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Abstract. Detecting Large Language Model (LLM)-generated code is
a growing challenge with implications for security, intellectual property,
and academic integrity. We investigate the role of conditional probabil-
ity distributions in improving zero-shot LLM-generated code detection,
when considering both the code and the corresponding task prompt that
generated it. Our key insight is that when evaluating the probability
distribution of code tokens using an LLM, there is little difference be-
tween LLM-generated and human-written code. However, conditioning
on the task reveals notable differences. This contrasts with natural lan-
guage text, where differences exist even in the unconditional distribu-
tions. Leveraging this, we propose a novel zero-shot detection approach
that approximates the original task used to generate a given code snippet
and then evaluates token-level entropy under the approximated task con-
ditioning (ATC). We further provide a mathematical intuition, contex-
tualizing our method relative to previous approaches. ATC requires nei-
ther access to the generator LLM nor the original task prompts, making
it practical for real-world applications. To the best of our knowledge, it
achieves state-of-the-art results across benchmarks and generalizes across
programming languages, including Python, CPP, and Java. Our findings
highlight the importance of task-level conditioning for LLM-generated
code detection. The supplementary materials and code are available at
https://github.com/maorash/ATC, including the dataset gathering im-
plementation, to foster further research in this area.
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1 Introduction

Large Language Models (LLMs) such as Claude [1] and GPT [2] have demon-
strated remarkable capabilities in text generation, excelling in tasks such as
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summarization, translation, and creative writing. These models typically lever-
age the transformer architecture [26] and large-scale pretraining to produce co-
herent text. However, their broad adoption has raised concerns about misinfor-
mation and other ethical challenges [34, 8, 13], highlighting the need for robust
detection methods. More recently, LLMs have shown impressive proficiency in
code generation, with models like CodeLlama [20], and StarCoder [25] produc-
ing functional code snippets. These advancements transformed software develop-
ment by automating repetitive coding tasks, assisting with debugging, and even
generating novel solutions from high-level descriptions. Furthermore, AI coding
agents and integrated development tools have transformed modern workflows
by embedding generation capabilities directly into the programming process.
Although these advances improved productivity, they also introduce concerns
related to security, intellectual property, and academic integrity. As a result,
distinguishing LLM-generated code from human-written code is crucial for mit-
igating potential risks. While significant progress has been made in detecting
LLM-generated natural language text, identifying LLM-generated code remains
a challenging problem. Prior research attributes this difficulty to the structured
nature of code, which results in lower predictive token entropy compared to
natural language [32]. Unlike natural language, where lexical choices and sen-
tence structures vary widely, programming languages impose strict syntactic and
semantic rules, making token probability distributions less informative for de-
tection. In our research, we take a different approach by analyzing the role of
task conditioning in improving detection. To investigate this, we conduct an
initial experiment comparing LLM-generated and human-written content across
natural language and code. We use two datasets: MBPP [5], which consists of
programming tasks and code snippets, and WritingPrompts [12], which contains
natural language stories. We use the entire test set from MBPP and sample
an equivalent amount of texts from WritingPrompts, generating responses us-
ing CodeLlama for MBPP and LLaMA 3.1 [4] for WritingPrompts. To avoid
unwanted effects of response lengths, responses shorter than 200 characters are
discarded, while longer ones are truncated. For each response, we compute mean
token entropy using the same model that generated it, under two settings: (1)
unconditional sampling and (2) sampling conditioned on the original task. Ex-
tended details on the initial experiment are provided in Appendix A. The re-
sults in Figure 1 reveal a clear pattern. Without task conditioning, the entropy
distributions of human-written and LLM-generated code overlap significantly,
making detection difficult. In contrast, human-written and LLM-generated text
from WritingPrompts exhibit greater separability even without task condition-
ing. When introducing task conditioning, both datasets show improved distin-
guishability between human-written and LLM-generated content. This finding
suggests that detecting LLM-generated code without access to the task prompt
is inherently challenging, but incorporating task-level context can enhance de-
tection accuracy. Intuitively, conditioning on the task provides the LLM with
specific context for the expected code, allowing the conditional distribution to
primarily focus on coding style, instead of code purpose.
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Fig. 1: Box plot of mean token entropy values for human and LLM-generated
texts. MBPP (code) on the left, WritingPrompts (natural language) on the right.

Building on this, we introduce Approximated Task Conditioning (ATC), a
novel zero-shot detection approach that approximates a task from a given code
snippet and evaluates token entropy under its conditioning. ATC does not re-
quire access to the original task but instead approximates it in a relatively
lightweight manner, making it practical for real-world scenarios where task in-
formation is unavailable. We summarize our contributions as follows:

– We propose ATC, a novel zero-shot approach for detecting LLM-generated
code that achieves state-of-the-art (SOTA) detection results.

– We establish a connection between ATC and prior detection methods.
– We conduct extensive experiments demonstrating the robustness of ATC.
– We release our code, including dataset gathering implementation, fostering

collaboration and further research in the field.

2 Related Work

Detecting LLM-Generated Text As LLMs become more widespread, distin-
guishing between human and LLM-generated text becomes increasingly impor-
tant to combat issues like fake news and plagiarism [34, 8]. Detection methods
can generally be divided into two categories: supervised learning and zero-shot
approaches. Supervised learning techniques involve training models to differenti-
ate between human-written and LLM-generated text [35, 33, 17]. These methods
often struggle with generalization, as they tend to overfit to specific datasets or
the LLMs used for text generation [6, 18, 16]. In contrast, zero-shot approaches
have shown greater robustness, focusing on analyzing token distribution pat-
terns like entropy [24], likelihood [10], and ranks [22] to detect signs of LLM-
generated text. Perturbation-based methods like DetectGPT [16] and NPR [22]
perturb text and analyze differences between the original and perturbed texts.
Similarly, [30] generates completions and compares their similarity to the original
text. These methods have higher computational costs due to repeated iterations,
whereas FastDetectGPT [7] improves efficiency by optimizing the perturbations.
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Detecting LLM-Generated Code Text-based detectors often struggle with
code due to structural differences from natural language [14, 32]. This has led
to the development of specialized detection methods. [31] adapts DetectGPT
with fill-in-the-middle masking which replaces entire lines of code, while [21]
uses stylistic patterns such as whitespace changes in addition to preserving code
correctness after perturbations. [29] proposes a method using targeted perturba-
tions and a fine-tuned CodeBERT model. [28] conducted a large-scale evaluation
of detection methods, finding that while some generalize well, they struggle often
with high-level languages and short code snippets. The most recent and, to our
knowledge, state-of-the-art (SOTA) method is [32], which generates code vari-
ants via multiple rewriting prompts and measures their similarity. However, this
requires numerous rewrites and training a code similarity model. In contrast,
our method requires less iterations, achieving superior performance with a sin-
gle LLM prompt and no additional training. Meanwhile, data collection efforts,
such as [9], are providing benchmarks for future detection research.

3 Method

We consider the problem of zero-shot LLM-generated code detection. Given a
code snippet x, we wish to determine whether it was generated by an LLM, or
written by a human. We use an open-source detector LLM to evaluate token
probability distributions, and do not assume access or knowledge of the gener-
ator LLM, used for generating the code. In addition, our approach is zero-shot,
meaning it does not require labeled training data nor involves any training steps,
resulting in robust results across generator LLMs and programming languages.

3.1 Approximated Task Conditioning (ATC)

Here we elaborate on our LLM-generated code detection method (ATC ), con-
sisting of two main steps. First, we approximate one or more tasks for the input
code snippet by prompting an LLM, which we term the detector LLM. Next,
we calculate the score for the given code sample by computing the mean token
entropy of the conditional distribution on each of the approximated tasks. When
computing the score, we only consider code tokens, i.e., we ignore the task and
comment tokens’ entropy. We use the same detector LLM for token sampling
for consistency. Our approach is detailed in Algorithm 1. A visualization of the
pipeline and prompt used for task approximation is in Figure 2, alongside an
example input, with details and connection to previous approaches below.

Choosing the Detector LLM We consider a relatively small and open-source
LLM, CodeLlama13b, alongside its smaller counterpart, CodeLlama7b, as op-
posed to previous methods which relied on proprietary models available via APIs
to achieve good results. We show that using CodeLlama7b is enough to surpass
previous methods, and that using a larger model improves performance. Fur-
thermore, we show that these relatively small detector LLMs achieve robust
performance across various generator LLMs and tasks.
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Algorithm 1 Approximated Task Conditioning (ATC)
Input: x: code, N : number of approximated tasks, G: Detector LLM (vocabulary V),

ϵ: threshold
Output: Decision: LLM-Generated or Human-Written
1: Query G with x and the prompt in Figure 2 N times to generate task descriptions

t1, . . . , tN . // Task Approximation
2: for i = 1 to N do // Code Tokens-based Score Computation
3: Concatenate the texts ti and x.
4: Perform a forward pass through G to get the conditional distribution P (x | ti).
5: Get the subsequence of m code tokens, excluding comments: (xj1 , .., xjm) ⊆ x.
6: Compute the score for task i by calculating mean code token entropy:

Scorei = − 1
m

∑m
k=1

∑
v∈V P (v | x<jk , ti) logP (v | x<jk , ti)

7: end for
8: if 1

N

∑N
i=1 Scorei > ϵ then

9: return Human-Written
10: else return LLM-Generated
11: end if

Task Approximation This step is performed by querying the detector LLM
with a fixed prompt, asking it to generate a task that, when given to an LLM,
would likely produce a similar code snippet to x. The full prompt is presented in
Figure 2. We use topp = 0.95 and a temperature of 0.7 for sampling, similar to
how we generate the code solutions for the experiments. Setting topp will limit
sampling to the most probable tokens whose cumulative probability reaches 0.95,
and the temperature controls the randomness of the sampling. Additional details
are in Appendix B. While a single approximated task already outperforms cur-
rent SOTA, our experiments show that generating multiple tasks and averaging
their corresponding scores further improves performance. In most experiments,
we use N = 1, 2, 4 approximated tasks, where N is a hyperparameter.

Code Tokens-based Score Computation Given a code snippet x, we find
the m code tokens, excluding comments (xj1 , .., xjm) ⊆ x. Next, using an ap-
proximated task t, we compute the mean token entropy conditioned on t;

1

m

m∑
k=1

H(xjk | x<jk , t) = − 1

m

m∑
k=1

∑
v∈V

P (v | x<jk , t) logP (v | x<jk , t) (1)

where V is the set of all possible tokens in the vocabulary. Intuitively, the entropy
of the distribution should be lower (i.e., the model should be more confident)
for LLM-generated code, as such code is more likely to align with the detector
LLM ’s learned distribution. To obtain the final score, we average the mean token
entropy over all approximated tasks t1, .., tN . ATC can be integrated with other
baseline approaches, such as computing the mean log likelihood or analyzing
mean token ranks. However, we find that our method is most effective when
used alongside entropy estimation, as seen in Section 4.10.
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def max(numbers):

# initialize variables
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for i in range(len(numbers)):

...

return index, max
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Fig. 2: Overview of ATC. Given an input code snippet x, we (1) query the
detector LLM (CodeLlama) with a fixed prompt to generate task descriptions
t1, .., tN for which x might be a valid solution, and (2) compute the conditional
entropy of the input code tokens given each approximated task. Given the prob-
ability distribution P (x | ti) for each task ti, the final score is obtained by
averaging the mean token entropy only on code tokens (see top-right). Low en-
tropy scores indicate higher confidence that the code was LLM-generated.

Handling Comment Tokens Both human-written and LLM-generated code
often include comments, such as inline comments and docstrings. We analyze
the tendency to add comments in Appendix C. Due to the autoregressive na-
ture of code generation, preceding comment tokens can significantly influence
the conditional distribution of subsequent tokens. If comments accurately de-
scribe relevant parts of the code, they effectively act as a more localized and
specific task within the code snippet. By treating comments this way, we aim to
capture finer-grained task information, which can further aid in distinguishing
between human-written and LLM-generated code. Thus, we handle comment
tokens similarly to the task tokens, i.e. we exclude them from the token entropy
calculation. However, comments remain part of the input when modeling the con-
ditional distribution. While it is reasonable to assume that comments accurately
describe relevant code, we also test robustness against adversarial modifications
by evaluating the impact of removing comments before scoring (see Section 4.3).

3.2 Intuition and Connection to Previous Methods

Here we build an intuition, relating our method to zero-shot baseline methods
and to [32] which we consider the current SOTA. Our observation in Figure 1
emphasizes that the predictive entropy of code tokens cannot be clearly distin-
guished when task conditioning is unavailable, i.e. the unconditional distribu-
tions between human-written and LLM-generated code are less separable than
the conditional distributions. Baseline methods (e.g. log likelihood [10] or token
entropy [24]) assess the certainty of sampling a code snippet x under the LLM’s
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unconditional distribution P (x), since they do not have access to the task. As-
suming a latent task variable t∗ ∼ Pt, the unconditional distribution of code is
given by

P (x) =

∫
P (x | t∗)Pt(t

∗) dt∗. (2)

In [32], the model is prompted solely with the code snippet x and generates
a rewrite x′ from the conditional distribution P (x′ | x). Next, the similarity
between x′ and x is assessed, and high similarity leads to high confidence that
x is LLM-generated. We argue that our method shares similarities with [32],
particularly in how both approaches approximate the latent task t∗. Specifically,
we propose that sampling from P (x′ | x) serves as an approximation to P (x′ | t∗).
This is based on an assumption that conditioning on x might be similar to
conditioning on t∗, as the original code x inherently carries implicit information
about the underlying task t∗. Thus, one may argue an approximation of:

P (x′ | x) ≈ P (x′ | t∗). (3)

Intuitively, if a model is asked to find the maximal number in a list, its
response will likely resemble the output it produces when asked to rewrite an
existing snippet that does so. Sampling multiple rewrites and measuring their
similarity,

Ex′∼P (·|x) [S(x, x
′)] , (4)

should be correlated with the probability of x being drawn from P (x′ | t∗).
In contrast, our approach explicitly approximates the task itself t ≈ t∗, by

prompting the detector LLM. We then calculate the token entropy of x under
P (x | t). This two-step process, inspired by Chain-of-Thought principles, empir-
ically provides a more interpretable and accurate estimation of the conditional
distribution:

P (x | t) ≈ P (x | t∗). (5)

Finally, [32] employs multiple rewrites, which may suggest that their ap-
proximation requires multiple iterations to refine the conditional distribution
estimate. In contrast, ATC achieves better results with a single approximation.

4 Experiments

This section details our experimental setup, covering datasets, generation mod-
els, and baseline methods. We then present the main Python results, assess the
impact of comment removal as a pre-processing step, compare the approximated
tasks to original ones, and analyze different task approximation prompts. We also
examine robustness across factors like decoding strategies, different programming
languages, and code length. Finally, we conduct relevant ablation experiments.
In all experiments, we use AUROC (Area Under the Receiver Operating Char-
acteristic curve) to evaluate performance, following previous works [32, 21, 16].
Additionally, we explore alternative metrics in Section 4.9.
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4.1 Experimental Setup

Datasets To compare with the current SOTA method [32], we evaluate our
approach using two widely recognized benchmarks for Python code generation:
APPS [11] and MBPP [5]. To the best of our knowledge these are the most
appropriate benchmarks for our task. Notably, APPS includes solutions writ-
ten by a wide range of users, leading to diverse coding styles that better reflect
real-world variability. APPS contains 5,000 test instances, each consisting of a
problem description and corresponding solutions. After applying the data sani-
tization pipeline from [32], we are left with 3,765 instances. Unlike [32], which
randomly sampled 1,500 instances of the test set, we use the entire APPS test
set for a more comprehensive evaluation. While differences in dataset size and
sampling procedures may limit direct comparisons, this approach was neces-
sary due to the lack of code or detailed information regarding their sampling
methodology. For each instance, we select the first human solution and generate
corresponding LLM outputs using each generator LLM (detailed below). MBPP
consists of Python programming problems designed for entry-level programmers,
with 500 test instances. As with APPS, we use the full test set, generating LLM
solutions using each generator LLM. We focus on Python due to its widespread
use, readability, and versatility in code generation tasks. In both datasets we
exclude the training data due to potential overlap with LLM training corpora.

Generation Models We use a variety of open-source and proprietary mod-
els for code generation. For proprietary models, we use GPT-3.5-Turbo, GPT-
4o-mini [2], and Claude3-haiku [1], which were selected due to their popular-
ity among developers [3]. For open-source models, we use Starchat-Alpha [25],
CodeLlama-7B & CodeLlama-13B [20], and CodeGemma-7B [23]. These mod-
els were chosen for their widespread adoption in the open-source community.
We specifically use GPT-3.5-Turbo, StarChat, and CodeLlama-13B to allow di-
rect comparison with previous methods. For each test instance, code is generated
independently by every model, resulting in a separate set of generations. We gen-
erate solutions following the schema described in [32], using Chain-of-Thought
(CoT) prompting and setting topp = 0.95 and the temperature to 0.7, sampling
until the EOS token is reached. To ensure clean extraction, the prompt instructs
the model to output the final solution between markup tags for simple parsing.
Due to space constraints, results are reported using model name abbreviations.

Baselines We compare our method against several existing detection methods.
First, we consider methods that estimate properties of a code sample’s prob-
ability distribution using a surrogate model. This includes mean logP (x) [10],
LogRank and Entropy [16], and LRR [22], which combines the first two methods.
Next, we look at perturbation-based methods, which estimate a code sample’s
properties under small modifications. We begin with DetectGPT [16] and NPR
[22], adapting them to code by replacing T5large [19] with CodeT5large [27],
which, as suggested by [32], improves performance. We also consider Detect-
CodeGPT [21], which builds on previous methods by applying stylistic transfor-
mations and code correctness enforcement to the perturbations. Additionally, we
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Table 1: Results on MBPP.
Generator CLlama7b CLlama13b Gemma Starchat Claude GPT3.5 GPT4om Avg.

OpenAIlarge 52.58 49.85 26.86 39.40 31.54 49.90 40.86 41.57
Ye [32] - 86.21 - 79.23 - 86.23 - -

Using CodeLlama7b as Detector LLM

DetectGPT 52.07 54.10 76.82 74.52 74.31 59.76 60.26 64.55
NPR [22] 78.20 76.09 71.27 78.34 80.95 73.46 73.37 75.95
Shi [21] 69.25 70.48 86.46 83.06 84.10 71.32 73.84 76.93

Entropy 45.68 48.28 64.47 59.58 62.38 55.16 54.75 55.76
logP (x) 68.37 69.79 82.78 77.85 80.72 72.95 73.29 75.11
LogRank 62.29 64.05 81.56 75.57 77.77 66.91 68.18 70.90
LRR [22] 31.20 33.67 65.80 56.57 54.29 30.72 39.41 44.52

ATCN=1 92.82 92.62 91.20 91.18 93.82 90.47 91.23 91.91
ATCN=2 94.06 93.60 92.67 92.10 94.85 91.82 93.02 93.16
ATCN=4 94.36 94.25 92.76 92.44 95.28 92.16 93.44 93.53

Using CodeLlama13b as Detector LLM

Entropy 46.58 50.00 63.40 58.72 61.78 56.56 55.35 56.06
logP (x) 68.15 71.83 82.67 77.66 81.12 74.07 74.19 75.67
LogRank 63.45 67.56 82.27 76.25 78.91 69.21 69.86 72.50
LRR 37.64 41.72 70.84 59.43 59.50 37.48 41.83 49.78

ATCN=1 93.56 94.45 88.78 91.23 93.66 90.62 92.46 92.11
ATCN=2 94.88 95.64 90.75 92.14 95.11 91.77 93.51 93.40
ATCN=4 95.94 96.18 91.94 92.74 95.79 92.62 94.37 94.22

include results from DetectGPT4Code [31] on Java, while omitting Python com-
parisons as their APPS subset covered about 3.5% of the entire test set. Although
we attempted to reproduce their fill-in-middle masking strategy, we observed a
decrease in performance. We do not include [29] in our comparisons since the
authors did not release code or sufficient details to recreate their datasets. As a
supervised baseline, we include OpenAI’s RoBERTa text detector [2]. Finally, we
compare to [32], which we consider to be the current SOTA, as it consistently
outperforms prior methods across multiple settings, including CPP. However,
for MBPP, [21] achieves better results for one of the generator LLMs. As [32]
subsampled their data (∼ 40%) and code generation involves inherent random-
ness, we report their results as-is, acknowledging potential variability in direct
comparisons due to the lack of code implementation and random seed details.

4.2 Main Results

Tables 1 and 2 present the results on MBPP and APPS, respectively. Our method
outperforms all baselines across both datasets, consistently delivering significant
improvements. It shows a clear advantage over perturbation-based methods, even
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Table 2: Results on APPS.
Generator CLlama7b CLlama13b Gemma Starchat Claude GPT3.5 GPT4om Avg.

OpenAIlarge 61.11 59.24 49.01 49.76 49.84 47.33 37.43 50.53
Ye [32] - 87.77 - 82.48 - 83.25 - -

Using CodeLlama7b as Detector LLM

DetectGPT 55.88 53.54 56.20 51.68 59.07 46.26 61.81 54.92
NPR [22] 62.12 60.20 59.08 55.85 68.21 53.32 60.75 59.93
Shi [21] 79.11 76.97 75.44 70.70 75.00 65.00 65.48 72.53

Entropy 47.44 46.50 56.04 46.60 63.32 53.35 49.5 51.82
logP (x) 67.94 66.49 72.87 60.84 73.77 63.91 54.47 65.75
LogRank 64.82 62.14 67.60 57.91 66.91 58.46 48.85 60.95
LRR [22] 46.75 40.25 39.45 42.66 31.89 34.20 29.54 37.82

ATCN=1 92.28 93.30 91.05 88.07 92.52 86.22 87.42 90.12
ATCN=2 93.79 94.66 92.60 89.23 94.04 88.09 89.46 91.70
ATCN=4 94.47 95.33 93.40 89.98 94.84 89.18 90.35 92.51

Using CodeLlama13b as Detector LLM

Entropy 41.51 41.56 53.72 43.46 59.20 54.63 44.87 48.42
logP (x) 62.52 65.83 72.71 59.41 72.03 65.71 51.76 64.28
LogRank 59.84 62.61 69.11 56.88 66.09 60.56 45.83 60.13
LRR 46.07 45.37 46.53 43.81 36.23 36.13 27.19 40.19

ATCN=1 93.37 93.87 91.80 88.14 93.70 87.85 90.69 91.35
ATCN=2 94.85 95.29 93.18 89.36 95.44 89.71 92.58 92.92
ATCN=4 95.62 96.12 94.10 90.02 96.33 90.82 93.70 93.82

when adapted to the code domain, as well as over [32], which we consider the cur-
rent SOTA. Our method remains robust, maintaining high performance across a
wide range of generator LLMs, from smaller models like CodeLlama-7B to larger
proprietary models like GPT-3.5. Notably, our approach achieves superior de-
tection performance with just a single approximated task (N = 1), whereas
[32] relied on eight different prompts. For a fair comparison, setting N = 4
further enhances performance, yielding a mean AUROC of 94.22 on MBPP
and 93.82 on APPS when using CodeLlama-13B as the detector LLM. The
effectiveness of our method stems from the key observation made in Section 1:
the predictive entropy of code tokens differs significantly when sampling from the
conditional distribution (i.e., conditioned on the task). Our method effectively
approximates the task, allowing for highly accurate detection.

4.3 Robustness to Comment Removal

To test the robustness of our method in scenarios where comments and docstrings
are unavailable, we evaluate detection performance after systematically removing
them from the code. Table 3 presents the results using CodeLlama-13B as the
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Table 3: Results when removing comments. Detector LLM is CodeLLama13b.
Generator CLlama7b CLlama13b Gemma Starchat Claude GPT3.5 GPT4om Avg.

MBPP

Entropy 49.98 52.46 56.21 60.79 56.75 59.27 58.64 56.30
logP (x) 68.03 70.73 67.67 72.05 71.92 73.94 72.88 71.03
LogRank 63.33 66.18 64.78 68.89 66.89 69.30 68.30 66.81
LRR 35.75 37.02 43.77 43.04 35.64 38.09 38.97 38.90

ATCN=1 93.92 94.68 86.29 90.59 95.09 92.76 94.51 92.55
ATCN=2 94.82 95.50 87.69 91.65 95.88 94.01 95.18 93.53
ATCN=4 95.54 95.94 88.50 92.34 96.44 94.48 95.85 94.16

APPS

Entropy 46.37 45.45 56.79 51.81 61.60 56.62 53.36 53.14
logP (x) 59.31 60.48 70.09 60.58 72.50 67.58 56.69 63.89
LogRank 54.15 54.56 64.36 56.27 65.80 61.93 49.64 58.10
LRR 33.55 30.49 34.96 36.61 32.49 35.13 25.59 32.69

ATCN=1 87.24 88.37 88.08 83.57 92.78 86.07 88.70 87.83
ATCN=2 89.04 90.31 89.60 84.74 94.36 87.96 90.65 89.53
ATCN=4 90.68 91.28 90.72 85.73 95.28 89.08 91.89 90.67

detector LLM. Our method remains highly effective, with minimal performance
degradation, maintaining comparable results on MBPP and experiencing only
a 3% AUROC reduction on APPS, still outperforming previous methods with
N = 1. Increasing N further improves accuracy, reaching a mean AUROC of
94.16 on MBPP and 90.67 on APPS. This demonstrates that our approach
does not depend on comments, ensuring robustness against such transformations.

4.4 Evaluating the Approximated Task

We evaluate our approximated task by comparing detection performance against
results obtained using the original task. As shown in Table 4, the mean AUROC
across all generator LLMs indicate a slight performance drop when using the
approximated task instead of the original. Figure 3 demonstrates that approx-
imated tasks often contain slightly more detail than MBPP tasks. In contrast,
for APPS, where tasks are longer and more descriptive, the approximated tasks
tend to be more concise. These findings suggest that despite stylistic differences,
the conditional distributions of the original and approximated tasks may still be
similar. This is supported by Appendix D, which visualizes the conditional and
unconditional probability distributions for the code snippets in Figure 3. Ap-
pendix E provides examples of approximated tasks from different seeds, showing
how using N > 1 averages slight variations in the conditional distribution.
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Table 4: Results us-
ing the original task
with CodeLlama7b.

Method Avg.

MBPP

Entropy 55.76
ATCN=1 91.91
ATC w/Task 92.02

APPS

Entropy 51.82
ATCN=1 90.12
ATC w/Task 92.49

Original Task

Write a python function to check 

whether the given two integers 

have opposite sign or not.

def opposite_Signs(x,y):

return ((x ^ y) < 0)

Write a function that takes two 

arguments, x and y, and returns 

True if both arguments have 

opposite signs (positive and 

negative, or negative and positive), 

and False otherwise.

Code

Approximated Task

Original Task

The Rebel fleet is afraid that the Empire might 

want to strike back again. Princess Heidi needs to 

know if it is possible to assign R Rebel spaceships 

to guard B bases so that every base has exactly one 

guardian and each spaceship has exactly one …

a,b=list(map(int, input().split..

if a==b: print("Yes")

else: print("No")

Write a Python program that takes two 

integers as input and checks if they are 

equal. If they are equal, print "Yes", 

otherwise print "No".

Code

Approximated Task

Fig. 3: Approximated tasks examples. Left is MBPP, right
is APPS. We present simple examples for readability.

CodeLlama 7B

CodeLlama 13B

CodeGemma 7B
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GPT-3.5
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Average
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0.8

0.9
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C

Prompt Style
Short
Long

Friendly
Critical

Pseudocode
Storytelling

Regular

Fig. 4: ATC with different prompting styles using CodeLlama7b.

4.5 Exploring Different Task Approximation Prompts

Here we explore the sensitivity of task approximation to different prompt styles.
We aim to determine whether our method remains effective across various task
approximation prompts or if performance is highly dependent on specific phras-
ing. We test seven prompt styles, each offering a different way to approximate
the task. Regular provides a concise task description, while Short enforces an
even more minimal task. In contrast, Long generates a verbose description. Sto-
rytelling frames the task within a fictional scenario, Pseudocode translates the
code into a structured pseudocode, Friendly offers a supportive tone, and Critical
delivers a specific and demanding specification. In all experiments besides this
one, we use the Regular style. Our experiment on APPS, selected for its notably
descriptive tasks, reveals that prompts leading to shorter and more accurate
tasks (Regular, Short, and Critical) outperform those resulting in longer tasks
(Long, Pseudocode). We observed that Storytelling occasionally produced vague
or incorrect tasks, likely due to the limitations of the relatively small detector
LLM. Results are in Figure 4. Full prompts and examples are in Appendix F.
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4.6 Effects of Decoding Strategies

We evaluate the robustness of ATC by examining the impact of decoding tem-
peratures on detection performance, using the same configuration as in [32].
Higher temperatures introduce greater variability in the generated outputs, while
lower temperatures yield more deterministic results (See Appendix B). Although
entropy-based scoring methods might be sensitive to varying temperatures, the
results in Figure 5 show that our performance remains robust across a range of
values. Nonetheless, we do observe a slight decline in mean AUROC at higher
temperatures, suggesting that high variability can impact detection accuracy.

0.70 0.80 0.90
AUROC

CodeLlama 7BCodeLlama 13BCodeGemma 7B

StarChat
Claude 3

GPT-3.5
GPT-4o Mini

Average

Temperature

0.2
0.4
0.8

Fig. 5: Temperature effects on
MBPP with CodeLlama7b.

Table 5: CodeContest results with CodeLlama7b.

Lang. Method CLlama13b Starchat GPT3.5

CPP

Shi [21] 81.07 73.59 81.96
Ye [32] 89.87 83.42 90.82

Entropy 29.83 39.20 43.29
logP (x) 68.80 65.23 72.11
LogRank 67.33 65.35 71.37
LRR [22] 51.09 56.51 57.68

ATCN=1 97.63 90.94 92.99
ATCN=2 98.26 91.52 93.97
ATCN=4 98.44 91.82 94.69

Java

Shi [21] 76.65 70.72 82.10
Yang [31] - - 64.03

ATCN=1 92.30 89.61 91.73
ATCN=2 92.54 90.48 93.02
ATCN=4 92.93 90.85 93.00

4.7 Generalization to Other Programming Languages

To assess the generalization of ATC across programming languages, which is
critical for real-world applications, we experiment on CPP and Java using the
CodeContest dataset [15]. We identify 152 CPP instances and 129 Java instances
in the test set. Results in Table 5 focus on generator LLMs from previous works
due to space constraints, with full results and comparisons in Appendix G. Our
method consistently outperforms other approaches across all generator LLMs,
demonstrating its ability to generalize across different programming languages.

4.8 Impact of Code Length

We examine how code length affects detection performance using APPS, where
solutions are generally longer than those in MBPP. We measure length in terms
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of the number of characters and group each sample—whether human-written or
LLM-generated—into its corresponding length interval, independent of the orig-
inal task. Consistent with previous findings, our results in Figure 7 using CodeL-
lama7b show that detection performance improves as code length increases, likely
due to greater certainty in token predictions as the code progresses. This sug-
gests that in practical real-world scenarios, where code is typically longer, our
method is expected to perform well.

4.9 Real-World Considerations

Limitations of AUROC In practical settings, detection accuracy measured by
AUROC may not fully reflect operational efficacy. Here we analyze our method’s
recall (true positive rate) at a fixed false positive rate (FPR). This evaluation
better captures the trade-offs relevant to real-world production scenarios, ensur-
ing reliable identification of LLM-generated code while minimizing false alarms
on human-written code. As shown in Table 6, our method achieves a recall of
roughly 84% at a false positive rate of 10%, demonstrating strong detection
capability with minimal misclassifications. Full results are in Appendix H.

Analyzing the Number of Generated Tokens We compare the complexity
characteristics of our method with the previous SOTA [32]. While both ap-
proaches rely on querying an LLM multiple times per sample, they differ sig-
nificantly in the nature and length of the generated outputs. In both cases, the
primary latency bottleneck lies in the generation step itself. [32] prompts the
LLM with "Please explain the functionality of the given code, then rewrite it in
a single markdown code block.". This yields a combined output containing a de-
tailed natural language explanation followed by a full code rewrite. In contrast,
our method only requires a concise task approximation. Notably, the length of
this generated task remains roughly constant regardless of the input code size,
compared to [32], where the output length scales linearly with the input. To
quantify this, we measure the number of generated tokens on MBPP (see Fig-
ure 6). As a result, our method is not only faster but also more cost-efficient in
settings that rely on third-party APIs where pricing is based on the number of
generated tokens. For example, the average generation time using CodeLlama-7b
per MBPP sample is 0.99 seconds in ATC, compared to 6.04 seconds in the
other approach. Latency was measured on a single Nvidia RTX6000 GPU.

4.10 Ablation Experiments

Increasing the Number of Task Approximations In most experiments
we use N ≤ 4, however increasing N further enhances results. Figure 8, using
CodeLlama7b, demonstrates that performance gains scale with the number of
tasks, with the most significant improvement occurring at N = 2 and diminishing
returns appearing from N = 4. The choice of N presents a tradeoff between
accuracy and runtime, and should be adjusted based on real-world constraints.
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Fig. 6: Number of generated tokens in dif-
ferent methods.
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Table 6: Recall @ FPR Results.

Method Recall @ FPR 10% Avg.

MBPP APPS

CodeLlama13b as Detector LLM

Entropy 10.09 9.96
logP (x) 31.23 24.58
LogRank 30.16 21.28
LRR [22] 19.18 7.01

ATCN=1 76.12 77.72
ATCN=2 80.37 81.58
ATCN=4 83.92 84.08

0-100 200-300 400-500 600-700 800-900 1000+
Code Length

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C

CodeLlama 7B
CodeLlama 13B
CodeGemma 7B
StarChat

Claude 3
GPT-3.5
GPT-4o Mini
Average

Fig. 7: Impact of code length on APPS.
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Fig. 8: Effects of increasing N on MBPP.

Comparison with Alternative Scoring Methods We replace entropy with
alternative scoring methods—mean logP (x), LogRank, and LRR—while keeping
the task approximation framework unchanged. Table 7 presents average AUROC
across all generator LLMs, showing that entropy is the most effective scoring
method. Entropy captures global uncertainty over the full output distribution,
while alternative methods rely on token-level likelihoods or ranks, making them
more sensitive to local variations. Among these, LogRank performs best, indi-
cating that ranks may provide a stronger signal than raw likelihoods. However,
entropy remains the overall best scoring method across our experiments.

Score Computation with Comment Tokens We conduct an ablation study
where we include comments in the token entropy calculation instead of exclud-
ing them. As shown in Table 8, this results in a consistent drop in average
AUROC across all generator LLMs. This degradation aligns with our hypothesis
that comments often serve as implicit task descriptions within the code snippet.
Including them in entropy computation disrupts the separation between task
conditioning and code token certainty, weakening detection results.
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Table 7: Results with alternative scor-
ing methods.

Method AUROC Avg.

MBPP APPS

CodeLlama7b as Detector LLM

ATCN=1 w/logP (x) 80.09(-11.82) 84.14(-5.98)

ATCN=1 w/LogRank 87.08(-4.83) 76.00(-14.12)

ATCN=1 w/LRR 81.38(-10.53) 80.45(-9.67)

CodeLlama13b as Detector LLM

ATCN=1 w/logP (x) 83.94(-8.17) 80.78(-10.57)

ATCN=1 w/LogRank 89.08(-3.03) 86.06(-5.29)

ATCN=1 w/LRR 82.51(-9.60) 83.07(-8.28)

Table 8: Results when including com-
ment tokens in score calculation.

Method AUROC Avg.

MBPP APPS

CodeLlama7b as Detector LLM

ATCN=1 90.10(-1.81) 87.24(-2.88)

ATCN=2 91.46(-1.7) 88.97(-2.73)

ATCN=4 91.91(-1.62) 89.90(-2.61)

CodeLlama13b as Detector LLM

ATCN=1 90.63(-1.48) 88.81(-2.54)

ATCN=2 92.01(-1.39) 90.57(-2.35)

ATCN=4 92.94(-1.28) 91.64(-2.18)

5 Conclusion and Future Work

As LLMs become increasingly prevalent in coding tasks, their associated social
and ethical risks demand reliable detection methods. We identify a key chal-
lenge: distinguishing human-written from LLM-generated code is fundamentally
different from natural text when relying solely on the unconditional probabil-
ity distribution. To address this, we introduce a novel, simple, and zero-shot
approach that approximates the conditional probability distribution using task
approximation, followed by an entropy-based scoring algorithm. Our method out-
performs previous approaches across all relevant benchmarks and demonstrates
robustness through extensive experiments and ablation studies. Furthermore,
its simplicity enables future integration with other probability-based detection
methods. Our analysis is currently limited to publicly available benchmarks;
however, while our results are promising, task approximation in domain-specific
repositories may pose additional challenges and warrants further study. In future
work, we plan to extend our approach to detect edited LLM-generated code and
explore robustness against adversarial attacks. Finally, an additional promising
direction is to improve the quality of task approximations, potentially through
reflective reasoning capabilities.
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