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Abstract. Density-based clustering methods often surpass centroid-
based counterparts, when addressing data with noise or arbitrary data
distributions common in real-world problems. In this study, we reveal a
key property intrinsic to density-based clustering methods regarding the
relation between the number of clusters and the neighborhood radius of
core points — we empirically show that it is nearly unimodal, and support
this claim theoretically in a specific setting. We leverage this property
to devise new strategies for finding appropriate values for the radius
more efficiently based on the Ternary Search algorithm. This is especially
important for large scale data that is high-dimensional, where parameter
tuning is computationally intensive. We validate our methodology through
extensive applications across a range of high-dimensional, large-scale NLP,
Audio, and Computer Vision tasks, demonstrating its practical effective-
ness and robustness. This work not only offers a significant advancement
in parameter control for density-based clustering but also broadens the
understanding regarding the relations between their guiding parameters.
Our code is available at |https://github.com/oronnir/UnimodalStrategies.
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1 Introduction

Clustering, a fundamental task in machine learning, is pivotal in uncovering
patterns and structures in unlabeled data. Among various clustering algorithms,
density-based methods have gained significant attention due to their ability to
identify clusters of arbitrary shapes and sizes. Notably, variants of Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [I] are widely used
today by researchers and data scientists. Unlike centroid-based methods that
assume spherical cluster shapes, density-based approaches are adept at discovering
clusters with complex geometries and noisy examples, making them more suitable
for real-world data that often exhibit irregular distributions [2].

A significant challenge in leveraging the full potential of density-based clus-
tering lies in parameter tuning. Parameters such as € and MinPts. These user-
defined parameters affect cluster formation in DBSCAN and its variants, critically
influence the clustering outcome, such as the resulting number of clusters de-
noted by k. Misconfigured parameter invocation can lead to over-segmentation or
under-segmentation of data, significantly affecting the quality and interpretability
of the results. This is particularly challenging in high-dimensional, large-scale
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datasets where the intuitive understanding of parameter effects is less apparent
and search for values is costly [3].

Our key insight centers on the relationship between these parameters and
the resulting number of clusters. Specifically, we observe that when MinPts is
held constant, the number of clusters k produced by DBSCAN varies with the
neighborhood radius € in a quasi-unimodal fashion. This means that as € increases
from very small to very large values, the number of clusters first increases, reaches
a peak, and then decreases. Using this observation, we address the parameter
tuning challenge, by automatically finding the parameter €* that maximizes the
number of clusters k(g). While ¢* may not always yield the “optimal” clustering
for all datasets, it provides critical insight into the clustering structure. For values
g > e* there is over-clustering (i.e., one large cluster at the extreme), and for
values ¢ < £* there is under-clustering (i.e., too many samples are treated as
noise). Hence, it is clear that values around £* are the “interesting” and important
ones. Our method approximates £*, addressing the challenge of parameter tuning
in density-based clustering.

To demonstrate the efficacy of our proposed method, we apply it to high-
dimensional, large-scale classification datasets. Our experiments reveal that not
only does our method consistently achieve the target number of clusters, but it
also enhances the quality of the clustering supervised evaluation metrics over state-
of-the-art (SOTA) methods. Empirical evidence also underscores the advantage
of our method in achieving less noise points which is important when working
with noisy data.

This study contributes to the field of density-based clustering by:

— Discovering the Unimodal property in density-based clustering, demonstrating
this both theoretically and practically.

— Proposing the efficient Ternary Search for real-world data parameter tuning.

— Sharing our code at https://github.com/oronnir/UnimodalStrategies.

2 Related work

Clustering methods in data mining have been extensively studied, sometimes
focusing on handling synthetic, separable, and low-dimension data distributions
using benchmarks which could be insufficient for a rigorous evaluation and may
lead to overfitting [4]. Density-based methods like DBSCAN [I] excel at handling
noise and discovering arbitrary-shaped clusters in high dimensions, surpassing
centroid-based approaches.

Several variants of DBSCAN, such as OPTICS [5], VDBSCAN [6], and ADB-
SCAN [7], have been introduced to address varying-density clusters and improve
scalability. These approaches typically trade off runtime efficiency for parameter
optimization. HDBSCAN [§], for instance, adopts a multi-resolution framework
to self-tune parameters. Methods that extend DBSCAN while retaining its depen-
dence on ¢ are not considered as a baseline in this paper. Note that unsupervised
learning methods inherently depend on specific mathematical properties of data,
making it unlikely for any single method to be universally optimal. Notably,
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DBSCAN’s assumption of uniform density regions and the existence of an ideal
(e, MinPts) pair is often unmet in practice.

Parameter Selection in Density-Based Clustering: The performance
of DBSCAN and its variants depends heavily on parameter settings: while
MinPts is intuitive as an application-dependent integer, € € R+ is challenging
to tune in high-dimensional spaces. Ester et al. [I] suggests using the Elbow
Method manually over the k-dist plot which is considered a folklore heuristic for
density shift and k selection in algorithms like k-means. However, this method is
found sub-optimal by Schubert [2]. Several studies have automated and further
optimized the k-dist plot heuristic for parameter selection e.g., [69]. These
methods aim to reduce the user intervention required in the clustering process,
but often face challenges in handling high-dimensional and large-scale datasets.
Researchers [T0JTT] revisit the challenge, noting that MinPts is easier to tune
than €, and suggest setting MinPts = 2D where D is the dimension of the
data. Assuming for example, D > 100, such a MinPts value could lead to either
enhanced noise robustness or into an under-segmented solution. Another common
practice is dimensionality reduction. However, in this work we aim at enhancing
density-based clustering over the raw data in high-dimension.

Advancements in Parameter Optimization: Recent studies have explored
various optimization techniques. SS-DBSCAN [12] and AMD-DBSCAN [13]
both suggest an exhaustive grid-search approach for MinPts, where the former
includes an automated version of the Elbow method using stratified sampling.
AEDBSCAN [I4] assigns a per-point radius to optimize ¢ for a fixed MinPts.
These algorithms essentially apply exhaustive search of the optimal parameters
without relying on the underlying algorithm properties and their results are
reported over low dimensional synthetic datasets. We consider the following
density-based parameter tuning methods as the SOTA baselines [SIGI5IT2/T3IT49].

In summary, while density-based clustering methods offer advantages in
handling non-linearly separable data, their reliance on parameter settings poses a
significant challenge, especially in high-dimensional and large-scale scenarios. Our
work builds upon these foundations, proposing an efficient method for parameter
tuning that is responsive to these data representation challenges.

3 Preliminaries

We establish standard DBSCAN algorithm definitions and notations,

Definition 1 (Dataset). Let (M, d) be a metric space and a distance metric. A
dataset X = {x1,...,xn} C M is a finite subset of M.

Definition 2 (DBSCAN Parameters). For a dataset X € RN*P DBSCAN
receives € € Ryg and MinPts € N>o as user-defined parameters.

Definition 3 (e-ball and Neighborhood). For a point p € R”, X, and e > 0:

Let B.(p) ={y € RP :d(p,y) <&} be the e-ball centered at p
and let N(p) = B:(p) N X  be the e-neighborhood of p
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Definition 4 (Core and Border Points). For e and MinPts:

— A point p € X is a core point if |N.(p)| > MinPts
— A point b € X is a border point if:
e b € B.(p) for some core point p
e |N.(p)| < MinPts (not itself a core point)
— p is a noise point if it is neither a core nor a border point

Definition 5 (Density-Reachability). Two points p,q € X are density-reachable
at radius € if there exists a sequence of points {p1,...,p:} C X such that:

1. p1=pandp =q
2. Fach p; is a core point for i <t
3. piy1 € Be(p;) foralli <t

Definition 6 (Cluster). A cluster ¢ is a mazimal set of points where:

— At least one point in ¢ is a core point
— Non-core points in ¢ are within e-radius of a core point in c
— All core points in ¢ are mutually density-reachable

DBSCAN forms clusters by identifying core points and their density-reachable
neighbors within e-radii. Non-core points that are density-reachable from core
points become border points, and the remaining points are classified as noise [IT].

Let A:RV*P x R x N — N¥ denote DBSCAN or a variant of DBSCAN,
let C := A(X,e,MinPts) € NV be A’s output clustering assignment, and let
K(C) = [{c; € C}Y,| be the function which counts the number of clusters A
returns. We often refer to K(C) by using the variable k when clear from context
and characterize it as a function of ¢,

k(e) := K(A(X, e, MinPts)) (1)

4 The Unimodality Property

We make a fundamental observation regarding DBSCAN, that for a fixed MinPts,
k(e) (Eq.|l)) is near-unimodal. This is since 1. low values of ¢ label more examples
as noise so less clusters are formed (specifically for ¢ < min;x;d(x;,x;) there are
no core points), while 2. high values of € combine clusters together and gradually
reduce the number of clusters (for € > max; jd(x;, x;) there is a single cluster
since all points are mutually density-reachable).

We identify in a counter-example in Fig. |1} that k(¢) is not necessarily strictly
unimodal as per the standard definition, i.e., monotonically non-decreasing up
to the mode and monotonically non-increasing thereafter [I5]. However, we
empirically demonstrate the near-unimodality of k() over 24 real-life datasets,
and support this by a statistical test (DIP [15]) in Sec. [} and a theoretical
analysis.
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Fig. 1: A counter-example with non-unimodal behavior of k(g) in R? and Lo.

&” Search: Ternary vs. Exhaustive Search
E3 L)
600 RS

DBSCAN k(g) mode search sub-sampling

)
I
S
S

—— Exhaustive Search
~efl ___ -e- Ternary Search
—= Noise 0.4

\
A 200
0.2
A ! 100
£=0.49794 ||
=0.49000\s 0.0

0.0 02 04 aion? 08 10 00 02 04 06 08 10
psilon Epsilon

k (#clusters,
w
S
S

Fig.2: TS convergence steps in blue vs. Fig.3: Exhaustive search of k(e) uni-
Exhaustive Search in red over the FACE modality for different sample sizes («).
dataset (N=45k with noise). The grey When « grows ¥ shrinks monotonically,
line illustrates the percentage of noise. hence used as an U B in our method.

4.1 Theoretical Analysis:

To support our unimodality claim, we give a theoretical analysis of DBSCAN
running on a dataset X = {z1,...,zy} of iid uniform samples Vi, z; ~ U[0, 1]P.
We acknowledge this distribution is non-standard for clustering, but it is a first
step towards understanding this property in more general distributions. First, for
MinPts = 2, a common choice for this parameter, and D = 1. Theorem [I] gives
and proves the explicit unimodal function describing Fx [k(¢)], and gives its mode.
We note that in experimental evaluations which are omitted, we saw that a law
of large numbers appears, and for N > 1,000, even for any single random dataset
X ~ UJ[0,1]"], almost always the resulting k(¢) was surprisingly close to the
unimodal function Ex[k(e)] over the whole domain € > 0, hence near-unimodal
itself. Then, we consider the setting where IV is large, and assume that MinPts
grows as a function of N (this is standard in DBSCAN for large datasets). For
ease of presentation, we assume a constant ratio p = MinPts/N € (0,1) between
MinPts and N. This setting is natural for DBSCAN since doubling the dataset
size means that the expected number of points in each e-ball should roughly
double. To warm up, Theorem [2f considers D = 1, and then Theorem [3| considers
a general D € N, and they both prove that k(e) is not trivially 0 or 1 only for
e~ %p% (much stronger than the bounds to come in Section . We stress
that while we present our results for a constant ratio p, they in fact hold for a
sufficiently large but reasonable N for any setting where MinPts grows (e.g.,
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logarithmically) with N, and linearly with D (a common assumption is that
MinPts > D). This suggests that when we search for ¢*, first identifying the
often small region in which k() is not trivial, can improve runtime and accuracy.

Theorem 1. Consider DBSCAN running on a uniformly sampled dataset X ~
U[[0,1]N] with parameter MinPts = 2. The expected number of clusters as a
function of e > 0 is Ex[k(e)] = (N —1)- (1 —e)¥ — (N —2) - (1 — 2¢)¥ where

y4+ = max(y,0). This is a unimodal function mazimized at €9 = 2‘2_711 AN oo

@ fora:= (%)ﬁ, with expected value Ex [k(g0)] #N_yo0 -
Proof (Proof Idea). Consider the order statistics u; < ... < uy of X, and
the differences, often called spacings, s; := u; — u;—1 (by convention ug := 0,
un+1 :=1). Let U; be the event that u; is the rightmost point of a cluster. Note
that for 1 <i < N — 1, U; occurs iff u; is a core point and the cluster does not
extend to the right, i.e., U; = (s; < &) A (Si+1 > €). This occurs w.p.

Px[U;] = Px[(si < &) A (si11 > €)] = Px[sit1 > €| — Px[si > e A sip1 > €]

For spacings, it is well known [I6] that for any nonnegative values by, ..., by it
holds that, P[Vi,s; > b;] = (1 — X;b;)¥, so we conclude Px[U;] = (1—¢)¥ — (1 —
2¢)Y¥. Note that P[U;] = 0 since the leftmost point cannot have a left neighbor,
and that Px[Un] = Px[sny < &] = (1 —¢)¥ because there is no point to its right.
Since E[A] = P[A] for a Bernoulli RV A, and by linearity of the expectation,
since the number of clusters is the number of rightmost points of clusters,

Ex[k(e)] = Ex[Ziy,] = Z.Px[U] = (N = 1) - (1 =) — (N —=2) - (1 —20)

To find the optimal £, note that it is attained at & < 1/2 and solve 4 [ (e)]=0
L Ex[k(e)] = 2N(N —1)(1 —2e)N~1 = N(N — 2)(1 — ) =0. O

for e, ie., -

We prove the concentration bound,

Theorem 2. Consider DBSCAN running on a uniformly sampled dataset X ~
U[[0,1)V], with parameter MinPts = p- N for a constant p < i. Then for
any B> 1 and § > 0, both conditions hold 1. for any e > -5 and N > N,

Pxlk(e) =1] > 1-0, and 2. for any e < B £ and N > N, PX[k:( )=0]>1-9,
for an appropriately large N, = {2 (log(éeq)/(pq )) forqg:=1-— ﬁ'

Proof (Proof Idea). For the case ¢ > (- £, divide [0, 1] to the set of segments
S;=lal —b,al + b], for all | € N where b = ﬁ is slightly below ¢, and a = ¢ — b.
By the Hoeffding inequality and a union bound, w.h.p. all segments .S; centered
in [e,1 — €] have > MinPts points, so for each z; € [e,1 — €], the e-ball around it
contains such a segment (for some ! € N, by the definition of a and the triangle
inequality), hence z; is a core point. Combined with a high probability event
that for large enough N, all points are e-near each other, and that the cluster
covers also [0,¢] and [1 — ¢, 1], we get a single cluster.
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For the case € < % - £, divide to segments as above with b = ¢ - /B slightly
above ¢, and a = b — €. By Hoeffding inequality and a union bound, w.h.p.
all segments S; centered in [e,1 — ¢] have < MinPts points, so since the e-
neighborhood of each point z; is contained in such a segment (for some [ € N, by
triangle inequality and a = b — ), there are no core points hence no clusters. 0O

We follow similar arguments to those in Theorem [2] and extend it to uniform
datasets on the unit cube [0, 1]7 of arbitrary dimension D € N, incurring only
an additional v/D factor on the upper bound and no additional factor on the
lower bound.

Theorem 3. Consider DBSCAN running on a dataset X ~ UJ[[0,1]V*P] of
N uniformly sampled points in the unit D-dimensional cube, with parameter
MinPts = p- N for a constant p < i. Then for any > 1 and 6 > 0, both

conditions hold: 1. for any ¢ > /Dp - %p% and N > N, Px[k(e) =1] >1-19,
and 2. for any € < % : %p% and N > N, Px[k(e) =0] >1-4,
for an appropriately large

N.=0 (; : {(;EV_BI)Q} : {D log(5-2) +10g(p1a)}>,

Proof (Proof Idea). For the case ¢ > v/ Dj3 - %p%, divide [0,1]” to the set of
cubes Sy, =[ali —b,aly +b] x ... x [alp —b,alp +b], for all l;,...,lp €N
where b = ¢/(v/Df2p) is slightly below ¢/vD, and a = ¢/v/D — b. By the
Hoeffding inequality and a union bound, w.h.p. all cubes S;, . ;,, centered in the
set [e,1 —¢]P C [0,1]P have > MinPts points, so for each x; € [¢,1 — €], the
e-ball around it contains such a cube (for some [ € N, by the definition of a and
the triangle inequality, and that the diameter of such cubes are = /Db slightly
below ¢), hence z; is a core point. Combined with a high probability event that
for large enough NN, all points are e-near each other, and that the cluster covers
also the exterior [0,1]P \ [,1 — &]P, we get a single cluster.

For the case ¢ < + - %p%, divide to cubes as above with b = ¢ - ﬂ% slightly
above ¢, and a = b — . By Hoeffding inequality and a union bound, w.h.p. all
cubes Sj, ., centered in the set [¢,1 — ¢]P have < MinPts points, so since the
e-neighborhood of each point x; is contained in such a cube (for some | € N, by
triangle inequality and a = b — €), there are no core points hence no clusters. 0O

These theoretical results demonstrate that, under natural assumptions, to find
the value of € that maximize k(e), we can first focus on a small range where k(¢)
is neither trivially 1 nor 0, and subsequently exploit its near-unimodal behavior
to efficiently find its mode, as discussed in the next section.
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5 Method

Our task is to efficiently find the mode of k(e),
e* = argmaz {K(A(X,e, MinPts))} (2)

The Ternary Search (TS) algorithm by Bajwa et al. [I7] finds a maximum in a
unimodal (discrete) array. In Section| we adapt it to functions, leveraging the
near unimodality of k(e), to find e* using fewer evaluations of k() compared to
a linear search (see Fig. . Then, in Section we introduce an even quicker
estimator (TSE) for e*.

5.1 Ternary Search for e* (TS)

Our TS algorithm (Alg. [1)) leverages the fact that the function k(e) is near-
unimodal with mode ¢*. It starts with an initial lower bound (LB) and upper
bound (UB) for €*, and iteratively (itr times) divides it to 3 equal parts and
removes at least one of them (see Alg. |2)), to reduce the search space size and still
contain the mode. Specifically, for Alg. , we let m; = w and m, = %,
and k; = k(my) and k, = k(m,) be the respective cluster counts. Recall that
the cluster count as a function of ¢ is initially 0, then increases until it reaches
the mode, and then decreases back to 1. Hence, the space reduction logic is as
follows: 1. If k; = k,. = 1, the mode must be below them, 2. If k; = k,. = 0, the
mode must be above them, 3. if k; = 0 and &, = 1, then the mode is between
them, 4. if k; > k, then the mode is to the left of m, and otherwise the mode is
to the right of m;. The edge-case in which k = 1 for the very first formed cluster
i.e., by chance and not by convergence, is easily detected by the Noise ratio thus
omitted for simplicity. We provide both algorithms pseudo-code below.

Algorithm 1 Algorithm 2
TS(X,LB,UB, MinPts,itr) Cond(LB,UB,m;,m,, ki, k)

for i—=0 to itr do 1: if ki ==1and k. == 1 then
: my « 2LBFXUB return (LB, m;)

3
LB+2UB : else if k; == 0 and k., == 1 then

1:
2 2
3 My 5 3
4: C + A(X,my, MinPts) 4:  return (my;,m,)
5. Cr + A(X,m,, MinPts) 5: else if k; == 0 and k, == 0 then
6 (LB,UB) < Cond(LB,UB, ... 6: return (m,,UB)
7 my,my, K(C;),K(Cr)) T: else if k; > k, then
8: 8 return (LB, m,)
9: 9: else
10:  return (m;,UB)
11: end if

end for

return w




Unimodal Strategies in Density-Based Clustering 9

Upper and Lower Bounds: To efficiently initialize the search space, we use
tight bounds UB, LB for £*. For bounded metrics, a trivial upper bound UB? is
simply their bound, and for (unbounded) metrics in general, as in Sec. 4] an upper
bound is the Diameter max; jc(i1,.. vy d(4, ;) of X, which we approximate in
linear time by doubling a 2-approximation of it. A trivial lower bound LB is 0.
We provide an improved heuristic for UB and LB via sampling:

— Upper Bound (UB): We observe that empirically, as depicted in Fig. 3] sub-
sampling an « fraction of the data requires a larger radius to form a core-point
since data is more sparse, so €* increases. Hence, we produce the upper bound

UB=TS(Xr1.p, LB°,UB°, MinPts,itr) (3)
for R ~ Uniform(G C {1,...,N} : |G| = [aN])

— Lower Bound (LB): Empirically, projecting the data on a random subset of
aD dimensions, reduces €* since it brings the data closer. Hence, define

LB=TS(X,.y 7, LB°, UB, MinPts, itr) (4)
for T ~ Uniform(H C {1,...,D} : |H| = [aD])

Our resulting clustering algorithm TSClustering (Alg. [3]) invokes TS 3 times
to find UB, LB, and e*.

Algorithm 3 TSClustering(X, MinPts, itr)
Nyd(X1, Xi)

UB° «+ 2mazic 2
LB° «0

R < sample [aN] points from X

T <« sample [aD] dimensions from X

UB < TS(Xr1.p, LB, UB°, MinPts,itr)
LB < TS(X1.n,7,LB°,UB, MinPts,itr)
"« TS(X,LB,UB, MinPts,itr)

return A(X,e*, MinPts)

,,,,,

Runtime Analysis: TS executes itr iterations, each invoking DBSCAN twice,
resulting in O(itr - DN?). With itr empirically set to 6, the overall complexity
remains O(DN?), improving upon prior works’ computational efficiency.

5.2 Ternary Search Estimator (TSE)

To further optimize the runtime of the heavy part of Alg. 3| (line 7) which uses the
whole data and full dimension, we propose an estimator (T'SE) for * obtained by
sampling an « fraction of the data and dimensions simultaneously. The intuition
is that the opposite influences of sampling the data and dimensions on €* should
roughly cancel out. Formally, we produce the estimate by replacing line 7 with
TS(X',LB,UB, MinPts,itr), where X' = Xg 7 and R, T are sampled as in
Eq. To reduce the variance, we repeat the above m times (m = 30 in our
experiments) and average the estimates.
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6 Evaluation

We evaluated the unimodality property and our methods across various domains,
tasks, datasets, and representation techniques, using both qualitative and quanti-
tative analyses over 24 datasets (Tab. . To evaluate clustering with noise, we
employed the standard Normalized Mutual Information (NMI), Adjusted Rand
Index (ARI), and Noise [T2JTTI] metrics. NMI normalizes by cluster entropy,
suitable for varying cluster counts, while ARI provides chance-adjusted accu-
racy with error-balance penalty. Together, these metrics offer complementary
perspectives [18/19].

Unimodality Analysis: Qualitatively, Fig. [d] in the appendix demonstrates
the unimodal shape (in red) of k(e) across 6 datasets from various fields. We used
evenly spaced samples of ¢ for these curves, and executed DBSCAN exhaustively
for each value. See Fig. [f]in the appendix for 15 additional datasets.

Table 1: DIP Test over datasets [20121122123242526] and embed-
dings [Z612728129/30131].
Dataset ‘Labels N Embed. D Task‘ pDIP HDataset ‘Labels N Embed. D Task‘vaaIlP

val
LFW 1,680 13,233 DNet 256 Face |>99.9%||[AMCDv5| N/A 13,406 CAST 2,048 Anim|14.9%
ImNetlk | 1,000 50,000 CLIP 512 OD |>99.9%|AMCDv6| N/A 14,372 CAST 2,048 Anim|6.4%
ImNetlk | 1,000 50,000 Hiera 1,000 OD | 33.8% ||AMCDv7| N/A 14,460 CAST 2,048 Anim|8.4%
CIFAR 100 60,000 CLIP 512 OD | 89% ||[AMCDv8| N/A 14,748 CAST 2,048 Anim|14.8%
CIFAR 100 60,000 Hiera 1,000 OD |>99.9%||CASTvl | N/A 2,648 CAST 2,048 Anim|6.4%
Reuters 135 21,578 ADA2 1,536 Doc | 99.8% [|[CASTv2 | N/A 4,215 CAST 2,048 Anim|79.1%
ESC-50 50 1,024 CLAP 1,024 Audio| 41.3% ||[CASTv3 | N/A 4,633 CAST 2,048 Anim|14.8%
FACE N/A 45207 DNet 256 Face |>99.9%|[CASTv4 | N/A 4,163 CAST 2,048 Anim|99.4%
AMCDv1| N/A 15,395 CAST 2,048 Anim| 29.3% ||[CASTv5 | N/A 4,959 CAST 2,048 Anim|14.8%
AMCDv2| N/A 13,102 CAST 2,048 Anim| 52.5% ||CASTv6 | N/A 5,639 CAST 2,048 Anim|99.4%
AMCDv3| N/A 14,676 CAST 2,048 Anim| 79.0% ||CASTv7 | N/A 4,795 CAST 2,048 Anim|52.5%
AMCDv4| N/A 14,676 CAST 2,048 Anim| 29.4% ||Urban8k | N/A 8,732 CLAP 1,024 Audio|99.6%

Quantitatively, to validate the unimodality of k(e) empirically we perform the
DIP test [I5]. Its null hypothesis is that the data is unimodal, and it is rejected
for pyai < 5%. The test demonstrated strong insignificance for all 24 NLP, Vision,
and Audio datasets in Tab. [l} i.e., k(¢) is unimodal on these datasets.

Cluster Analysis: Prior studies predominantly focus on synthetic, low-
dimensional datasets. In contrast, this work emphasizes applications in high-
dimension, comparing our methods (TS and TSE) to KMeans [32], HDBSCAN [g],
VDBSCAN [6], OPTICS [5], SS-DBSCAN [12], AMD-DBSCAN [I3], AEDB-
SCAN [I4], and AutoEps [9]. Due to the absence of open-source implementations,
we re-implemented the latter four algorithms ourselves. We find that the baseline
algorithms usually struggle in high dimensions, seldom producing degenerate
outputs. We test against the ground-truth labels of classification datasets from
NLP (Reuters), Vision (LFW), and Audio (ESC) using the metrics NMI, ARI,
k, Noise, and runtime (Tab. .



Unimodal Strategies in Density-Based Clustering 11

An ideal clustering approximates the true number of clusters k, which in
our case is the number of classification labels. TS/TSE provided the closest k
approximations (roughly 5% error), reinforcing our hypothesis that ¢* reveals
the natural clustering. Methods like SS-DBSCAN, which subsample data, overes-
timate ¢, resulting in a single cluster. Note that KMeans requires the parameter
k, which we set via the Elbow Method for maximal Inertia curvature [2].

For NM1I and ARI, since all the algorithms assign points as noiseE| we
excluded these noise-labeled points from the NMI and ARI computation to
isolate the clustering quality from the noise prediction. TS/TSE consistently
achieved the best scores across datasets with P, < 107° in Friedman non-
parametric test.

Regarding noise detection, the ideal outcome identifies true noise. OPTICS
underestimated ¢, labeling nearly all points as noise, which is clearly incorrect,
whereas VDBSCAN and AEDBSCAN significantly overestimated k. For the
LFW dataset, where we defined noisy points as people with only one image
(4,069/13,233 ~ 30.7%), TS/TSE provided noise estimates closely matching this
true value (= 30.5%). For runtime, TSE improved on TS which was competitive
with the baselines.

Table 2: Evaluation over Reuters, LFW, and ESC. We compare our methods (TS,
TSE) with: KMeans (KM), HDBSCAN (HD), VDBSCAN (VD), OPTICS (OP),
SS-DBSCAN (SS), AMD-DBSCAN (AM), AEDBSCAN (AE) and AutoEps (Ep).
In gray, results with Noise > 90%.

Dataset  |Reuters (k= 135) B | LFW (k= 1,680) @ | ESC (k= 50) )
Method |NMIt ARIt k Noise] T[s|L|[NMIt ARIt k Noisel T[s|| [NMI1 ARI1t k Noise | T[s]l
KM [32] |585% 19.9% 41 0.0% 1917 78.0% 78.1% 773 0.2% 17,315 95.1% 83.3% 43 0.0% 306

HD [8] 62.0% 24% 1,247 61.4% 240 | 72.1% 36.3% 393 56.8% 105 | 86.2% 44.6% 52 17.3% 8
VD [6] 55.4% 0.3% 2,296 27.5% 246 | 92.3% 12.0% 2,661 38.0% 84 | 78.7% 20.9% 447 23.3% 10
OP [3] 61.3% 20.5% 37 97.1% 505 | 64.1% 24.5% 390 65.8% 202 | 56.3% 3.8% 53 59.7% 16
SS [12] 0.0% 0.0% 1 229% 230 |13.5% 4.6% 2 52.7% 252 | 85.9% 46.6% 43 16.0% 9

AM [I3] | 41.1% 28.3% 134 6.2% 69 | 71.7% 20.4% 281 34.0% 29 |834% 315% 93 18.3% 13
AE [14] | 49.8% 4.5% 974 24.6% 144 | 91.8% 23.6% 1,944 48.7% 53 |83.9% 46.7% 230 20.8% 7
Ep [ 66.4% 67.1% 646 67.5% 2,377|11.9% 1.7% 56 57.1% 82 |91.8% 77.3% 144 36.0% 24
TS (ours) |77.5% 93.9% 138 55.2% 152 |99.0% 96.8% 1,697 30.5% 60 |97.4% 90.3% 57 32.3% 5
TSE (ours)| 77.8% 92.9% 150 38.0% 24 |99.0% 96.7% 1,694 30.4% 41 |96.7% 85.2% 48 14.7% 2

Hyper-Parameter Tuning: TSClustering relies on two hyper-parameters:
« for sub-sampling N and D to give initial upper and lower bounds for £*, and
itr to bound the number of ternary search iterations within T'S. Both parameters
trade off precision and runtime. Fig. a) illustrates the gap between LB and
UB as a decreasing function of a. We selected a = 0.2 to balance the gap size
reduction with runtime. Recall that we try to maximize k and find its mode k*.
In Fig. b)7 we illustrate the resulting approximation ratio (kﬁ) as a function
of TS iterations over the Reuters, LFW, ESC, and CAST datasets. We selected

itr = 6 since the approximation ratio converges just before this value.

3 For KMeans clustering, we define the noisy points to be the singleton clusters.
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7 Conclusion

This paper addresses the problem of parameter tuning in DBSCAN. We identify
a unimodality property of k(e), and support it empirically and theoretically. We
find that maximizing k(g) provides a good clustering, and give a novel method to
automatically find this € with an adapted version of the Ternary Search algorithm.
Our empirical results on diverse datasets demonstrate improved precision and
reduced noise, highlighting its potential for various data mining applications.

Future works may include: 1. creating a sub-linear estimator for €*, 2. im-
proving the runtime with numerical optimization algorithms, which perhaps
incorporate priors or gradients, 3. adapting the approach to multi-density distri-
butions, and 4. scaling out for distributed big-data clustering.
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Appendix

9.1 Additional Qualitative Evaluations of Near-Unimodality

To support our qualitative claims of Near-Unimodality, in Fig. [6] we illustrate
k(e) over 15 additional datasets from SAIL AMCD [25] and CAST [26], and plot
the run of TSClustering over them. SAIL-AMCD and CAST are collections of 15
animated videos of different styles where each video has its own set of detected
characters embedded using the CAST embeddings of dimension 2, 048.
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4: Datasets across Vision, Audio, and NLP demonstrate unimodality of k(e).
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Fig. 6: The function k(e) plotted over 15 datasets from SAIL-AMCD and CAST,
each containing embeddings of multiple characters in a video. We observe a clear
unimodal shape on all datasets.
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