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Abstract. One of the limitations of applying machine learning meth-
ods in real-world scenarios is the existence of a domain shift between
the source (i.e., training) and target (i.e., test) datasets, which typically
entails a significant performance drop. This is further complicated by
the lack of annotated data in the target domain, making it impossible to
quantitatively assess the model performance. As such, there is a pressing
need for methods able to estimate a model’s performance on unlabeled
target data. Most of the existing approaches addressing this train a lin-
ear performance predictor, taking as input either an activation-based or
a performance-based metric. As we will show, however, the accuracy of
such predictors strongly depends on the domain shift. Recent research
highlights the significance of network weights in understanding model
generalizability. The early work of [46] proposes a method to predict
out-of-distribution error by comparing the weights of the original model
and fine-tuned model on the target data. However, this process is com-
putationally demanding, especially for large models and input sizes. To
address this, we propose an an efficient approach for assessing model’s
performance on target dataset by leveraging the gradients and Hessian
of model as indicators of weight differences. Our approach builds on
the idea that lower norms of gradient and Hessian matrices signifies a
flatter training landscape and better adaptability to new data. Our ex-
tensive experiments on standard object recognition benchmarks, using
diverse network architectures, demonstrate the benefits of our method,
outperforming both activation-based and performance-based baselines
by a large margin. It also outperforms [46]’s weight-based approach in
efficiency by avoiding parameter updates and effectively estimates out-
of-domain performance. Our code is available in the following repository:
https://github.com/khramtsova/hessian_performance_estimator/

Keywords: Performance Prediction · Generalisability Estimation.

1 Introduction

Being able to estimate how well a trained deep network would generalize to new
target, unlabeled datasets would be a key asset in many real-world scenarios,

https://github.com/khramtsova/hessian_performance_estimator/
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Fig. 1: Correlation between classification accuracy and different metrics: Hessian
and Gradient norms (right, our method) and Fréchet Inseption Distance (left,
[13]). Note that our method yields a more reliable performance estimator, as
evidenced by the points corresponding to the target datasets lying closer to the
decision boundary. The light-blue points correspond to sample sets from the
meta-dataset.

where acquiring labels is too expensive or unfeasible. When the training and
target data follow the same distribution, this can easily be achieved by setting
aside a validation set from the training data. However, such a performance es-
timator fails in the presence of a domain shift, i.e., when the target data differs
significantly from the source one.

Recent studies [13,11] address this by creating a meta-dataset incorporat-
ing multiple variations of the source data obtained by diverse augmentation
techniques, such as background change, color variation, and geometric transfor-
mations, so as to mimic different domain shifts. Target datasets can then be
sampled from this meta-dataset, and their ground-truth performance obtained
by evaluating the source-trained network on them. In essence, this provides data
to train a linear performance predictor, which in turn can be applied to the real
target data.

The aforementioned studies differ in the quantities they use as input to this
linear performance predictor. Specifically, Deng et al. [13] rely on the Fréchet
distance between the network activations obtained from the source samples and
the target ones, whereas the authors of [11] exploit the performance of the source
network on the task of rotation prediction. Unfortunately, while the resulting
linear predictors perform well within the meta-dataset, their generalization to
some real target datasets remains unsatisfactory, depending on the gap between
the source and real target data. This is illustrated by the left plot of Fig.1,
where the red point indicating the true performance on USPS lies far from the
activation-based linear predictor shown as a black line.

Recent studies show that the network weights provide valuable insights into
model uncertainty [31], model complexity [40], model compressibility [2], and in-
domain generalization [4,16,35,43]. The early work of [46] in the field of out-of-
domain generalization analyzes the extent to which network weights change when
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fine-tuned on target data with a supervised loss. It confirms that the greater the
domain gap between source and target datasets, the more substantial the changes
needed in the network to bridge this gap. Building on this concept, [46] proposes
predicting out-of-distribution error by fine-tuning the model on the target data
using a cross-entropy loss and then calculating the distance between the weights
of the original and the fine-tuned models. Despite the more accurate estimation
achieved with the proposed weight-based metric in [46], the process of fine-tuning
and comparing weights can be computationally intensive and time-consuming,
particularly for large models.

To take advantage of the weight-based metric while avoiding its high compu-
tational cost, we propose an efficient alternative that captures the key aspects of
weight differences without needing to update network parameters. Our method
focuses on examining the gradients and the Hessian of the network, acting as
a substitute for weight changes. Our approach is based on the intuition that a
smaller norm of the gradient and Hessian matrices indicates a flatter landscape
of the training objective. This flatness is strongly correlated with better gen-
eralization, suggesting that networks with flatter landscapes are more likely to
generalize effectively to new data. Our approach avoids the significant complex-
ity, memory, and time demands usually involved in updating network weights.
This makes it especially suitable for large models and large batch sizes.

Our results demonstrate that the proposed metric provides more reliable
performance estimates than those based on activation and score. Compared to
the weight-based approach of [46], our method is not only more efficient because
it does not require parameter updates, but it is also effective in bridging the
domain gap for estimating out-of-domain performance. This is illustrated in the
right plot of Fig. 1, where the points corresponding to the three real target
datasets all lie close to the linear predictor. While alternative, more complex
measures may also be viable, our work shows that even a basic gradient-based
approach surpasses other methods, which we evidence on several benchmark
datasets and using different network architectures.

2 Related Work

Various methods have been proposed to estimate the performance of a model
on an unlabeled dataset under a domain shift. We categorize the existing works
into two main groups: Activation-based and performance-based methods.
Activation-based approaches aim to find a criteria for performance estima-
tion based on network activations. For example, Garg et al. [18] propose Average
Threshold Confidence (ATC) score based on the negative entropy of networks
predictions. The authors acknowledge that ATC returns inconsistent estimates
on certain types of distribution shifts. Another approach in this category [41]
explores various statistics derived from a prediction score to estimate the accu-
racy on the target domain. Elsahar et al. [15] also provide a similar analysis for
NLP tasks. An alternative entropy-based approach was proposed by Guillory et
al. [19], who discover a correlation between the classification accuracy and the
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difference of entropy between the network activations on the source and target
data. However, the success of this approach to produce consistent estimations
depends on how calibrated the network is.

Chen et al. [6] develop an evaluation framework, Mandoline, that adapts
importance weighting to settings with distribution shifts between source and
target domains. Their approach leverages prior knowledge about the nature of
the shift, which can be a strength when such information is available, though it
may limit applicability in fully unsupervised scenarios.

In contrast with the above-mentioned approaches that focus on the network
output, Deng et al. [13] analyze feature representations. The authors create aug-
mented source datasets and train a linear regression model to predict accuracy
based on the Fréchet distance between source and augmented feature represen-
tations. In our experiments, while there is a strong linear correlation between ac-
curacy on the augmented datasets and the Fréchet distance, real target datasets
do not consistently follow this pattern, leading to poor accuracy estimates.

Performance-based approaches evaluate the classification accuracy of the
network using its performance on self-supervised tasks. For instance, Deng et
al. [11] propose to learn a correlation between the rotation prediction accuracy
and the classification accuracy. The works of [26,8] show that test error can be
estimated by training the same network multiple times on the source dataset
and measuring the disagreement on the target dataset. Building on this work,
Chen et al. [5] learn an ensemble of models to identify misclassified points from
the target dataset based on the disagreement between the models, and use self-
training to improve this ensemble.

The aforementioned methods require access to the model during training. For
example, in the work of Deng et al. [11], the network architecture needs to be
upgraded with the second head and trained on both tasks. The works of [26,8,5]
require re-training of the source model to find the samples with disagreement.
This might be undesirable for a large source dataset where training is time
consuming. Note that our approach requires neither architecture alterations nor
re-training on the source data.

In this work, we focus on analyzing the network weights and gradients, which
was proven to be useful for various in-domain and out-of-domain tasks. For exam-
ple Nagarajan et al. [35] show that the distance of trained weights from random
initialization is implicitly regularized by SGD and has a negative correlation
with the proportion of noisy labels in the data. Hu et al. [24] further use the dis-
tance of trained weights from random initialization as a regularization method
for training with noisy labels. Yu et al. [46] introduce a projection norm and
show its correlation with out-of-distribution error.

By contrast, here, we study the relationship between the first and second-
order derivative of the network w.r.t an unsupervised loss function, and per-
formance on the target data. Our approach compares favorably to the SOTA
accuracy estimation methods. We emphasize that our method requires neither
prior knowledge of the nature of the distribution shift, nor target labels.
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3 Methodology

Let us now introduce our approach to estimating how well a model trained on
a source dataset would generalize to a target dataset from a different domain,
in the absence of target supervision. Instead of predicting performance from the
activation difference between the source and target samples or from the net-
work performance on a different task, we propose to exploit the model’s weights
perturbations from an unsupervised loss. Specifically, we consider the Gradi-
ent Norm and the Hessian Norm, obtained by differentiating the network with
an unsupervised loss function calculated on the target dataset. We empirically
show that these metrics display a strong linear correlation with the model per-
formance on the target task. We therefore learn this correlation with a linear
regressor trained on augmented versions of the source data, which we use to
predict the target data performance.

3.1 Problem Definition

Let PS and QT be the probability distributions of the source and target domains,
respectively, DS : {xs, ys}ns ∼ PS be a labeled source dataset with ns samples,
and DT : {xt}nt ∼ QT be an unlabeled target dataset with nt samples. A model
fθ is trained on the source dataset DS to predict a correct label: fθ : xi →
ŷi;xi ∼ DS . Our goal then is to estimate the accuracy of the trained model fθ
on the unlabeled target dataset DT .

3.2 Gradient-Based Performance Estimation

In this paper, we propose predicting model performance on target data by ex-
amining the norm of the first and second-order derivatives of the unsupervised
loss function with respect to the target dataset. This is motivated by the intu-
ition that large domain gaps would lead to larger gradient variations and also
to lower accuracy than small domain gaps. Below, we first introduce the intu-
ition behind analysing the weight dynamics for estimating the performance on
unlabeled target dataset; we then propose an approach for approximating the
the degree of the network changes via the gradient. Finally, we show how the
proposed approximating can be used to build an effective and efficient accuracy
predictor.

Due to the high-dimensionality of the network weight space, comparing the
network weights and gradients is non-trivial and may suffer from the curse of
dimensionality. The impact of backpropogation is not equally distributed across
the network, with the last layers typically being affected more than the first
ones [29]. Furthermore, computing the second-order derivative is both resource-
intensive and time-consuming, making it less suitable for deep networks. There-
fore, we limit our gradient calculations to the classifier part of the network, which
includes only the final fully connected layer.



6 E. Khramtsova et al.

From magnitude of network updates to difference between weights In this sec-
tion, we provide a detailed analysis of weight updates from the perspective of
gradients.

Consider a network with parameters θ optimized by minimizing an unsuper-
vised entropy loss L, using a learning rate α. We will use the following notations:

– θ(k) - the weights of the network at step k,
– g

(k)
i = ▽L(i)(θ(k)) - the gradient of the loss L at step i w.r.t. θ(k),

– H
(k)
i = ▽2

θL
(i)(θ(k)) - the Hessian at step i w.r.t. θ(k).

The aim of this section is to express the dynamics of the network updates
after k steps of fine-tuning (from θ(0) to θ(k)) using the gradients and Hessians
computed at θ(0). This will allow us to assess the model’s generalizability by
calculating the derivatives only once.

Let us consider the change in the weights after one step of gradient descent.
Naturally, it corresponds to the gradient at step 0:

θ(0) − θ(1) = αg
(0)
0 (1)

After the second gradient descent step, the distance between the weights has
an additional gradient g(1)1 , calculated at step 1 w.r.t. the updated weights θ(1) :

θ(0) − θ(2) = αg
(0)
0 + αg

(1)
1 (2)

Following the works of [37] and [42], we can approximate g
(1)
1 using First-

order Taylor series as follows:

g
(1)
1 = g

(1)
0 − αH

(1)
0 g

(0)
0 +O(α2). (3)

This allows us to approximate the gradients at θ(1) in terms of the gradients
and Hessians at θ(0).This approximation is due to the fact that we are not
updating the network, which makes θ(1) unknown at step 1. Plugging 3 back
into 2:

θ(0)−θ(2) = αg
(0)
0 +α(g

(1)
0 −αH

(1)
0 g

(0)
0 ) = α(g

(0)
0 +g

(1)
0 )−α2H

(1)
0 g

(0)
0 +O(α3) (4)

Finally, after k steps of gradient descent, the gradient is:

g
(k)
k = g

(k)
0 − αH

(k)
0

k−1∑
i=0

g
(i)
i +O(α2) (5)

The weight difference after k steps of fine-tuning is:

θ(0) − θ(k) = α

k−1∑
i=0

g
(i)
i = α

k−1∑
s=0

g
(s)
0 − α2

k−1∑
i=1

H
(i)
0

i−1∑
j=0

g
(j)
0 +O(α3) (6)
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The norm of the weight difference ||θ(0) − θ(k)|| has been shown to correlate
with model accuracy [46]. However, our approach diverges from this weight-based
approximation, opting instead to work directly with gradients. By taking a norm
of 6, we obtain:

||θ(0) − θ(k)|| ≤ α||
k−1∑
s=0

g
(s)
0 ||+ α2||

k−1∑
i=1

H
(i)
0 || · ||

i−1∑
j=0

g
(j)
0 || (7)

In Equation 7, two main components have emerged. We will now explain
how these two components of the model updates, namely the magnitude and the
curvature of the loss function, are related to model generalizability.

– Magnitude of the network updates: The magnitude of the network updates
required to optimize an unsupervised loss function is encapsulated in its
average gradient w.r.t. θ(0), i.e., ||

∑k−1
s=0 g

(s)
0 ||. The gradient’s magnitude

reflects the flatness of the loss function and can be regarded as an indicator
of convergence [47].

– Curvature of the loss surface. In addition to evaluating the magnitude of net-
work updates, we can assess the sensitivity of the loss function to changes in
model parameters by examining the Hessian, which provides insights into the
curvature of the loss surface. Large Hessian norm, ||

∑k−1
i=1 H

(i)
0 ||, implies that

slight modifications in the parameters θ might lead to substantial changes
in loss, indicating a sharp minimum [27]. On the other hand, a Hessian with
small values implies that the parameters reside in a flatter region.

Accuracy predictor. The right-hand side plot in Fig.1, corroborated by our ex-
perimental results, reveals a linear relationship between the newly proposed
gradient-based metrics and the accuracy achieved on a target dataset. This sug-
gests that the accuracy for a given target dataset can be effectively predicted
using a linear regression model. Specifically, we compute both the norm of the
cumulative Hessians and the norm of the cumulative gradients across the target
dataset. These computed norms serve as inputs to the linear regression model,
where w0, w1, and w2 represent the model’s learnable parameters.

To train these parameters, we follow [13] and create a meta-dataset consisting
of a collection of datasets obtained by performing different augmentations of the
source data. Specifically, a sample set D̂j

s in the meta-dataset is built as follows.
First, a set of m possible transformations T = {T1, T2, .., Tm}, corresponding to
background change, geometric transformations, or color variations, is created.
Then, l images are randomly selected from the validation set {vs} of the source
data, leading to a set {vjs}l ⊂ {vs}. A random selection of t transformations τ =
{Ti}ti=1 is then applied to these images, resulting in the sample set D̂j

s = τ [vjs].
By repeating this process k times, we create a collection of sample sets, which
form the meta-dataset.

As each sample set originally comes from the source data, we can compute
its true performance under model fθ. Similarly, we can calculate the model’s
gradients on each sample set using the entropy loss function. Altogether, this
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gives us supervised data, consisting of pairs of gradients and true accuracy, from
which we can learn the weights w0, w1 and w2 of the linear regressor.

3.3 Accuracy Prediction on Target Data

We can use the trained linear regressor to estimate the network performance on
any unlabeled target dataset. Specifically, given a target dataset DT : {xt}nt , we
first split it into k subsets of size l,

Dt = {D1
t ,D2

t , ...,Dk
t }, k =

⌊nt

l

⌋
,

so that the size of each subset matches the size of the validation sample sets.
This procedure standardizes gradient scales across varying dataset sizes.

Then, we calculate the gradient g and the Hessian H on Dj
t , ∀j ∈ [1, .., k] with

our unsupervised loss, and estimate the change using a gradient-based measure.
Given the obtained metrics g and H, we use the trained linear regressor to
predict the accuracy of Dj

t as accj = w2 · g+w1 ·H +w0. The final accuracy for
the target dataset is calculated as the average accuracy of its subsets.

4 Experiments

We conduct extensive experiments on both Single-Source and Multi- Source
Datasets to evaluate the effectiveness of the proposed approach.
Single-Source Datasets include Digits, CIFAR10 and ImageNet.
Digits consists of one source domain, MNIST [33], with 60K training and 10K
test images of handwritten digits from 10 classes, and three target datasets:
USPS [14], SVHN [36], and SYNTH [17]. The target datasets also consist of
digit images, but they differ in terms of colors, styles, and backgrounds. USPS
and SVHN represent natural shifts, while SYNTH represents a synthetic shift.
CIFAR10 contains one source domain, CIFAR10 [30], with natural images from
10 classes, divided between 50K training samples and 10K test samples, and
one target domain, CIFAR10.1 [38] with 2K test images from the TinyImages
dataset [44]. ImageNet. The source domain is a large-scale dataset of natural
images, Imagenet [10], with 1.2M training and 50K validation images. The tar-
get dataset ImageNetV2 [39] contains three test sets with 10K images each,
representing a natural domain shift.
Multi-source Datasets For a more realistic evaluation, we include multi-source
datasets, fMoW[7], Camelyon17 [1] and iWildCam [3], from the WILDs bench-
mark [28], and PACS and DomainNet from Domain Bed [21], where we employ
leave-one-domain-out cross-validation.
fMoW includes satellite images categorized into 62 classes. The domains are
categorized based on the year the image was taken and the geographical region.
Camelyon17 includes patches from 50 whole-slide images of a lymph node sec-
tion from a patient with potentially metastatic breast cancer. The training set
consists of 30 WSIs from 3 hospitals, with an OOD-validation split of 10 WSIs
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from another hospital and a test split of 10 WSIs from the last hospital. The
task is to predict whether the patch contains a tumor.
PACS consists of 4 domains, each representing a unique visual style; within each
domain, there are 7 categories.
DomainNet has 6 domains, each separated into 345 object categories. These do-
mains cover a diverse range of image types, including clipart, real-world photos,
sketches, infographics, artistic paintings, and quickdraw drawings.
Networks We utilize the LeNet architecture [32] for the Digits setup. For the
CIFAR10 dataset, we follow [46] and fine-tune the pretrained on Image-Net
ResNet50 [22] model. For ImageNet, we utilize the ResNet50 model with the
same hyperparameters described in [22]. For both the fMoW and Camelyon17
datasets, we adopt the Densenet-121 [25] architecture; for iWildCam we use the
ResNet50 architecture; and follow the ERM training procedure from the WILDs
benchmark [28]. For Pacs and DomainNet, we use ResNet50 [22] and follow the
training procedure from DomainBed benchmark [21].

For multi-source datasets we adopt a standard domain generalization training
approach, where training is conducted on all available domains except for the
test domain.

4.1 Baselines and Metrics

The considered baselines can be divided into three groups: score-based, activation-
based and weight-based.

Score-based methods rely on the validation set of the source data to establish
a threshold on a certain metric, and evaluate each sample of the target data w.r.t.
that threshold. The score-based methods are: Entropy Score, AC [23], DoC [20],
COT [34] and Nuclear Norm [12]. Entropy score considers the prediction to be
correct if its entropy is smaller than a certain threshold τ ∈ [0, 1]. In other
words, the prediction ŷ is considered to be correct if H(ŷ) ≤ τ ∗ log(C), where
C is the number of classes. Average Confidence (AC), proposed by Hendrycks et
al. [23], calculates the model’s performance by determining the maximum confi-
dence value from softmax probabilities on the target data. DOC [20] calculates
the difference in probabilities between the source and target datasets. The final
accuracy prediction for the target set is determined by subtracting the difference
in confidences from the source accuracy. COT [34] uses the Earth Mover’s Dis-
tance to measure the dissimilarity between the softmax probability distributions
of samples from the source and target domains. Nuclear Norm [12] quantify the
dispersity and confidence of the prediction matrix with Nuclear Norm.

Activation-based approaches analyze the hidden representations within the
network. We consider the FID baseline [13], wherein the authors propose creating
a collection of augmented source datasets. They further learn a linear regression
model to predict accuracy on these sets based on the Fréchet distance between
the source and augmented feature representations. We have also considered the
Negative Dispersion Score [45], which analyzes feature separability. However, the
results across all natural shifts were unsatisfactory; therefore, we have included
it only for the CIFAR dataset in Figure 2.
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Fig. 2: Correlation between the accuracy of CIFAR-Corrupted and CIFAR10.1
across various metrics, including Negative Dispersion Score, Projection Norm,
and FID. Note that while the Dispersion Score and Proj. Norm exhibit a stronger
linear correlation on CIFAR-Corrupted compared to FID, they are less effective
on CIFAR10.1, which represents natural shift.

Weight-based approaches rely on analyzing the dynamics of the network’s
weights. We refer to Projection Norm [46] as a weight-based baseline; this method
involves fine-tuning the network using pseudo-labels and calculating the distance
between the original and fine-tuned weights. The original implementation of
Projection Norm does not support direct prediction of accuracy but instead
provides a correlation between the norm of weights and accuracy. To adapt it to
our task, we employ the meta-set pipeline used in [13] and our own method.

The construction of a Meta-set involves creating a collection of augmented
sets from the validation split of the corresponding source dataset. For the com-
parison to the baselines to be fair, we use the same augmentation strategy for
all the methods, which results in identical meta-datasets for every experimental
setup. The data is augmented once, prior to the network updates.

As MNIST contains grayscale images, we create binary masks from the
MNIST samples. We then select a test sample from the COCO dataset, and
mine patches to match the size of the binary masks. Finally, we invert the values
of the patches in the location of the MNIST binary masks.

For the COCO and CIFAR10 datasets, we use the RandAugment [9] auto-
mated augmentation strategy. For each sample set, we randomly select an aug-
mentation magnitude and three transformations from the following pool of trans-
formation types: cutout, auto_contrast, contrast, brightness, equalize,
sharpness, solarize, color, posterize, translate. Differently from [13],
we do not apply a computationally expensive background replacement on the
COCO dataset. In fact, we show that even with these simple transformations,
our approach is able to capture a variety of domain shifts.

It is worth noting that the applied augmentations primarily induce covariate
shift, as they modify the input distribution P(X) without altering the label distri-
bution P(Y|X). This limits our current setup to shifts that do not affect the label
semantics (i.e., no concept shift). Incorporating other shift types—particularly
concept shift, where the relationship between features and labels changes—could
potentially improve robustness and help explain some of the method’s observed
limitations. We leave the exploration of such shift types for future work.
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Table 1: Results on Single-Source Setups. Values Represent Absolute Error,
MAE: Mean Absolute Error.

Digits ImageNet CIFAR10
SVHN USPS SYNTH MAE ↓ MFreq Thresh TopIm MAE ↓ CIFAR10.1

Ground Truth Accuracy 41.59 81.46 50.66 63.13 72.29 77.61 88.65
Entropy Score τ=0.1 39.82 27.85 30.46 32.71 13.16 13.01 14.28 13.48 3.25
Entropy Score τ=0.3 36.84 7.52 15.94 20.10 11.56 8.23 9.03 9.61 10.90
AC 9.41 5.03 13.17 9.2 5.41 0.15 1.61 2.39 2.61
DoC 9.77 4.67 12.82 9.08 4.72 0.54 0.92 2.06 1.94
COT 10.49 2.97 9.88 7.78 2.45 2.89 1.32 2.22 1.32
Nuc 0.08 4.46 20.37 8.3 11.33 4.01 6.34 7.23 4.3
FID 13.94 26.26 1.76 14.04 12.02 2.82 2.38 5.74 8.90
ProjNorm 14.87 33.99 6.83 18.56 13.74 4.65 2.23 6.87 26.66
Hess & Grad Norm 6.1 7.46 0.57 4.71 1.21 0.09 0.96 0.76 0.85

Fig. 3: Single-Source Datasets results. Correlation between classification accu-
racy and the FID measure for the Digits setup (Left), as well as our proposed
gradient-based approach on ImageNet.

Results on Single-Source datasets. The results for Single-Source setup are
summarized in Table 1. We start our analysis with the discussion of the criteria
for assessing the effectiveness of accuracy prediction. Our findings indicate that
relying solely on the correlation between an input metric (for instance, FID or
Projection Norm, see Figure 2) and accuracy within a meta-dataset falls short
of providing a comprehensive assessment. This limitation arises because this
method of evaluation may not accurately represent the correlation with target
datasets, particularly when faced with natural distribution shift.

We further highlight that applying a single threshold derived from entropy
scores is not effective across various datasets. Specifically, a higher threshold
improves the prediction for the Digits dataset, while a lower one is more suitable
for CIFAR-10, suggesting a need for adjustments tailored to each dataset.

In single-source setups, we observed that score-based methods, that estimate
the threshold based on the validation set of the source data (e.g. DoC, ATC,
COT, and Nuc) consistently outperform both activation-based and weight-based
methods. Among these, the COT method emerged as the most effective bench-
mark across all three experimental setups. This superiority is attributed to the
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Table 2: Results on PACS and Wilds Benchmark. Values represent Absolute
Error, MAE: Mean Absolute Error

Wilds PACS
Camelyon IWildCam FMoW MAE Art Painting Cartoon Photo Sketch MAE

Ground Truth Accuracy 72.91 67.69 52.90 81.45 76.79 93.29 76.48
Entropy Score τ=0.1 54.52 0.94 25.34 26.94 5.32 0.21 2.81 0.31 2.16
Entropy Score τ=0.3 19.31 21.41 0.45 13.72 5.81 11.18 1.98 10.82 7.45
AC 16.13 2.11 5.69 7.98 7.13 11.8 0.48 7.29 6.68
DOC 14.44 1.41 3.26 6.37 6.68 11.07 0.25 6.61 6.15
COT 2.95 14.83 0.01 5.93 0.73 3.28 24.49 16.63 11.28
Nucl 14.45 7.13 4.05 8.54 9.28 13.06 0.44 3.63 6.60
FID 1.69 8.39 4.89 4.99 1.81 10.15 32.3 16.65 15.22
ProjNorm 16.47 10.95 7.83 11.75 3.02 3.82 28.8 36.48 18.03
Hess & Grad Norm 2.23 3.59 3.66 3.16 5.63 0.42 1.57 4.1 2.93

Fig. 4: Multi-Source results. Correlation between the classification accuracy of
PACS datasets and the Projection Norm (Top), as well as our proposed gradient-
based approach (Bottom).

model’s tendency to overfit on the training data, making even the validation set
from the same domain an effective estimator for the level of uncertainty.

The final baselines, Projection Norm and Fréchet Inception Distance (FID),
exhibited a clear linear correlation with the accuracy of the meta-set; however,
there was notable variability in the distribution of points across datasets. For
instance, in the Digits setup, predictions of FID for the Synth dataset closely
matched the ground truth, with an Absolute Error (AE) of only 1.76. However,
for the USPS and SVHN datasets, the deviations from the main trend were
substantial, leading to inaccurate predictions.

Finally, our gradient-based approach outperforms all other methods across
all three experimental setups. By integrating both Hessian and gradient norms,
we successfully developed a Linear Regressor capable of capturing the corre-
lation with classification accuracy not only within the meta-dataset but also
across the target datasets. The superiority of our method is demonstrated by
the results presented in Table 1, which indicate that our method’s predictions
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Table 3: Results on DomainNet accross various domain shifts. Values represent
Absolute Error, MAE: Mean Absolute Error.

Clipart Infographics Paintings QuickDraw Real Sketches MAE
Ground Truth Accuracy 58.22 19.92 45.80 12.64 58.36 47.98
AC 3.15 12.88 6.61 24.17 5.96 7.84 10.10
DOC 2.89 12.29 6.17 24.26 5.47 7.28 9.72
COT 4.2 4.85 1.05 51.83 31.99 0.3 15.70
Nucl 7.21 18.54 10.38 19.47 10.6 12.59 13.13
FID 19.19 19.58 13.36 12.64 33.65 8.67 17.84
ProjNorm 18.95 19.92 3.61 12.64 5.93 2.94 10.66
Hess&Grad 1.18 8.39 5.97 9.1 9.33 6.65 6.77

for the target datasets are more accurate than those produced by alternative
approaches. Specifically, we observed an average absolute error of only 4.71% for
Digits, 0.76% for ImageNet-V2 and 0.85% for CIFAR10.1.

Results on Multi-Source datasets. Next, we proceed to the multi-source
setups, where instead of having a single domain available during training, the
network is exposed to multiple domains. This generally leads to the development
of more robust models than single-source setups. The results for datasets from
Wilds benchmark and PACS dataset are detailed in Table 2, the results for
DomainNet are shown in Table 3.

Our analysis reveals that the COT method is unstable across different datasets.
For example, it achieves nearly perfect predictions on the FMoW dataset, with
an AE of 0.01, as well as on the Sketch target set from DomainNet. It also per-
forms well on the Art Painting subset of the PACS dataset, with an AE of less
than 1%. However, its performance declines on the iWildCam dataset, where
the AE reaches 14.83%. On the other hand, the FID metric represents a more
robust baseline, particularly for datasets within the Wilds benchmark. Notably,
it outperforms all other baselines in the evaluation of the Camelyon dataset.

The performance of the Projection Norm in multi-source setups is unsatis-
factory. This is attributed to the fact that the reference model is not consistently
capable of converging to a local minimum. As illustrated in Figure 4, Top, when
the Photo test set is used in the PACS setup, the network fine-tuned on the
test data continues to change even after the meta-set weights have stabilized.
This leads to a larger Projection Norm for the target dataset compared to the
meta-set, resulting in poor performance estimation.

Crucially, our proposed method outperforms existing approaches, achieving
the lowest MAE across all evaluated multi-source datasets. The closest competi-
tor to our method is the Projection Norm. However, in addition to inferior per-
formance, the Projection Norm also demands greater computational complexity
due to the requirement of fine-tuning the entire network (see Table 4).
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Table 4: Comparison of Time Complexity. The values indicate the time (in sec-
onds) required to compute a Projection Norm and our proposed Hess&Grad on
a set of 1000 samples, evaluated using a single A100 GPU.

ImageNet PACS IWildCam FMoW DomainNet

Proj Norm 100.1 47.5 235.7 114.2 48.64
Our Approach 2.6 2.1 4.8 3.9 2.9

5 Conclusion

In this work, we tackle the problem of predicting the performance of a network on
unlabeled target data whose distribution differs from that of the source training
data. To this end, we build on the findings of recent work [46] that estimates
the performance of the network from the degree of weight changes incurred by
fine-tuning the network on the target dataset with a self-supervised loss. In
contrast, our method avoids the time-consuming process of updating network
weights and relies on analyzing gradients and the Hessian matrix to capture
weight differences efficiently. Our extensive experiments show that our approach
effectively and efficiently predicts the accuracy across a variety of domain shifts
and network architectures.

Acknowledgments. This work is partially supported by Australian Research Council
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