs counts under specific constraints, such as shared static topology [34] or
specific structure [32], but cannot process the graph as a stream. To our best
knowledge, EWS by Wang et al. [41] is the only approximation algorithm designed
for streaming processing. EWS uses edge sampling to obtain an estimate for an

10 The predictor evaluates if e = (u, v, t) should be retained or not at time t+ δ.
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individual triangle count. However, EWS requires large computational resources,
such as memory, not scaling on large temporal graphs (see Sec. 4).
Algorithms with Predictions (AwP) in static graphs. The AwP frame-
work introduced in [26] enhances classical combinatorial algorithms with predic-
tions obtained, for example, from machine learning models trained on historical
data. Classical combinatorial algorithms benefit from predictions by improving
their efficiency, e.g., runtime or memory usage, and retaining their worst-case
complexity. Such new framework has been applied to clustering [15], graph prob-
lems [17], and more [1,6,3]. Related to our work, Chen et al. [7] developed a
predictor-based sampling algorithm to estimate triangle and four-cycle counts
in static graph streams. In addition to target static graphs, the work of Chen et
al. [7] relies on the impractical assumption of a predictor knowing the number of
triangles an edge participates in. Clearly, such an assumption is impractical: i) a
perfect predictor can be obtained only by solving the triangle counting problem
exactly; and ii) it cannot model the complex predictors used in practice. Re-
cently, Boldrin and Vandin [4] improved the work in [7] and proposed a simple,
domain-independent predictor that can be obtained with a single pass over the
stream. Unfortunately, the idea in [4] is not suitable for solving the temporal tri-
angle counting problem, as it makes STEP very inefficient, especially compared
with our novel predictor (see our extended version [40]).

6 Conclusion

We studied the problem of counting temporal triangles in a stream of temporal
edges. We introduced STEP, a sampling algorithm enhanced with a predictor,
which provides highly accurate estimates while using minimal computational re-
sources compared to SotA approaches. To the best of our knowledge, STEP is the
first algorithm for temporal triangle counting using predictions. Experimental
results show that STEP is much faster than SotA exact methods and requires
significantly less resources than approximate SotA streaming algorithms, often
obtaining more accurate estimates. Finally, we show how to efficiently compute
a simple predictor, that can be also used for an online processing of the graph.

Future research includes the development of more advanced and domain-
dependent predictors (e.g., learning specific edge-weights for the classification of
important edges to retain over the stream), and extending STEP’s approach to
other temporal motifs [32,34].
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