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Abstract. Graph out-of-distribution (OOD) detection usually relies on
training a graph neural network (GNN) with a large set of labeled in-
distribution (ID) nodes. However, acquiring high-quality labeled nodes
in text-attributed graphs (TAGs) is challenging and costly due to their
complex textual and structural characteristics. Large language mod-
els (LLMs) offer strong zero-shot language capabilities but overlook
graph connectivity, limiting their utility for graph OOD detection.
In this work, we propose LLM-GOOD, a general framework that ef-
fectively combines the strengths of LLMs and GNNs to enhance data
efficiency in graph OOD detection. Specifically, we first leverage LLMs’
strong zero-shot capabilities to filter out likely OOD nodes, significantly
reducing the human annotation burden. To minimize the usage and cost
of the LLM, we employ it only to annotate a small subset of unlabeled
nodes. We then train a lightweight GNN filter using these noisy labels,
enabling efficient predictions of ID status for all other unlabeled nodes by
leveraging both textual and structural information. After obtaining node
embeddings from the GNN filter, we can apply informativeness-based
methods to select the most valuable nodes for precise human annotation.
Finally, we train the target ID classifier using these accurately anno-
tated ID nodes. Extensive experiments on four real-world TAG datasets
demonstrate that LLM-GOOD significantly reduces human annotation
costs and outperforms state-of-the-art baselines in terms of both ID clas-
sification accuracy and OOD detection performance.

Keywords: Graph OOD Detection · Large Language Models · Data-
Efficient Learning · Text-Attributed Graphs · Graph Neural Networks ·
Few-Shot Learning · Zero-Shot Annotation
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1 Introduction

Out-of-distribution (OOD) detection [16,10,7,14] has emerged as a critical task in
machine learning, particularly for safety-critical applications where models must
reliably identify inputs that differ significantly from the training data [18,17].
Recently, several OOD detection methods [27,31,39,38] and open-set learning ap-
proaches [37] have been proposed and applied to graph-structured data. Existing
graph OOD detection methods typically operate within a semi-supervised, trans-
ductive framework, where the entire set of nodes is accessible during training,
but only a portion of the class labels (in-distribution (ID) classes) are provided
[27]. These methods generally rely on a sufficient number of labeled ID nodes
to train a GNN-based ID classifier, from which they derive the ID classification
logits for all nodes. Post-hoc OOD detectors [31,10,20] are then applied to these
logits for OOD detection. In particular, nodes with higher energy scores [31] or
higher entropy scores are identified as OOD nodes.

While these graph OOD detection methods are effective, they invariably rely
on the assumption that ground truth ID labels are readily available. This as-
sumption often overlooks a critical challenge: obtaining sufficient high-quality
labels for graph-structured data. Specifically, (1) the diverse and complex na-
ture of graph-structured data makes human labeling inherently difficult, and (2)
the large scale of real-world graphs renders annotating a significant portion of
nodes both time-consuming and resource-intensive [4,34].
Our Observations and Motivation. In this paper, we aim to address the chal-
lenge of few-shot OOD detection and ID classification on text-attributed graphs
(TAGs) within the commonly used semi-supervised transductive setting, as de-
scribed above. Consider a text-attributed social network where nodes represent
individuals, node attributes correspond to their textual descriptions, and edges
denote interactions or connections between them. Initially, the entire network is
unlabeled, and the goal is to classify individuals into specific interest groups, such
as technology enthusiasts, sports fans, or musicians, while operating within a lim-
ited human annotation budget. However, the network also contains individuals
whose interests fall outside these predefined categories, such as those primarily
engaged in political discussions or travel blogging. Identifying and labeling these
OOD nodes would be inefficient, as they do not contribute to training an effec-
tive classifier for the targeted interest groups. Instead, the focus is on accurately
classifying only the ID nodes while detecting and filtering out OOD nodes that
do not belong to the intended classification space. Furthermore, zero-shot [30,5]
and few-shot [23,1] OOD detection for images have been extensively studied
using multi-modal foundation models. However, to date, no similarly powerful
graph foundation model exists to support zero-shot or few-shot graph OOD de-
tection. As a result, we turn to LLMs to tackle the data-efficiency challenge of
OOD detection on TAGs.

In summary, current graph OOD detection methods typically rely heavily
on large amounts of labeled ID nodes to perform well. Conversely, while LLMs
demonstrate remarkable zero-shot capabilities on text-attributed graphs (TAGs),
they inherently lack the ability to interpret and leverage the structural informa-
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Fig. 1. An illustration of our method. To reduce annotation costs, we use an LLM to
filter out OOD nodes before selecting nodes for human annotation. The annotated ID
nodes are then used to train the target ID classifier.

tion essential to TAGs. In this study, we take the first step toward integrating
the strengths of both GNNs and LLMs to tackle the data-efficiency challenges
in graph OOD detection.
Present work. As shown in Fig. 1, to address these challenges, we propose
to leverage LLMs to filter out OOD nodes before human annotation, thereby
reducing human costs. Specifically, we provide the LLM with ID knowledge
(i.e., the names of ID classes) and prompt it to determine whether an unlabeled
query node belongs to one of the ID classes, using the text information associated
with the query node. Note that while we enable LLMs to directly perform zero-
shot OOD detection and ID classification, using LLMs for zero-shot annotation
is very slow during inference. Therefore, we aim to leverage LLMs to reduce
human annotation costs during training and rely solely on well-trained GNNs
for faster inference during testing. However, prompting the LLM to annotate all
unlabeled nodes in the training set is costly for large graphs, although the cost
of using an LLM is significantly lower than that of human annotation. To further
reduce the LLM’s cost, we propose prompting the LLM to annotate only a
small subset of nodes and then using these pseudo-labels to train a lightweight
GNN filter. With this GNN filter, we can predict whether every unlabeled node
in the training set belongs to one of the ID classes. If not, it’s very likely that
this node is an OOD node, and we then filter it out before human annotation.

In addition, we can obtain the embeddings of all unlabeled nodes in the graph
after training the GNN filter with pseudo-labels. Based on these embeddings,
the most informative nodes can be selected using existing informativeness-aware
node selection methods. These selected nodes are then annotated by a human
annotator, and the final annotated ID nodes are used to train the target ID
classifier. Optionally, we can combine the accurate labels from human annotation
with the noisy labels from the LLM to train a robust ID classifier under severe
data scarcity scenarios. Compared to other active learning methods that
require multiple rounds of selection [32,3], our approach requires only a single
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round of annotation. Moreover, relying solely on noisy labels from an LLM to
train an ID classifier imposes a performance upper bound (see the results in
Section 5.3). Furthermore, leveraging LLM knowledge to train smaller models,
such as GNNs, facilitates faster inference, particularly in domains where time
efficiency is crucial.

We summarize our key contributions as follows:

– To the best of our knowledge, we are the first to investigate LLM’s zero-
shot learning ability for the graph OOD detection problem. With the zero-
shot learning ability of LLMs, our method achieves high performance with
only one round of node selection, compared to traditional multi-round active
learning selection methods.

– We design a general framework LLM-GOOD that can filter out many OOD
nodes before annotation to reduce human costs and use LLM’s zero-shot
annotations to train a light GNN filter to further reduce LLM costs.

– We apply LLM-GOOD to node classification datasets consisting of differ-
ent properties under label budget constraints. Experimental results show
that our method effectively filters out OOD nodes and achieves much bet-
ter ID classification and OOD detection performance compared to baselines
within an annotation budget. Our code is available at: https://github.
com/zhengtaoyao/LLM_GOOD.

2 Related Work

2.1 Graph OOD Detection

In recent years, OOD detection in graph data has presented new challenges,
especially in the context of multi-class classification for in-distribution data,
which further complicates the task of identifying outlier data [20]. For instance,
OODGAT [27] leverages a graph neural network (GNN) that explicitly mod-
els interactions among different types of nodes, enabling effective separation of
inliers and outliers during feature propagation. GNNSafe [31] highlights the in-
herent OOD detection capabilities of standard GNN classifiers and proposes a
robust OOD discriminator using an energy-based function derived from GNNs
trained with standard classification loss. GRASP [20] explores the potential of
OOD score propagation and derives the conditions under which the score prop-
agation is beneficial. They also propose an edge augmentation strategy with
theoretical guarantees for post-hoc node-level OOD detection.

While effective, these methods rely heavily on the assumption of abundant
ID labels in open-set scenarios. However, in real-world applications, labeled data
are costly and challenging to obtain, limiting the practicality of such approaches.

2.2 Data-Efficient Graph Learning

Graphs have a wide range of applications across various domains [33,36,35,29],
and researchers have conducted extensive and focused studies on graph machine

https://github.com/zhengtaoyao/LLM_GOOD
https://github.com/zhengtaoyao/LLM_GOOD
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learning in low-resource settings, aiming to reduce the cost and time required for
annotation [12]. Current data-efficient graph learning methods can be broadly di-
vided into three categories: self-supervised graph learning, semi-supervised graph
learning, and few-shot graph learning.

Few-shot graph learning aims at enabling models to generalize effectively and
make accurate predictions using only a small number of labeled examples. The
primary objective is to train models to learn from a limited set of annotated
instances and apply this knowledge to predict new and unseen data [12]. To
achieve this, researchers typically adopt one of two approaches: metric learning,
which encourages query nodes to align closely with their respective prototypes
[28], or parameter optimization, which employs meta-learning to generate node
representations [11]. Some graph active learning methods [32,2,3] have been de-
veloped to enhance the performance of semi-supervised node classification while
adhering to a label budget constraint. For instance, FeatProp [32] identifies nodes
by propagating their features throughout the graph structure and applying K-
Medoids clustering, mitigating the impact of under-trained model representa-
tions. However, both current few-shot graph learning methods [6,41] and graph
active learning techniques are restricted to the closed-set node classification sce-
nario. Recently, [37] applied active learning methods to the graph open-set clas-
sification scenario. However, their approach involves using real OOD nodes and
requires multiple rounds of node selection for human annotation.

2.3 LLMs as Prefix for Graphs

In this paper, we focus on utilizing information generated by LLMs to enhance
the training of GNNs. These techniques can be divided into two main categories:
(i) Embeddings from LLMs for GNNs, which involves incorporating embeddings
produced by LLMs into GNNs, and (ii) Labels from LLMs for GNNs, which
focuses on leveraging labels generated by LLMs to guide GNN training [25]. We
mainly focus on the second category that leverages generated labels from LLMs
as supervision to improve the training of GNNs.

LLM-GNN [4] utilizes LLMs as annotators to produce node category pre-
dictions accompanied by confidence scores, which are treated as labels. A post-
filtering process is applied to remove low-quality annotations while ensuring label
diversity. These refined labels are then used to train GNNs. Similarly, GraphEdit
[9] uses LLMs to create an edge predictor, which evaluates and refines candidate
edges by comparing them to the edges of the original graph.

3 Setting

3.1 Text-Attributed Graphs

Our study focuses on TAGs, represented as GT = (V,A,T,X). The set of nodes
is V = {v1, . . . , vn}, where each node is associated with raw text attributes
T = {t1, t2, . . . , tn}. These text attributes can be converted into sentence em-
beddings X = {x1, x2, . . . , xn} using SentenceBERT [24]. The adjacency matrix
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A ∈ {0, 1}n×n encodes graph connectivity, where A[i, j] = 1 indicates an edge
between nodes i and j.

3.2 Graph OOD Detection

The node set can be partitioned as V = Vin ∪ Vout, where Vin denotes the set of
ID nodes, and Vout represents the set of OOD nodes. We assume that ID nodes
are drawn from the distribution P in

V , while OOD nodes are sampled from the
distribution P out

V . The OOD node detection task is formally defined as follows:
Given a collection of nodes sampled from P in

V and P out
V , the objective is to

accurately determine the source distribution—either P in
V or P out

V —for each node.
We study OOD node detection in graphs under the transductive learning

paradigm, where ID and OOD nodes coexist in the same graph, the most com-
mon framework for node-level OOD detection. During training, only the node
attributes X, the adjacency matrix A, and the ID labels of a subset of nodes,
V ′ ⊆ Vin, are provided. In general, the task consists of two main objectives: (1)
OOD Detection: For each node v ∈ V, determine whether it belongs to one of
the ID known classes or to an OOD unknown class. (2) ID Classification: For
nodes identified as ID, assign them to one of the predefined K classes.

3.3 Few-Shot Graph OOD Detection

Assume that we have a validation set Vval and a test set Vtest. The remaining
nodes form the candidate set Vcan = V \ (Vval ∪ Vtest). All nodes in Vcan are
initially unlabeled. Given a human label budget B, our goal is to select a subset
of nodes from Vcan such that the trained model f achieves the lowest expected
loss in the test set Vtest:

arg min
Vs

can⊂Vcan,|Vs
can|=B

Evi∈Vtest [ℓ(yi, ỹi)] (1)

where f is our target ID classifier, yi is the ground truth label of node vi,
and ỹi denotes the label prediction of node vi by f . Compared with other label-
efficient graph learning methods, such as active learning approaches, we do not
require any initial set of labeled nodes and, more importantly, we only
select nodes for one round of annotation.

4 Method

In real-world scenarios, graphs typically include a large number of unlabeled
nodes, many of which may be OOD nodes and irrelevant to the target task. Our
goal is to train an ID classifier using a limited set of ID labels, striving for high
accuracy in ID classification while effectively identifying OOD data, where the
classifier should exhibit low confidence.

To reduce human efforts, we seek to exclude as many OOD nodes as possible
from the training set prior to labeling. To achieve this, the first step is to use
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Fig. 2. An overview of our framework LLM-GOOD. To reduce human cost, we use
LLM to filter out OOD nodes before human annotation (§4.1). To further reduce LLM
cost, we use LLM to annotate a small subset of nodes, and then train a lightweight
GNN filter on these noisy annotations to predict labels for the remaining nodes in the
graph (§4.2). After obtaining node embeddings from the GNN filter, informativeness-
aware selection methods identify the most informative unlabeled potential ID nodes
(§4.3). After these selected nodes are annotated, the labeled accurate ID nodes are
used to train the target ID classifier for ID classification and OOD detection (§4.4).

an LLM as an annotator to identify potential OOD nodes (see §4.1). However,
annotating all unlabeled nodes in the training set using the LLM still incurs a
high cost. Therefore, we propose to annotate a small subset of nodes with the
LLM and use these pseudo-labels from LLM to train a lightweight GNN filter (see
§4.2). This approach further reduces the cost of using the LLM. After training,
the GNN filter can predict which unlabeled nodes are ID nodes, allowing us to
identify potential ID nodes with minimal use of the LLM.

Furthermore, based on the node embeddings from the GNN filter,
informativeness-aware node selection methods, such as K-Medoids-based node
selection, can be applied to choose the most informative nodes from the unla-
beled potential ID nodes (see §4.3). Once these informative nodes are annotated,
the labeled ID nodes can be used to train the target ID classifier. Optionally,
accurate labels from humans and noisy labels from the LLM can be combined
to train a robust ID classifier, especially in scenarios of extreme data scarcity.
Finally, post-hoc OOD detection methods can be applied to the classifier to
enhance its ability to recognize unseen classes (see §4.4). Fig. 2 illustrates the
pipeline of the proposed framework LLM-GOOD.

4.1 LLM as Zero-shot Open-world Annotator

We randomly select a small set of nodes VLLM from Vcan and then let LLM
annotate them. We provide the LLM with ID knowledge (ID classes’ names)
and prompt it to determine whether an unlabeled query node belongs to one
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of the ID classes, incorporating the text information of the query node. An
example prompt for zero-shot OOD detection is shown in the following box.
We instruct LLM to output "none" if it predicts that the node does not belong
to any of the ID classes. Therefore, the noisy labels of VLLM from LLM are
YLLM = {yn1 , yn2 , . . . , ynm}, where m is the number of annotated nodes. Given
K known ID classes, the LLM’s label set extends to K + 1 classes, with the
(K + 1)-th class representing the unknown class.

Zero-Shot OOD Detection and ID Classification Prompt

As a research scientist, your task is to analyze and classify {object}
based on their main topics, meanings, background, and methods. Please
first read the content of the {object} carefully. Then, identify the {ob-
ject}’s key focus. Finally, match the content to one of the given cate-
gories.
There are the following categories: [Category 1, Category 2,
Category 3, ...]
Given the current possible categories, determine if it belongs to one of
them. If so, specify that category; otherwise, say "none".
[Insert {Object} Content Here]

4.2 Train Lightweight GNN with Pseudo-Labels

To further reduce LLM’s cost, we first use the LLM to annotate a small subset
of nodes and then train a GNN on these annotations to predict labels for the
remaining nodes in the graph. With the labeled node set VLLM and its noisy
labels YLLM , we can train a K + 1 class classifier. As an aside, any GNN can
be used as the lightweight OOD filter. In this paper, we use a two-layer stan-
dard graph convolutional network (GCN) as the OOD filter, and set the output
dimension of the last layer as K + 1. The output of the first layer is as follows:

H(1) = σ
(
D̃− 1

2 ÃD̃− 1
2XW(0)

)
(2)

where Ã = A + I and D̃ii =
∑

j Ãij , I is the identity matrix, and W(0) is the
weight matrix. The OOD filter’s final output for all nodes is H(2) ∈ RN×(K+1):

H(2) = σ
(
D̃− 1

2 ÃD̃− 1
2H(1)W(1)

)
(3)

Embeddings H(1) capture graph structure information and can be leveraged
in the subsequent module for selecting nodes based on informativeness. In addi-
tion, with H(2), we can determine whether each unlabeled node belongs to the
unknown (K +1)-th class, with the goal of filtering out as many OOD nodes as
possible prior to human annotation. As a result, we retain nodes predicted to
belong to one of the first K ID classes for further processing, while excluding
those identified as unknown. Specifically, our goal is to filter out OOD nodes
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from Vcan based on H(2) to get the filtered ID node set VID
can and then select the

most informative nodes from VID
can based on H(1).

VID
can =

{
vi, argmax

k
H(2)[i,K] ≤ K

}
(4)

The cross-entropy loss function of the OOD filter is defined as:

L = − 1

|VLLM |
∑

i∈VLLM

K+1∑
k=1

ynik log ŷ
n
ik (5)

4.3 Informativeness-aware Node Selection

Most node selection methods typically prioritize nodes with high prediction un-
certainty or diverse representations for labeling. However, in the presence of
open-set noise, these metrics become unreliable, as OOD nodes also exhibit high
uncertainty and diversity while lacking class-specific features or shared induc-
tive biases with ID examples. By utilizing our OOD filter to remove a significant
number of OOD nodes, we can more effectively identify and select the most infor-
mative nodes from the remaining potential ID nodes. Any graph active selection
method, such as FeatProp [32] or MITIGATE [3], can be applied.

4.4 ID Classification and OOD Detection

With the help of the OOD filter, we can train the target ID classifier with more
labeled ID nodes while adhering to the label budget constraint.

Assume that we have selected Vs
can from VID

can and annotated it with accurate
labels Ys

can. We now have a set of nodes, Vs
can, with accurate labels Ys

can, and
a set of nodes, VLLM , with noisy labels YLLM . From Vs

can and VLLM , we can
derive the ID node set Vs−ID

can with accurate labels and VID
LLM with noisy labels.

We can then use Vs−ID
can and VID

LLM to train the target ID classifier. Similarly, any
graph neural network can serve as the ID classifier. The design of noise-resistant
GNNs to better leverage the noisy labels from LLM is left for future study.

Specifically, the output of the ID classifier is Z ∈ RN×K :

Z = GNN(A,X) (6)

Note that if a node is in both Vs−ID
can and VID

LLM , its label is taken from
Ys−ID
can . Using noisy labels from YID

LLM is extremely helpful when there are very
few accurate labels available, particularly in situations of extreme data scarcity.

After training the ID classifier, any post-hoc OOD detector [15,13,10,40,20]
can be applied to the output logits of the ID classifier. As an example, consider
the well-known post-hoc OOD detector, MSP [10]. Correctly classified examples
generally exhibit higher maximum softmax probabilities compared to misclassi-
fied and out-of-distribution examples. Consequently, given Z, we can compute
the softmax probability of the predicted class, i.e., the maximum softmax prob-
ability, which serves as the OOD score.



10 H. Xu et al.

5 Experiments

Our experiments answer the following research questions (RQ): RQ1 (§5.2): How
effective is the proposed LLM-GOOD in ID classification and OOD detection
compared to other leading baselines? RQ2 (§5.2): Whether LLMs can filter out
OOD nodes effectively? RQ3 (§5.4): Will LLM-GOOD be robust to different
settings, such as varying levels of label scarcity? RQ4 (§5.5): What are the
differences in cost and effectiveness between various LLMs?

5.1 Experimental Setup

Datasets We utilize the following TAG datasets, which are commonly used for
node classification: Cora [21], Citeseer [8], Pubmed [26] and Wiki-CS [22]. For
each dataset, we split all classes into ID and OOD sets, and the ID classes for the
four datasets are shown in Appendix B. Additionally, the number of ID classes
is set to a minimum of two to perform the ID classification task.

For each dataset with K ID classes, we randomly select 10×K ID nodes and
an equal number of OOD nodes for validation. The test set consists of 500 ID
and 500 OOD nodes, while the remaining nodes form Vcan.

Baselines We evaluate LLM-GOOD against two categories of baselines: (1)
OOD detection methods, including MSP [10], Entropy, GNNSafe [31], and
GRASP [20]; (2) node selection methods for node classification, including
uncertainty-based selection [19], FeatProp [32], and MITIGATE [3], where dif-
ferent selection strategies are integrated into GCNs with MSP as the OOD score.

For all methods, including baselines and LLM-GOOD, we use two GCN layers
as the ID classifier.

Settings For all datasets, we use GPT-4o-mini to annotate 200 randomly se-
lected nodes and train the lightweight GNN filter using these annotated noisy
nodes with two standard GCN layers. The results for other LLM are given in
Section 5.5. For LLM-GOOD, we use the energy score [31] as the OOD score.
Additionally, we evaluate an alternative approach (LLM-GOOD-f), where LLMs
filter all unlabeled nodes in the initial graph, and a subset of ID-labeled nodes
is randomly selected for manual labeling.

Evaluation Metrics For the ID classification task, we use classification accu-
racy (ID ACC) as the evaluation metric. For the OOD detection task, we employ
three commonly used metrics from the OOD detection literature [27]: the area
under the ROC curve (AUROC), the precision-recall curve (AUPR), and the
false positive rate when the true positive rate reaches 95% (FPR@95). In all
experiments, the OOD nodes are considered positive cases. Details about these
metrics are provided in Appendix A.
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Table 1. Performance comparison (best highlighted in bold) of different models on ID
classification and OOD detection tasks for the Cora and Citeseer datasets under label
budget 10×K. All values are percentages (%).

Model Cora Citeseer
ID ACC ↑ AUROC ↑ AUPR ↑ FPR@95 ↓ ID ACC ↑ AUROC ↑ AUPR ↑ FPR@95 ↓

GCN-Uncertainty 79.04±7.98 77.02±4.46 79.51±3.61 75.80±7.17 75.36±4.81 69.73±5.08 69.57±5.58 87.72±4.93
GCN-FeatProp 81.04±2.45 78.24±3.25 79.92±4.07 75.92±5.40 79.48±2.83 71.45±4.47 71.42±4.60 86.56±6.41

GCN-MITIGATE 81.64±2.31 79.04±2.31 80.52±2.56 73.40±4.71 80.44±3.12 72.19±4.33 71.92±3.99 84.52±6.08

MSP 77.68±7.60 75.40±6.85 78.19±5.53 81.32±9.72 70.92±7.46 62.12±7.09 64.63±5.02 90.64±3.78
GNNSafe 74.76±8.99 84.05±7.44 84.62±6.42 61.20±19.24 71.16±7.44 65.84±5.73 65.97±5.13 89.12±3.29
Entropy 76.80±8.65 76.10±8.08 78.12±6.68 76.24±12.87 73.20±4.28 63.26±6.65 65.24±4.81 88.56±4.69
GRASP 77.88±8.36 83.00±6.43 82.30±6.33 61.48±21.59 71.72±5.37 60.64±6.62 63.04±4.67 91.20±2.58

LLM-GOOD-f 84.00±4.40 86.59±2.32 87.36±3.10 60.56±3.94 72.52±10.43 70.71±4.49 72.99±4.77 88.92±6.85
LLM-GOOD 85.20±2.68 88.06±3.77 87.85±3.68 48.04±1.19 80.60±3.38 73.29±4.12 75.26±3.34 86.48±5.45

Implementation Details We evaluate all methods under the total label bud-
gets 10×K and 5×K, respectively. Since baseline methods require an initial set
of labeled nodes and multiple rounds of node selection, in each selection round,
K nodes are chosen from the unlabeled pool and annotated for all baselines. In
addition, we allocate an initial label budget of 5 × K for the total budget of
10×K and K for the total budget of 5×K. In contrast, our method does not
require an initial set of labeled nodes and involves only a single round of random
node selection for annotation.

All GCNs have 2 layers with hidden dimensions of 32. All models use a
learning rate of 0.01, a dropout probability of 0.5 and a weight decay of 5e-4.
For all K-Medoids-based selection methods, the number of clusters is fixed at 48.
For LLM-GOOD, 200 nodes are randomly selected and annotated by the LLM.
The weight assigned to the unknown class in the GNN filter’s loss function is
selected from {0.05, 0.1, 0.2, 0.3, 0.5} based on the performance of the validation
set. For all experiments, we average all results across 5 different random seeds.

Table 2. Performance comparison (best highlighted in bold) of different models on ID
classification and OOD detection tasks for the Pubmed and Wiki-CS datasets under
label budget 10×K. All values are percentages (%).

Model Pubmed Wiki-CS
ID ACC ↑ AUROC ↑ AUPR ↑ FPR@95 ↓ ID ACC ↑ AUROC ↑ AUPR ↑ FPR@95 ↓

GCN-Uncertainty 84.48±9.41 57.15±6.61 55.96±5.69 91.60±2.39 81.88±4.70 77.31±6.18 79.59±5.82 78.48±10.79
GCN-FeatProp 83.00±8.57 53.07±11.45 53.58±9.42 92.96±5.64 76.48±5.49 73.58±6.99 75.26±7.90 83.52±6.43

GCN-MITIGATE 83.24±8.48 57.91±10.41 57.93±9.57 92.60±3.76 77.76±7.96 71.69±4.91 73.26±4.77 86.16±7.90
MSP 81.04±7.51 52.65±8.86 53.74±7.15 93.44±3.60 77.52±5.60 75.10±4.56 77.54±5.48 84.80±4.72

GNNSafe 82.16±8.02 49.65±17.49 55.55±14.82 93.04±6.90 78.80±4.72 83.71±4.38 84.95±06.08 82.16±11.53
Entropy 81.36±7.57 52.22±09.70 52.61±8.47 92.68±3.27 77.76±4.80 72.85±3.71 75.47±4.68 88.00±3.46
GRASP 82.68±8.18 49.97±19.59 54.86±14.99 93.76±5.46 78.28±5.11 78.34±8.54 79.17±10.88 86.28±6.14

LLM-GOOD-f 87.00±2.19 61.09±19.05 66.81±15.58 91.24±4.89 83.76±2.46 86.84±1.84 89.42±1.57 79.24±10.66
LLM-GOOD 87.08±2.58 64.87±16.70 70.60±14.26 90.72±5.10 83.92±3.53 87.71±2.41 89.84±2.64 71.04±16.20
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5.2 Main Results

As shown in Tables 1, 2, 3 and 4, LLM-GOOD consistently outperforms state-
of-the-art graph OOD detection methods by a significant margin across all TAG
datasets. Specifically, for ID classification on four datasets, the most substantial
improvement is observed on the Cora dataset when the label budget is set to
5×K. In this case, the ID accuracy increases from 63.80% (achieved by the best
baseline, GNNSafe) to 81.52%, reflecting a notable improvement of 17.72%. It is
important to note that all baselines have an initial set of labeled ID nodes and
use multiple selection rounds to improve performance. In contrast, LLM-GOOD
selects nodes randomly in a single round yet still outperforms the baselines.

Furthermore, LLM-GOOD exhibits remarkable advancements in OOD detec-
tion metrics, achieving higher AUROC and AUPR scores while maintaining a
lower FPR@95 across all datasets. The most significant improvement is observed
in the Pubmed dataset when the label budget is 10×K, where the AUROC in-
creases from 57.91% (achieved by the best baseline, GCN with MITIGATE node
selection) to 64.87%, marking an improvement of 6.96%.

Moreover, we calculate the final proportion of ID nodes, defined as the ratio
of true ID nodes among all selected and annotated nodes, across various selec-
tion methods. The results are in Appendix C. Our method achieves the highest
proportion across all datasets compared to the baselines. This shows that our
method effectively filters out OOD nodes before human annotation, thereby re-
ducing annotation costs. While LLM-GOOD and LLM-GOOD-f achieve similar
ID node proportions, LLM-GOOD significantly reduces LLM costs by annotat-
ing only a small number of nodes and leveraging a GNN filter to label the rest.

Table 3. Performance comparison (best highlighted in bold) of different models on
ID classification and OOD detection for the Cora and Citeseer TAG datasets under
label budget 5×K. All values are percentages (%).

Model
Cora Citeseer

ID ACC↑ AUROC↑ AUPR↑ FPR@95↓ ID ACC↑ AUROC↑ AUPR↑ FPR@95↓
GCN-Uncertainty 51.20 65.51 65.90 87.88 59.96 67.53 69.00 89.76
GCN-FeatProp 55.76 71.00 72.28 85.88 69.32 67.00 65.87 86.20

GCN-MITIGATE 58.68 67.36 69.36 86.64 67.64 64.42 65.27 90.72
MSP 63.32 72.18 73.41 82.92 71.20 63.59 65.51 89.72

GNNSafe 62.52 79.29 81.12 68.76 70.88 67.47 67.16 87.52
Entropy 63.80 73.03 73.06 77.08 69.00 65.47 67.14 87.20
GRASP 63.52 75.30 75.07 68.96 72.56 60.64 62.40 91.12

LLMGOOD-f 81.52 82.26 83.71 64.72 69.20 70.99 73.39 88.60
LLM-GOOD 78.60 80.21 80.82 68.88 72.12 67.81 69.65 91.92
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Table 4. Performance comparison (best highlighted in bold) of different models on ID
classification and OOD detection for the Pubmed and Wiki-CS TAG datasets under
label budget 5×K. All values are percentages (%).

Model
Pubmed Wiki-CS

ID ACC↑ AUROC↑ AUPR↑ FPR@95↓ ID ACC↑ AUROC↑ AUPR↑ FPR@95↓
GCN-Uncertainty 73.36 57.53 57.55 90.56 61.40 61.94 64.86 92.12
GCN-FeatProp 71.60 50.89 51.19 95.04 71.64 69.30 71.73 90.32

GCN-MITIGATE 71.76 57.27 57.73 92.84 70.36 60.36 62.29 92.84
MSP 82.04 57.10 57.52 92.32 67.60 74.64 77.92 84.16

GNNSafe 81.48 53.71 59.51 96.44 68.20 79.38 81.26 83.28
Entropy 82.04 56.80 55.75 92.16 66.40 72.45 74.96 84.04
GRASP 81.40 52.35 57.30 94.96 67.84 77.54 79.95 85.60

LLMGOOD-f 83.52 63.29 68.68 93.32 75.24 84.62 86.30 77.88
LLM-GOOD 78.08 60.34 65.13 89.76 78.56 83.35 86.26 84.84

5.3 OOD Detection Performance Upper Bound

We use different number of LLM’s noisy labels and human’s annotated accurate
labels to train the ID classifier respectively. Given the different label budgets,
we randomly select a corresponding number of nodes and use the ID nodes from
the selected nodes to train the ID classifier. The results in Figure 3 shows that:

– When the number of noisy ID labels or accurate ID labels increases, both
ID classification and OOD detection performance improve. However, the
improvement rate is significantly higher when using accurate ID labels.

– When training the ID classifier with LLM-generated noisy labels, both ID
classification and OOD detection performance reach an upper bound sub-
stantially lower than that of training with accurate labels. This highlights the
importance of our method, which utilizes LLM to reduce human annotation
costs without relying entirely on the LLM for OOD detection.

– When the label budget for accurate labels reaches 10×K, ID classification
and OOD detection performance nearly reach the upper bound achieved with
a large number of noisy labels. At 20×K, both exceed the upper bound of
using any number of LLM-generated noisy labels.

5.4 Combine Accurate Labels and Noisy Labels

We test different methods’ performance under severe data-scarcity situation on
Cora. The human label budget is set to 1×K, 2×K and 3×K. For LLM-GOOD-
combined, we use 100 noisy labels along with a small number of corresponding
clean labels to train the ID classifier. The results are shown in Table 5.
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Fig. 3. ID classification and OOD detection performance upper bound.

Table 5. Different methods’ performance under severe data-scarcity situation on Cora.
LLM-GOOD-combined achieves the best performance.

1×K 2×K 3×K

GCN-MSP 0.3228 0.4260 0.4856
LLM-GOOD 0.4580 0.6156 0.7492
LLM-GOOD-combined 0.7832 0.8072 0.8164

From the results, we observe that for all methods, increasing the label bud-
get leads to improved performance, and our method consistently outperforms
the baseline. When the accurate label budget is extremely small, incorporating
additional noisy labels is particularly beneficial. For instance, when the accurate
label budget is 1 × K, the performance gap between LLM-GOOD and LLM-
GOOD-combined is 32.52%. However, as the accurate label budget increases to
3×K, the performance gap decreases to 6.72%.

Currently, most graph machine learning research assumes either that the
entire training set is clean or that all training labels are uniformly affected by a
specific type of noise. However, in real-world scenarios, it is more likely that a
graph contains a small set of clean labels alongside another set of noisy labels.
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Table 6. Comparison of zero-shot OOD detection performance using different prompts
across various LLMs on the Cora and Pubmed datasets.

Cora Pubmed
AUROC AUPR OOD Proportion AUROC AUPR OOD Proportion

GPT-3.5-turbo-short prompt 0.5077 0.6609 0.0200 0.5000 0.7100 0.0000
GPT-3.5-turbo-long prompt 0.5909 0.7468 0.1700 0.5255 0.6440 0.0300
GPT-4o-mini-short prompt 0.7159 0.8200 0.5600 0.5060 0.7135 0.0050
GPT-4o-mini-long prompt 0.7366 0.8323 0.5150 0.8524 0.8796 0.3650
ds-v3-short prompt 0.6185 0.7589 0.2350 0.5000 0.7100 0.0000
ds-v3-long prompt 0.6887 0.8170 0.7000 0.9364 0.9293 0.4700

We leave the design of a more effective pipeline to leverage both label sets to
denoise and train a robust, noise-resistant GNN as a direction for future study.

5.5 LLMs as Open-world Zero-shot Annotators

We record the annotation cost and zero-shot OOD detection performance of the
following LLMs: GPT-3.5-turbo, GPT-4, GPT-4o, GPT-4o-mini, DeepSeek-V3,
DeepSeek-R1. Severe rate limitation prevented DeepSeek-R1 from annotating
200 nodes in a reasonable time, so its results are not included.

Zero-shot annotation accuracy We use the baseline short prompt (as shown
in Section 4.1) and the long prompt (as shown in Appendix D) for zero-shot OOD
detection on the Cora dataset. We randomly select 200 nodes and have different
LLMs perform zero-shot open-world annotation using these two prompts. The
true OOD proportion of the selected nodes is 56%. The OOD detection perfor-
mance and the LLMs’ predicted OOD proportions are presented in Table 6. From
the results, we can observe that, sometimes, GPT-3.5-turbo does not dare to say
’none’, but our long prompt mitigates this issue. Additionally, both the OOD
detection performance and the predicted OOD proportion improve significantly
with the long prompt, suggesting that GPT-3.5-turbo becomes more willing to
say ’none.’ Furthermore, when using the same prompt for open-world annotation,
GPT-4o-mini generally outperforms GPT-3.5-turbo in OOD detection.

We further evaluate open-world annotation on the PubMed dataset by ran-
domly selecting 200 nodes and having the LLMs annotate them using two
prompts. The true OOD proportion of the selected nodes is 42%. We can observe
that our proposed prompt outperforms the baseline short prompt in zero-shot
OOD detection, even though the latter explicitly instructs the LLM to respond
with "none" for OOD nodes.

Table 7. The cost (dollars) of different LLMs for annotating 200 nodes on Cora dataset.

GPT-3.5-turbo GPT-4o-mini GPT-4o GPT-4 ds-v3 ds-r1
Cost 0.07 0.02 0.50 3.70 0.03 0.55
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Cost We randomly select 200 nodes from the Cora dataset and have differ-
ent LLMs annotate them. The costs associated with each LLM are shown in
Table 7. As observed, GPT-4o-mini incurs the lowest cost while achieving sig-
nificantly better zero-shot open-world annotation performance than GPT-3.5-
turbo. Therefore, in this paper, we use GPT-4o-mini for node annotation to
reduce human costs in open-set scenarios.

6 Conclusion and Future Directions

In this paper, we introduce a novel approach leveraging the powerful zero-shot
learning capabilities of LLMs for label-efficient graph OOD detection. We pro-
pose a general framework, LLM-GOOD, which filters out a large number of OOD
nodes before annotation, significantly reducing human labeling costs. Addition-
ally, LLM-GOOD utilizes zero-shot annotations from LLMs to train a lightweight
GNN filter, further minimizing the reliance on LLMs. Unlike traditional multi-
round active learning methods, our approach achieves high performance with a
single round of node selection. A potential future research direction is to investi-
gate more effective ways to leverage both clean and noisy labels to train a more
noise-resistant ID classifier for graph OOD detection. Additionally, it would be
interesting to explore whether in-context learning can improve node-level OOD
detection performance compared to zero-shot OOD detection with LLMs.
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