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Abstract. How might we design Reinforcement Learning (RL)-based
recommenders that encourage aligning user trajectories with the under-
lying user satisfaction? Three research questions are key: (1) measuring
user satisfaction, (2) combatting sparsity of satisfaction signals, and (3)
adapting the training of the recommender agent to maximize satisfac-
tion. For measurement, it has been found that surveys explicitly asking
users to rate their experience with consumed items can provide valuable
orthogonal information to the engagement/interaction data, acting as a
proxy to the underlying user satisfaction. For sparsity, i.e, only being able
to observe how satisfied users are with a tiny fraction of user-item inter-
actions, imputation models can be useful in predicting satisfaction level
for all items users have consumed. For learning satisfying recommender
policies, we postulate that reward shaping in RL recommender agents
is powerful for driving satisfying user experiences. Putting everything
together, we propose to jointly learn a policy network and a satisfaction
imputation network: The role of the imputation network is to learn which
actions are satisfying to the user; while the policy network, built on top
of REINFORCE, decides which items to recommend, with the reward
utilizing the imputed satisfaction. We use both offline analysis and live
experiments in an industrial large-scale recommendation platform to
demonstrate the promise of our approach for satisfying user experiences.

1 Introduction

Recommender systems at heart aim at creating a good user experience by surfacing
users with the right content at the right time and under the right context. It is
thus critical for the system to identify what defines the user experience, more
specifically the underlying user utilities of the platform. Most recent advances in
recommender systems have relied on implicit user feedback, such as clicks or dwell
time, as proxies to capture user utilities [5,33]. Although this data measures what
users do, it can fail to capture what users say they want — which are potentially
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very different [14]. As a result, recommender models learned solely based on user
engagement data can be misaligned with the true user utilities.

Given a specified objective, or else reward function, which captures the long-
term user utility, recommender systems can be formulated as Reinforcement
Learning (RL) agents deciding on actions to take (i.e., contents to show to users)
given certain user states (i.e., latent representation at a specific time/context),
with the goal of maximizing said cumulative reward [3,15,13,35]. There are several
challenges especially exacerbated in industrial recommendation settings which
makes the application of RL for recommendation rather unique compared to
other application areas like games [21,28] and robotics [10]. The action space
is extremely large and ever-changing; user preferences change over time; and
data are extremely sparse for the enormous action and state space. Only recently
there have been major advances addressing these challenges and showcasing RL
approaches for recommendation [3,15].

Besides addressing these challenges, the key in building recommender agents
lies in defining the reward function guiding the learning of the agent policy.
Although we do get to observe some proxy signals indicating when a recommen-
dation, or a series of recommendations was successful (e.g., the user clicked on
the recommended content, they shared it with their social network etc.), there is
a disconnect between the implicit feedback we observe, and what the user really
wants. The proximity between the proxy signals we include in the agent’s reward
function and the true user utility, will largely determine the extent to which the
RL recommender can optimize for what users want.

However, despite the importance of the reward function for building recom-
mendation agents, there has been relatively little work on reward shaping for
RL recommenders. Most works treat the reward function as a black-box, which
is given, and often assume that dense engagement signals are indicative of how
much users value their experience. This assumption has been recently challenged
in non-RL settings, underlying that post-engagement signals and/or satisfaction
survey responses together with implicit behavioral signals give a clearer picture
of user utilities [11,14,31].

In this paper, we put the reward front and center, and highlight it as a key tool
for optimizing for what users actually want. Satisfaction data as collected by user
responses to satisfaction surveys provide an important view as to how the user
felt about the recommendation, as opposed to how they behaved while interacting
with it. These surveys are shown uniformly to all users, and ask users to rate on
a scale how satisfying they found a sampled item from their recent engagement
history. In our systems, such survey data can offer more representativeness
compared to post-engagement signals, as most users tend to not engage in post-
click actions such as likes, dismissals. Furthermore, optimizing for satisfaction as
measured by surveys can substantially move post-engagement related metrics as
well. Based on the above, both behavioral signals, and satisfaction signals should
be incorporated into the reward.

However, before we can utilize satisfaction signals into the reward, we need
to highlight a major challenge inherently associated with them — sparsity.
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The volume of satisfaction data is orders of magnitude smaller compared with
engagement data volume; in our case study, roughly one out of thousands of
engagement signals will come with a satisfaction response. This is due to a number
of reasons. First, it is disruptive to ask users about every item they recently
consumed. Second, response rate can be very low in an environment where primary
user intention is to consume content rather than providing feedback. As a result,
we only have access to a small amount of survey responses covering an extremely
small fraction of the user-item interaction pairs. Given this extreme sparsity,
simply supplementing the existing reward signals that focus on engagement with
the sparse satisfaction signals is not going to be effective in shifting towards
optimizing for user satisfaction. Instead, personalized satisfaction models are
required to impute for each user how they would rate their satisfaction level with
each consumed item, had they responded to a survey.

Here, we propose augmenting a classic policy network trained with REIN-
FORCE with a satisfaction imputation network to predict user satisfaction and
include the prediction into the reward for the policy network, while training both
networks concurrently in a multi-task learning setup.

Our contributions are threefold:

1. Reward Shaping for User Utility Alignment: We emphasize reward
shaping as a crucial but underexplored technique for guiding RL-based recom-
menders to select satisfying actions (Sections 4.2, 4.3 and 6), highlighting the
inherent challenges in defining, measuring, and modeling user satisfaction.

2. Scalable Satisfaction Imputation Networks: We introduce satisfaction
imputation networks to address the sparsity of satisfaction signals, demon-
strating their integration into a top-K REINFORCE recommender with
vast state and action spaces (Section 4.4). We also provide offline analysis
on key design considerations for effective satisfaction imputation networks
(Section 5).

3. Demonstrated Benefits in Live Experiments: Results from A/B tests
on a large-scale platform with a two-stage recommendation system show that
replacing a REINFORCE nominator with a dense engagement reward (with-
out satisfaction imputation) with our proposed architecture (Fig. 2) increases
satisfying nominations and decreases low-satisfaction nominations. This leads
to a statistically significant improvement in satisfying user experiences and a
reduction in unsatisfying ones (Section 6).

2 Related Work

Here, we give an overview of the most closely related works.
Reinforcement Learning (RL). Problems in which an agent learns to

interact with the environment, with the interactions having long-term conse-
quences, are a natural fit to be framed as Reinforcement Learning ones [29].
Classical approaches to RL problems include value-based approaches such as
Q-learning [20], and policy-based ones such as policy gradient [32]. Deep RL
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combines the promise of deep neural networks to help RL achieve ground-breaking
success in games and robotics applications [21,19,28,10]. We build our work on
top of a policy-based approach, namely REINFORCE [32], following its prior
success in recommendation settings [3]. The imputation network we introduce
has deep connections with value learning approaches [20], where a state-action
value network is learned. The estimations of this network are utilized as part of
our policy’s reward; as a result, we still need the off-policy correction component
[3]. An alternative approach we leave for future work is employing Actor-Critic
or its variants [19,30,27].

Reinforcement Learning in Recommendation. Although there have been
many successes in RL for applications like games [21,28] and robotics [10], only
recently some successes of RL for recommendation have been demonstrated [7].
The main work we build on top of is a policy-gradient-based approach correcting
for off-policy skew with importance weighting [3].This work demonstrated the
value of REINFORCE and top-K off-policy correction in a large-scale industrial
recommendation platform with an extremely large action space. Other recent
works have demonstrated the value of deep RL approaches for recommendation,
such as Actor-Critic [15], Deep Q-learning [36], and hierarchical RL [34]. Also,
novel RL approaches have been proposed for the more complicated problem of
slate recommendation [13], as well as for page-wise recommendation [35]. Despite
the recent promise of RL for recommendation, the majority of works do not draw
attention to the important aspect of reward shaping, which is key for aligning
system objectives with underlying user utilities; this is the focus of our paper.

Reward Shaping. The importance of reward shaping, i.e., shaping the orig-
inal sparse, delayed reward signals as in-time credit assignment for successful
RL algorithms has been emphasized early on [23,16,6]. This is a general term
encompassing the incorporation of domain knowledge into RL to guide the policy
learning. Carefully designing the reward function is critically important as: (i) a
misspecified reward leads to sub-optimal policy; (ii) an under-specified reward
leads to unexpected behavior [12]. While RL for robotics and games has relied on
hand-crafted reward or imitation learning [26] to effectively guide the agent to
success, the perils of a misspecified reward function in the design of recommender
RL agents have not received a lot of attention. Motivated by the need to bridge
the RL for recommendation line of work with the recent discussions on measuring
and modeling user satisfaction to properly capture user experience [17,14,18,9],
we provide a reward shaping approach for imputing user satisfaction into the
reward of an RL recommender, along with using the ground truth engagement
proxy signals.

3 Background

3.1 Recommendation as an RL problem

The recommender system’s goal is to decide which contents to recommend to the
incoming user requests, given some representation of the user profile, the context,
and their interaction history up to this point, as captured by the sequence of
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items (e.g. videos, news articles, products) they have interacted with, along
with the corresponding feedback (e.g., time spent watching/reading), so as to
maximize the cumulative rewards experienced by the users.

In RL terms, we formulate the recommendation problem as a Markov Decision
Process (MDP), or better, a Partially Observable MDP (POMDP) as the states
are unobserved:

Recommendation MDP
Action a ∈ A item(s) available for recommendation
State s ∈ S user interests and context
State Transition
st+1 ∼ P(·|st, at)

unknown dynamics capturing how user
state changes from t to t+1, conditioned
on at and st

Reward r(s, a) immediate reward obtained by perform-
ing action a for state s

The goal is to find a policy π(a|s) capturing the probability distribution over
the action space, i.e, items to recommend, given the current user state s ∈ S, so
to maximize the expected cumulative reward,

max
π

Eτ∼π [R(τ)] (1)

where R(τ) =
∑|τ |

t=0 r(st, at), and the expectation E is taken over user trajectories
τ obtained by acting according to the policy: at ∼ π(·|st), st+1 ∼ P(·|st, at).

We build our method on top of the REINFORCE recommender introduced
in [32]. Let the policy π assume a functional form, mapping states to actions,
parameterized by θ ∈ Rd. Using the log-trick, the gradient of the expected
cumulative reward with respect to the policy parameters θ can be derived
analytically [32]:

∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[R(τ)∇θ log πθ(τ)] . (2)

To reduce variance in the gradient estimate a common practice is to discount the
future reward with a discount γ:

∑
τ∼πθ

[R(τ)∇θ log πθ(τ)] ≈
∑
τ∼πθ

|τ |∑
t=0

[Rt∇θ log πθ(at|st)] , (3)

where

Rt = r(st, at) + γr(st+1, at+1) + γ2r(st+2, at+2) + . . .

+γ|τ |−1−tr(s|τ |−1, a|τ |−1). (4)

Eq. (3) gives an unbiased estimate of the policy gradient in online RL, where
the gradient of the policy is computed on trajectories collected by the policy
πθ we are learning. In practice, due to infrastructure limitations or production
concerns, the trajectories available for learning are collected from a different
logging policy, or mixture of such policies, denoted by β instead. Thus, we operate
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in an offline RL setting, making the policy gradient as given by Eq. (3) no longer
unbiased. To address this skew, importance weighting is adopted [22]. In this
work, we also operate in batch offline RL, applying top-K off-policy correction,
and we defer readers to [3] for details.

4 Imputing Satisfaction in Reward

We now turn to the main focus of this paper, i.e, shaping the reward of a
REINFORCE recommender to drive user satisfaction. We start by describing
how we parameterize the policy network (Section 4.1); next we highlight the role
of reward in REINFORCE for capturing long-term user utility (Section 4.2); and
emphasize the challenges associated with considering satisfaction as a proxy to
user utility (Section 4.3). Motivated by these challenges, we propose to augment
the policy network with a satisfaction imputation network (Section 4.4).

4.1 Policy Parameterization

We closely follow the setup in [1,3] to parameterize the policy. A Recurrent Neural
Network (RNN) is used to encode the user’s interaction history, capturing the
changing user preferences. The output of the RNN is concatenated with the latent
embeddings encoding context, which capture features like time of the day, device
type. The concatenation of user sequential preferences and context embeddings
is mapped to a lower dimensional representation via multiple Rectified Linear
Units. This represents the user state us. Conditioned on the user state us, the
policy πθ(a|s) is then modeled with a softmax,

πθ(a|s) =
exp(uT

s va/T )∑
a′∈A exp(uT

s va′/T )
, (5)

where va are the action embeddings, and T is a temperature term controlling
the smoothness of the learned policy.

4.2 Reward

Reward plays a paramount role in determining the final learned policy. As shown
in Eq. (3), the gradient from each state-action pair is weighted by the cumulative
discounted reward Rt.

As prescribed in Section 3.1, Rt depends on the immediate rewards associated
with the state-action pairs r(s, a) as well as the discounting factor γ. In the absence
of a user utility oracle, a key design choice is which proxy signals to use to define
the immediate reward. For each recommendation, the user could leave different
signals indicating their experience with the item. Examples include implicit
engagement-related signals, such as click, time spent engaging (reading/ watching/
listening), post-engagement actions, e.g., shares/ likes/ dislikes/ comments, and
they could leave explicit feedback in surveys asking them about their satisfaction
level with the consumed item.
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Fig. 1. Survey responses provide a different set of information compared to behavior
signals. Interactions with the same completion ratio can have vastly different associated
satisfaction levels.

4.3 Value of Satisfaction Signals, and Challenges

It is easy to see that if the proxy signals used in the reward are solely engagement-
focused, the policy will learn to choose actions that only drive engagement. This
is not ideal as what users do (engagement) can be quite different from what they
say they want (satisfaction), thus neglecting other important facets of the user
experience.

Fig. 1 illustrates this point. More than two million interactions with survey
responses on a commercial recommendation platform were collected and analyzed.
For the sake of this example, we consider completion ratio (e.g., time spent on the
item out of total length of the item) as one useful behavioral signal, and study its
relationship with satisfaction signals as measured by survey responses in the scale
of one to five. As shown in (Fig. 1 right), grouping interactions by survey response
rating, we find the higher the survey value, the higher the median completion
ratio; however, we also see that per survey response value the range of associated
completion ratios is quite large. This becomes more evident when grouping
interactions with their associated survey responses based on the corresponding
quantiles of completion ratios, (Fig. 1 left). Based on the plotted 95% confidence
intervals, interactions belonging in the exact same quantile of completion ratios
(i.e., same user behavior), have quite different associated satisfaction levels (Fig. 1
left).

It is worth pointing out that behavior signals alone fail to capture other
sides of how the user felt about the interaction, e.g., did they find the content
misleading, useful, did it provide some longer term value to them. It is therefore
critical to consider both behavioral and satisfaction signals, and appropriately
balance them when defining the reward.

Also, we opt for survey data rather than post-engagement signals as bet-
ter proxies for user satisfaction as we have found that they can offer more
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representativeness—most users tend to not engage in post-click actions such as
likes, dismissals. Having said that, although we demonstrate the effectiveness of
reward shaping with imputation networks for survey signals, the same technique
is equally applicable for other proxy reward signals exhibiting similar concerns,
such as likes, dislikes, shares or dismissals. What is more, in our case study, we
find that satisfaction as measured by survey responses highly correlates with
goodness as measured by post-engagement signals. Thus, we are able to signif-
icantly increase likes, and decrease dislikes/dismissals, even without explicitly
optimizing for them (Section 6).

If for each item the user interacted with in the trajectory, besides implicit
engagement signals re(s, a), we also had access to explicit satisfaction signals
ru(s, a), we could define the immediate reward r(s, a) as a function of the two,
i.e.,

r(s, a) = f (ru(s, a), re(s, a)) , (6)

where f(·) can include operators such as transformations on the raw signal (e.g.,
raising to a power, hinge, sigmoid) and combination functions (e.g., addition,
multiplication) on the two reward signals.

While the engagement signals re are often dense, satisfaction signals ru are
extremely sparse, as they are derived from user-provided responses to satisfaction
surveys. These surveys are shown uniformly to all users, asking them to rate on
a scale how satisfying they found a sampled item from their recent engagement
history. In our case study, roughly one out of thousands of engagement signals
will come with a satisfaction response. This is because in a primarily content
consumption-focused recommender platform, it would be disruptive to ask users
to rate every item consumed. Furthermore, users tend to not respond to surveys
[4]— response rate is around 2% in our case.

4.4 Satisfaction Imputation Model

This inherent sparsity of a subset of signals makes simply including them in the
reward when present, ineffective.

To address this challenge, we propose the use of an imputation network to
densify the satisfaction signals, and include the imputed satisfaction signals in
the reward instead.

The role of the imputation network is to map user state and action pairs
(s, a) to satisfaction scores, i.e., survey responses sr present in the satisfaction
data Dsr. One can imagine learning a completely separate imputation model on
this data, and then utilize these imputations directly on the reward of the policy
network. The alternative which we opt for is to extend the policy network with a
satisfaction imputation head and have parameters shared between the two. This
is quite appealing as given that the data used to train the policy head are of
much higher volume compared to those used to train the imputation head, we
hypothesize that transferring the learned user state and action embeddings from
the dense task to the sparse one can be quite useful [24].
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Fig. 2. Proposed architecture, where a satisfaction imputation head is added to learn
goodness of actions based on sparse survey responses, conditioned on state, action
and context embeddings learned from the policy. The reward utilizes the satisfaction
imputations to guide the policy head to select actions that lead to satisfied engagement.

Concretely, we propose a multi-task shared-bottom architecture with two
heads, the policy head and the satisfaction imputation head, each having their
own task-specific parameters while sharing majorities of the state and action
representations. As shown in Fig. 2 (bottom), the shared bottom encodes the
sequential history of the user, as well as context information. The policy head
in Fig. 2 (upper left) is identical to the standalone policy network described in
Section 4.1, with the only change being in its reward. The imputation head in
Fig. 2 (upper right) is used to infer the satisfaction score for each state-action pair
(s, a) in the collected trajectories. Then, the imputed satisfaction score combined
with engagement signals forms the reward used to train the policy network.

We train the imputation head by gathering the corresponding state us,
and action embeddings va for any state-action pair associated with a survey
response in the batch, and learning a mapping ŝrϕ from these embeddings to
the corresponding survey response i.e., ŝrϕ : (us,va) → sr, ∀sr ∈ Dsr. As shown
in Fig. 2 (upper right), we prevent the imputation head from influencing the
policy parameterization by stopping its gradient from flowing to these shared-
bottom embeddings. To give the imputation head its own parameters to learn
the mapping ŝrϕ, we concatenate the embeddings, i.e., [us,va], and send them
through multiple Rectified Linear Units (ReLU), and a final dense layer to map
to the ground truth survey response. The ReLU layers and the dense layer are
learned by optimizing an appropriate loss function ℓ. For our case study, Dsr

consists of survey responses in the scale of 1 to 5, with user studies showing
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Fig. 3. Addressing class imbalance (left) by cost-sensitive learning (right). Upweighting
the negative class survey responses (1/2/3 star responses) can significantly improve
the holdout satisfaction AUC ROC of the imputation model. However, increasing the
weight too much can lead to a satisfaction accuracy deterioration, and a negative effect
on the policy head’s accuracy.

that values of 4 and 5 are considered satisfying, whereas lower values show
dissatisfaction. So, we considered a logistic loss, with a sigmoid for the last layer,
to predict satisfying versus unsatisfying:

min
ϕ

∑
sr∈Dsr

ℓ (ŝrϕ(us,va), sr) . (7)

The policy head is learned via REINFORCE,

∇θπθ =
∑
τ∼β

|τ |∑
t=0

[
πθ(at|st)
β(at|st)

R̃t∇θ log πθ(at|st)
]

(8)

where R̃t denotes the imputed reward, and πθ(at|st)
β(at|st) does the off-policy importance

weighting. We decompose R̃t as

R̃t = Re
t × R̃u

t , (9)

i.e., the ground truth engagement reward Re
t , and the satisfaction reward R̃u

t

predicted by the imputation network.
The satisfaction imputation and the policy head are trained concurrently to

optimize the (weighted) sum of the two losses.In practice, to prevent a poorly
estimated imputation head from corrupting the policy head, we start the training
of the policy head with engagement only reward Re, and include the imputed
R̃u only after the imputation head is properly trained.

5 What makes a good Satisfaction Imputation Model?

We now present some experimental findings on what makes a good satisfaction
imputation model. To evaluate its predictive accuracy, we create a hold-out
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Fig. 4. Left : Using a set of features representing the item on the survey (i.e., item id &
creator id & time spent on item in seconds), leads to an improved hold-out AUC ROC
of the satisfaction imputation model, compared to using only individual action/item
features. Right : Using only user state (as outputted by the RNN, and concatenated
with context embeddings) performs equally well with when including all action feature
embeddings, without user state (as shown in top). The satisfaction AUC ROC is further
improved when including both user state and item-related features.

set consisting of user trajectories for users with at least one associated survey
response. The AUC ROC achieved by the imputation model on the hold-out set
is used as the offline evaluation metric.

Loss Function. One challenge associated with the survey response data
is the class imbalance problem. In our case study, the majority of responses
recorded are in the higher spectrum (Fig. 3, left). One hypothesis is that users
tend to respond to surveys about items they find highly satisfying [25,4]. This
creates a natural imbalance of survey values in the satisfaction data, leading the
model to focus more on survey responses of higher values. An under-specified
model can predict every item to be satisfying as a result. One simple approach to
address this is through cost-sensitive learning [8], in which the negative class of
non-satisfying state-action pairs are weighted more. We calibrate the prediction
after to reflect the ground-truth distribution of satisfying vs non-satisfying survey
responses [2]. Fig. 3 right compares the performance of the satisfaction head with
different weights on the negative class. We found a weight of 3 or 5 perform the
best according to the holdout AUC ROC.

Action Features. Fig. 4 left summarizes the predictive power of different
action features, i.e., time spent, item id and creator id, on the quality of the sat-
isfaction imputation head. We can see that when using a single feature to predict
survey response, the continuous feature of the time the user spent interacting
with the item is less informative compared to discrete features representing the
item such as the embedding of the item id. The AUC ROC of a satisfaction impu-
tation with item id as the only feature is further improved when including other
features representing the item on the survey—we notice a slight improvement
when including the creator id embedding, and a considerable improvement when
also including time spent in seconds interacting with the item, on top of item id
and creator id embeddings.
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Fig. 5. Distribution of satisfaction scores for items nominated by model, for experiment
arm (REINFORCE with satisfaction imputation model) versus control arm (REIN-
FORCE without satisfaction in reward).

User State. We also evaluate the importance of including user state in
learning the imputation model (Fig. 4 right). We can see that when using as
features only the user state, as captured by the RNN over the sequence up until
this point, concatenated with the label context embedding, we get the same hold
out AUC ROC as the one achieved by using all features representing the action
(Fig. 4 left, last bar). Concatenating the user state with action embeddings further
improves the imputation model’s predictive power. Thus, in what follows, our
satisfaction imputation model will utilize both user state and action embeddings
as features.

6 Live Experiments

Our case study involves a large scale two-stage recommender platform, where
at the first stage multiple candidate generators retrieve potential candidates
from the entire corpus; and the second stage involves a ranker model ranking
the candidates and providing a final top-K recommendation list to be shown to
the user [5]. To study the extent to which our approach can improve real user
experiences, we apply our reward shaping approach onto a RL-based candidate
generator, and conducted a series of A/B experiments. The control arm runs a
REINFORCE agent learned using engagement-only reward [3]. In the experiment
arm, we test our proposed approach of augmenting the policy network with
a satisfaction imputation head (Fig. 2), and utilizing the imputed satisfaction
reward along with the ground truth behavioral signals into the policy’s reward,
described in Section 4.4. Experiments are run for over a month on a fixed set of
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Fig. 6. Percentage improvements of online satisfaction metrics (y-axis) achieved by our
proposed model over the course of a month (x-axis). On average, satisfied engagement
is significantly increased by 0.23% (top), while unsatisfying engagement is significantly
decreased by 0.93% (bottom), highlighting the value of our approach for driving user
satisfaction.

randomly assigned user traffic to study the long-term effect. During this period,
the model is trained continuously, with new interactions being used as training
data with a lag under 24 hours.

Online Satisfied Engagement Metric. For evaluating whether the user
experiences are improved, one could look at ground truth survey responses. An
experiment which increases the average survey response over the experiment
period would be considered driving more user satisfaction. In fact our experiment
increases 5 star survey responses on average by 0.48% and decreases 1 and 2
star survey responses by 1.89%. However, we again run into the key challenge
associated with survey responses which is sparsity. If we only measure on user-item
pairs for which the users have responded to in a survey, we would only be looking
at a very small percentage of the user interactions. To tackle this, we instead rely
on a model-based metric predicting a survey response for each of the items the
user has interacted with, and combining that with engagement metrics measured
live. It is worth pointing out, the model used for measuring online satisfaction
metric is independent of the imputation network we built, with a considerably
different feature set and architecture. We cannot utilize the predictions of this
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Fig. 7. Effect of choice of transformation function over the imputed satisfaction scores.
Y axis denotes percentage improvements of online satisfied engagement metric, x-axis
denotes the days over the course of the month, and the two lines refer to hinge and
identity transformation. We find that filtering data with lower imputed satisfaction
scores through the hinge function performed considerably better compared to raw
imputations.

model directly into our reward, due to infrastructure complexities and freshness
requirements.

Satisfaction Improvements. In Fig. 5 we show how the distribution of
ground truth satisfaction scores over nominations coming from the control model
(REINFORCE with engagement-reward) versus the experiment (our approach
optimizing for a combination of satisfaction and engagement) compare. The
x-axis represents the ground truth satisfaction probability score (used to calculate
the live satisfied engagement time metric, and distinct from our imputation
model predictions), with scores close to 1.0 indicating users being satisfied with
their interactions, and close to 0.0 being unsatisfied. We can see that in both
experiment and control arms, the majority of interactions are predicted to have a
score larger than 0.5, indicating satisfying experience. Nevertheless, we can clearly
see that our experiment increases the number of nominations with satisfaction
scores greater or equal to 0.9, and decreases respectively nominations with a
score less than 0.9. This demonstrates that our proposed imputation head is able
to identify items which are satisfying to the users and shift the policy to select
more satisfying items, further validating its predictive accuracy.

Fig. 6 compares the control and experiment arm on a live metric combining
the model-based satisfaction metric and behavioral-based implicit engagement
signals. We find that on average, satisfied engagement is increased by 0.23%, while
unsatisfying engagement is decreased by 0.93%. Both results are statistically
significant, signifying the value of reward shaping in driving user utility as
specified by the reward. Furthermore, metrics orthogonal to the ground truth
satisfaction scores, measuring other facets of user experience, significantly move
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towards the right direction: likes on items increase by 0.53%, while dislikes are
decreased by 1.11% and dismissals decrease by 3.03%. Note that we did not
include these signals into the features or labels of our satisfaction imputation
model. This further supports the point made in Section 1 that optimizing for
satisfaction signals correlates well with improvements in post-engagement actions.

We found that an important design choice in the reward is the transformation
function over the predicted satisfaction signal ru(s, a) by the imputation network,
i.e., the probability of an item being satisfying to the user. Simply multiplying
the engagement reward signals by the imputed probability of the item being
satisfying (identity function) only decreases non-satisfied engagement, but did
not lead to statistically significant improvements in satisfied engagement. It is
critical to further differentiate highly satisfying items from less satisfying ones to
allow the model to clearly prefer selecting such items. We found that in practice
a simple hinge function performed the best, i.e., when imputed probability of
an item being satisfying to the user is larger than a threshold, multiply with
the probability, else completely zero out the engagement reward (Fig. 7). The
threshold was tuned offline based on the ground truth response distribution, and
the imputation network’s predictions. We report results based on threshold set
to 0.75.

Furthermore, we validated in live experiments some of our choices made offline.
We found that predicting the probability of an item found satisfying by the user
performed better than predicting the actual survey response they will give, i.e.,
cross-entropy loss gave better results compared to a square loss. We hypothesize
that this could be the case due to better alignment with the loss used to train the
model-based Satisfied Engagement live metric. Also, balancing the data to give
more weight to unsatisfying survey responses and calibrating the prediction to
account for the balancing (Fig. 3) was important for live improvements. Finally,
we found that raising the satisfaction reward term to an exponent larger than 1
gave us slightly better results when using the identity transformation function;
but for the hinge function, the improvement was not statistically significant.

7 Conclusions

This paper addresses the challenge of optimizing long-term user satisfaction in
reinforcement learning-based recommenders. We advocate for reward shaping as
a vital technique to align the recommender’s goals with what users want. We
argue that relying solely on engagement signals, as common in the current RL
literature, does not adequately capture the nuances of user experience. Instead,
incorporating user satisfaction signals is crucial. Recognizing the sparsity of
these satisfaction signals, we propose improving a state-of-the-art REINFORCE
recommender with a satisfaction imputation network to predict satisfaction scores
for all interacted items. Through offline analysis and live A/B experiments on a
large-scale commercial recommender platform, we demonstrate that integrating
satisfaction imputation into the reward function effectively leads to more satisfying
user experiences.



16 K. Christakopoulou et al.

References

1. Beutel, A., Covington, P., Jain, S., Xu, C., Li, J., Gatto, V., Chi, E.H.: Latent
cross: Making use of context in recurrent recommender systems. In: Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining. pp.
46–54 (2018)

2. Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction
for display advertising. ACM Transactions on Intelligent Systems and Technology
(TIST) 5(4), 1–34 (2014)

3. Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F., Chi, E.H.: Top-k off-policy
correction for a reinforce recommender system. In: Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. pp. 456–464 (2019)

4. Christakopoulou, K., Traverse, M., Potter, T., Marriott, E., Li, D., Haulk, C. Chi,
E.H, and Chen, M.: Deconfounding user satisfaction estimation from response rate
bias. In: Proceedings of the 14th ACM Conference on recommender systems, pp.
450–455 (2020)

5. Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommen-
dations. In: Proceedings of the 10th ACM conference on recommender systems. pp.
191–198 (2016)

6. Dorigo, M., Colombetti, M.: Robot shaping: Developing autonomous agents through
learning. Artificial intelligence 71(2), 321–370 (1994)

7. Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J.,
Mann, T., Weber, T., Degris, T., Coppin, B.: Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679 (2015)

8. Elkan, C.: The foundations of cost-sensitive learning. In: International joint confer-
ence on artificial intelligence. vol. 17, pp. 973–978. Lawrence Erlbaum Associates
Ltd (2001)

9. Garcia-Gathright, J., St. Thomas, B., Hosey, C., Nazari, Z., Diaz, F.: Understanding
and evaluating user satisfaction with music discovery. In: The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval. pp.
55–64 (2018)

10. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: 2017 IEEE international
conference on robotics and automation (ICRA). pp. 3389–3396. IEEE (2017)

11. Guo, Q., Agichtein, E.: Beyond dwell time: estimating document relevance from
cursor movements and other post-click searcher behavior. In: Proceedings of the
21st International conference on World Wide Web. pp. 569–578 (2012)

12. Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S.J., Dragan, A.: Inverse reward
design. In: Advances in neural information processing systems. pp. 6765–6774 (2017)

13. Ie, E., Jain, V., Wang, J., Narvekar, S., Agarwal, R., Wu, R., Cheng, H.T., Chandra,
T., Boutilier, C.: Slateq: A tractable decomposition for reinforcement learning with
recommendation sets. In: Proceedings of the Twenty-eighth International Joint
Conference on Artificial Intelligence (IJCAI-19). pp. 2592–2599. Macau, China
(2019), see arXiv:1905.12767 for a related and expanded paper (with additional
material and authors).

14. Lalmas, M.: Metrics, engagement & personalization. In: REVEAL workshop, The
ACM Conference Series on Recommender Systems (2019)

15. Liu, F., Tang, R., Li, X., Zhang, W., Ye, Y., Chen, H., Guo, H., Zhang, Y.: Deep
reinforcement learning based recommendation with explicit user-item interactions
modeling. arXiv preprint arXiv:1810.12027 (2018)



Reward Shaping for User Satisfaction 17

16. Mataric, M.J.: Reward functions for accelerated learning. In: Machine learning
proceedings 1994, pp. 181–189. Elsevier (1994)

17. Mehrotra, R., Lalmas, M., Kenney, D., Lim-Meng, T., Hashemian, G.: Jointly
leveraging intent and interaction signals to predict user satisfaction with slate
recommendations. In: Proceedings of The Web Conference 2019. pp. 1256–1267
(2019)

18. Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., Diaz, F.: Towards a
fair marketplace: Counterfactual evaluation of the trade-off between relevance,
fairness & satisfaction in recommendation systems. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge Management. pp.
2243–2251 (2018)

19. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
International conference on machine learning. pp. 1928–1937 (2016)

20. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

21. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

22. Munos, R., Stepleton, T., Harutyunyan, A., Bellemare, M.: Safe and efficient
off-policy reinforcement learning. In: Advances in Neural Information Processing
Systems. pp. 1054–1062 (2016)

23. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: ICML. vol. 99, pp. 278–287 (1999)

24. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22(10), 1345–1359 (2009)

25. Paulhus, D.L.: Measurement and control of response bias. (1991)
26. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in cognitive

sciences 3(6), 233–242 (1999)
27. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional

continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438 (2015)

28. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., et al.: A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science 362(6419),
1140–1144 (2018)

29. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

30. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Advances in neural
information processing systems. pp. 1057–1063 (2000)

31. Wen, H., Yang, L., Estrin, D.: Leveraging post-click feedback for content recommen-
dations. In: Proceedings of the 13th ACM Conference on Recommender Systems.
pp. 278–286 (2019)

32. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8(3-4), 229–256 (1992)

33. Yi, X., Hong, L., Zhong, E., Liu, N.N., Rajan, S.: Beyond clicks: dwell time for
personalization. In: Proceedings of the 8th ACM Conference on Recommender
systems. pp. 113–120 (2014)



18 K. Christakopoulou et al.

34. Zhang, J., Hao, B., Chen, B., Li, C., Chen, H., Sun, J.: Hierarchical reinforce-
ment learning for course recommendation in moocs. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 33, pp. 435–442 (2019)

35. Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., Tang, J.: Deep reinforcement learning
for page-wise recommendations. In: Proceedings of the 12th ACM Conference on
Recommender Systems. pp. 95–103 (2018)

36. Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie, X., Li, Z.: Drn: A
deep reinforcement learning framework for news recommendation. In: Proceedings
of the 2018 World Wide Web Conference. pp. 167–176 (2018)


	Reward Shaping for User Satisfaction

