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Abstract. The widespread application of deep learning methods has
brought to the challenge of enhancing prediction performance within the
highest-score segment of model predictions. In critical domains such as
insurance fraud detection and bank cash-out detection, the focus is pre-
dominantly on the highest predicted scores, which correspond to high-
risk users that need to be intercepted. However, most existing work still
focuses on optimizing AUC globally, which often means not being the
best within the top-ranking part. Besides, these scenarios often face ex-
treme data imbalance, where the positive samples of interest are in the
minority. In this paper, we define the top-ranking optimization problem
and propose an Augmented Lagrangian Multiplier method (ALM) based
approach to solve it. Specifically, we modify the Discounted Cumulative
Gain (DCG) metric to serve as the constraint on top-ranking and add
it as the regularization terms to the optimization objective. In addition,
to ensure the effectiveness of the regularization term and avoid the over-
fitting problem, we design a dynamically updated cache mechanism to
store the hard samples. Our experimental results on three real-world
datasets validate the effectiveness of our proposed method, demonstrat-
ing its potential to improve top-ranking prediction performance in im-
balanced data settings.

Keywords: Insurance Risk Control- Imbalanced Learning- Top-ranking
Optimization.

1 Introduction

In recent years, deep neural networks (DNN) have gradually achieved many
successful applications in binary classification problems, e.g. the fraud detection
and concept classification scenario [1,10,32]. Most of these scenarios focus on
optimizing the overall binary classification performance like the Mean Average
Precision (mAP) metric and Area Under Curve (AUC) [26, 30]. However, in some
practical scenarios such as cash-out fraud detection or insurance fraud detection,
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they focus more on accurately identifying the high-risk users ranked at the top so
that measures such as user banning or account suspension can be taken against
them. In this case, the prediction performance for the remaining users is not as
critical, and neither is the specific order of the predicted users ranked at the
top. Despite its clear importance, the challenge is further amplified by the fact
that there is often a significant class imbalance in these scenarios. The positive
samples, which represent the high-risk users we are concerned about, are in the
minority. Therefore, how to optimize the binary classification performance of
top-ranked users in such imbalanced scenarios is an important problem, which
we will refer to as the top-ranking optimization problem.

Top 3 AUC PAUC@0.4

Casel: DOOO®OOO 073 1.00
Case2: DOBOOOO® 060 0.75
Case3: OOOOOOO® 053 0.50
Case 4: @@@:@@@@@ 0.53 1.00

Hi gh Score Low Score @ Positive Samples
> @ Negative Samples

Fig. 1. Four toy examples illustrate the problems with each AUC and PAUC. Case 1
has a higher AUC and PAUC than case 2, while case 2 has a better performance within
top 3 part. Cases 3 and 4 have the same AUC, however, the top 3 effect is better in
case 3 with a lower PAUC.

To address this problem, some existing works have shed light on different
angles. Some methods do not transform the optimization objective and still
aim to maximize the global AUC [26, 30]. By using methods such as sampling,
weighting, and calibration, they try to enhance the model’s focus on the minority
classes [9, 23,19, 17]. However, AUC pays equal attention to samples of all scores
and therefore may not be consistent with our goal for top-ranking optimization.
For example, consider case 1 and case 2 in Figure 1. When considering the top 3,
case 2 is better while having a lower AUC which is opposite to our expectations.

The other work proposes the Partial AUC(PAUC) optimization problem [?,12,
29], which refers to targeting the model’s top prediction effectiveness by optimiz-
ing the AUC score within a certain lower range of the False Positive Rate(FPR).
However, PAUC only constrains the FPR, i.e., the top k negative samples, not
the top k of the model’s predicted scores. This causes it to compare all other
samples with the negative sample with the highest predicted score in its com-
putation process, thus over-penalizing some cases with better prediction at the
top-ranking part prediction. For example, as case 3 and case 4 in Figure 1. When
considering the top 3, case 3 has the better results of having 2 positive samples
within. However, the PAUC within (0,2/5) for both is 0.5 and 1.0 respectively,
which is the opposite of what we expected. To sum up, existing methods pay
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little attention to targeted top-ranking part optimization. Imbalanced learning
and PAUC optimization methods focus on some similar situations but are not
identical.

In this paper, we model this class of top-ranking part optimization prob-
lems represented by the insurance fraud detection domain. Specifically, we trans-
form the top-ranking part prediction optimization problem into a pairwise opti-
mization problem with constraints using the Augmented Lagrangian Multiplier
method. Besides, a modified DCG score of the bipartite ranking task is intro-
duced as a constraint to the regularization term. In addition, to alleviate the
problem of positive samples being too sparse, a dynamic cache mechanism is
introduced to store the hard positive samples and negative samples. In each
round of training, the samples stored in the cache are also added to training to
accelerate the convergence of the model. Our proposed method is independent
of the specific model structure and can be combined with any binary classifica-
tion model. We conduct rich experiments on three different types of real-world
datasets, and the experimental results show that our method outperforms exist-
ing methods for SOTA.

The main contributions of this paper are as follows:

— We propose the Top-Ranking Augmented Lagrangian method (TRAL) to
optimize the top-ranking prediction results of deep learning models in the
presence of extreme imbalance of positive and negative samples. The model’s
focus on positive samples is enhanced by introducing sample difficulty and
positive sample ordering.

— We propose a dynamic caching mechanism to store the misclassified posi-
tive samples and hard negative samples in each round, thus mitigating the
problem of sparse positive samples causing the regularization term to overfit.

— We have conducted sufficient experiments on several real-world datasets, and
the extensive experiment results prove the superiority and generalizability
of the TRAL proposed in this paper.

2 Preliminaries

2.1 Problem Formulation

In this section, a formal definition of the top-ranking optimization problem in the
unbalanced scenario that we try to solve in this paper is given. For an unbalanced
binary categorical dataset D = {(x1,v1), (22,¥2), -, (Tn, Yn),v: € {0,1}}, where
x; is a data sample and y; is a label. We are concerned with positive samplesi.e., y
= 1. Then there is a number of negative samples much larger than the number of
positive samples. For example, in the insurance fraud detection scenario, normal
users account for more than 99% of all users and high-risk fraudulent users
account for less than 1%. The prediction result of the model is often used as
the blocking threshold in the business. However, the consequences of wrongly
intercepting a regular user are much smaller than those of wrongly passing a
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high-risk user, so the model’s prediction results for positive samples need to be
maximized, i.e., the system needs to operate with a high false-negative rate.

Formally, we have P = {z7,... "TI-;’\} and N' = {z7,... ’Ilj\f\} representing
positive class and negative class respectively. We define the positive class as the
critical minority class in our following discussion, i.e., |P| << |N]. Our goal
is to develop a generalized method for inducing a Deep Neural Network(DNN)
classifier fp : Ry — R that maps d-dimensional inputs to output scores, thereby
boosting the proportion of positive samples within the top k% of the model’s pre-
dicted scores when sorted in descending order. Let F'(6) be the total loss function
and f(0) be the generic loss function for the binary classification problem.

2.2 Augmented Lagrangian Multiplier Method

With F(0) representing the total loss function, the optimization problem with
constraint C(f) can be formulated as:

in F'(0) s.t. C(0). 1
argmin F(6) s.t. C(9) (1)

Since it is hard to optimize the constrained problem directly, the method
of Lagrange Multipliers was introduced to convert the constrained optimization
problem to an unconstrained one. The constraint to the objective is added as a
normalization part using Lagrange multipliers A as follows:

L(0,)) = F(0) + i Aici(6). (2)
i=1

The optimization function obtained after the transformation of the original
Lagrange multiplier method [2] is not guaranteed to be smooth and the gradient
descent method cannot be used directly because the function is not guaranteed
to be strongly convex. By incorporating the quadratic penalty term, the aug-
mented Lagrange method guarantees the smoothness of the optimization process.
Thus, the original optimization problem with constraint C(6) can be transformed
into the following unconstrained optimization problem, where C() remains the
constraint of interest:

L,(0,7) = F(0) JrMZHCi(G)II2 +ZAiC¢(9), (3)

here p is a predefined penalty parameter used to control the contribution of the
penalty term to the overall loss function.

3 Methods

To solve the top-ranking part optimization problem on imbalanced datasets, we
propose a model-independent optimization method with constraints by defining
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sample difficulty and designing a dynamic caching mechanism to ensure the
validity of the regular terms. First, we discuss how to transform the objective
of top-ranking part optimization into a constrained optimization problem and
solve it with the Augmented Lagrangian Multiplier method. Second, we use a
caching mechanism to temporarily store the positive samples misclassified by
the model to alleviate the problem that the regularization term does not work
in training due to sparse positive samples.

3.1 Metric for Top-ranking Optimization

For binary classification tasks, several metrics have been proposed for different
purposes. A commonly used optimization metric is Area Under Curve(AUC),

+ —
AUC = > 1y(z) > y(z;)) n
v
However, since AUC is of equal concern for all score bands, boosting the
rankings of both the low-score positive samples and the high-score positive sam-
ples will do the same decrease to the loss function. Discounted Cumulative Gain
(DCQG) is a commonly used ranking metric in top k& recommendation tasks [11].

2rel( i) _

boGak = Z 1og2 i+1)

(5)

where rel(i) denotes the predicted score of the sample in the ith position.
Recall that our goal is to maximize the proportion of positive samples ranked
within the top k of predictive scores, so we need to pay attention to the rank
order of the positive samples in each prediction. However, the vanilla DCG can be
influenced by the ranking within the top-ranking part which is not our primary
concern. Therefore, we modified the vanilla DCG metric into the following form:
1

DCC= 2. Togstrank@ ) 1) )

Since we only have two relationship types for positive and negative samples
and do not focus on the rankings within the same class, in the modified DCG,
we calculate the rank of positive samples by considering neighboring positive
samples as tied at the same rank.

3.2 Top-ranking Constrained Optimization

To this end, we define the constrained optimization problem for top optimization
as follows:

arg min F'(6)

[N
5.3 max (0, —(fo(a™) — folxy)) +6;) = 0, "
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where fy(x) represents the predicted score of the DNN model, ¢ is the classi-
fication margin. It is worth noting that ¢ is not a fixed hyperparameter, but
is dynamically adjusted for each negative sample based on its classification dif-
ficulty. Satisfying the constraint would be equated to optimizing the modified
DCG for binary classification.

We then convert the optimization problem according to the Augmented La-
grangian Method into the following form:

pSPL e ST

CON=FOT S Ew TPl T )

where £; = 3> max(0, —(fo(z) — fo(x;)) + 6ij). Note that the 6;; is dif-
ferent with each sample pair. Unhke prev1ous work ALM, our 6;; here is not a
fixed hyper-parameter set in advance, but a learnable parameter related to the
classification difficulty of each negative sample.

This function can’t be used as an optimization objective yet, because the
max(-) function in the £; calculation is non-continuous. Therefore, we use a
widely-used surrogate function for max(-) to convert it into a continuous convex

function, i.e. maz(x1,...,x,) = log(> i, exp(x;)).
: ef @)
&:”MMm+le%<W% .
where 7;; = % is defined as the classification difficulty of negative samples.

It is not difficult to prove that £; restricts the upper and lower bounds of the
DCG and optimizing £; results in a bounded optimization of the DCG. For
the proof of the upper and lower bounds of the DCG one can refer to the Proof
section in the Appendix. After obtaining that £; is the equivalent boundary of
the DCG, the optimization objective is equivalent to optimizing the AUC while
satisfying the constraints of the DCG since we use the ALM transformation
constraints to add them to the optimization function as regular terms.

It is worth noting that since J € [0, 1], the value of 7 belongs to [Wll’ ol
And 7 is inversely proportional to §. When the classification difficulty of nega-
tive samples is lower, the classification margin with positive samples is larger,
resulting in a smaller 7, i.e., the impact on the optimization term. Therefore, we
can extract 7 as a measure of the classification difficulty of negative samples.

3.3 Dynamic Cache Module

Under the imbalanced scenario, due to the extreme sparsity of positive sam-
ples, there may not always be enough positive samples within each mini-batch
to participate in training. This leads to the constraint term in equation (8) not
working. To solve this problem, we borrow the caching mechanism from the com-
puter hardware field to ensure that the model can see enough positive samples.
Specifically, we use an LRU-like cache mechanism to maintain a queue of pos-
itive samples of size ¢ and concate them into each mini-batch during training.
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First, before the training process begins, we randomly select ¢ positive samples
to initialize the cache. Subsequently, after each training step, we input all the
samples within this batch and the cache to the model for prediction and pick the
ones in which the model predicts incorrectly (i.e., those with prediction scores
of 0.5 or less). Then we sort the prediction scores decreasingly and select the
lowest ¢ samples to update the cache.

Such a simple method may be effective at the beginning of the training,
however, as the number of iterations increases, the frequency of updating the
samples in the cache will gradually decrease, leading to a serious over-fitting
of those samples. This is supported by some of our preliminary experimental
results. Therefore, we also design two mechanisms to alleviate the over-fitting
problem. First, we modify the update rule for positive samples. Specifically, if
the model correctly predicts a positive sample it is moved out of the cache and
marked as the correct answer. Second, we also incorporate the idea of sampling
hard negative samples. As the model’s effectiveness improves, the number of pos-
itive samples incorrectly predicted in each round gradually decreases to below q.
This leads to a reduction in the number of samples in the cache. However, it is
important to realize that this does not mean the model predicts well enough. It
is just that due to the presence of the ALM regularization term and the cache
module, we will inevitably cause a rise in the mean value of the model prediction
scores. This means that the predictive scores of many negative samples are also
rising. Therefore, to suppress the negative sample prediction scores and prevent
the cache module from causing over-fitting problems, we performed dynamic
sampling based on the classification difficulty of the negative samples. Each neg-
ative sample’s probability of being sampled is then determined by the difficulty
1 described above.

pi={" = W : (10)
0 ,J € others

where N1, k] represent the top-ranked k% negative items. It can be inferred
that the greater the ¢ is, the harder the samples will be drawn. The core idea is
that the more difficult samples are sampled, the higher the probability that they
will enter the cache, which always maintains samples on the model prediction
boundaries so that the regularization term always plays a role.

4 Experiments

In this section, we present our experimental evaluation of the top-ranking part
optimization task under imbalanced datasets. To verify the generalizability of
our approach, we conducted experiments on three datasets with different task
scenarios but with similar distributions: the Insurance dataset obtained from
a widely used online Health Insurance platform, the public dataset Fraud of
credit card fraud detection task, and the Criteo recommendation dataset. On
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Table 1. Statistics of three large-scale datasets. The positive ratio indicates the pro-
portion of positive samples.

dataset pos neg positive ratio
Insurance|99,386 1,012,716 0.99%
Fraud 492 284,807 0.17%
Criteo 7,450 745,051 1.00%

the Insurance control scenario and Fraud detection dataset, we choose MLP as
the benchmark classification model, and on the recommendation dataset Criteo
we choose DeepFM (8] as the benchmark model.

4.1 Datasets

Insurance dataset contains users’ features such as basic information and medical
records of the insured users, labeled as whether they are insured or not. This
task focuses on predicting whether a user is likely to be insured during the pol-
icy period based on the user’s characteristics, and the high-risk users predicted
by the model need to be blocked or otherwise dealt with to reduce the risk to
the insurance company. This dataset is collected from the history of the online
business within 30 days. The ratio of positive samples (insured users) and nega-
tive samples (regular users) is about 1:100. We divide the train, validation, and
test set according to the ratio of 8:1:1. The first 26 days of data are selected as
training data and the last two days as the test set.

Fraud dataset contains the transaction history of credit card holders in Europe
for September 2013. The task focuses on predicting the presence of possible credit
card fraud based on a user’s transaction history. The dataset contains 284,807
transactions, of which 492 are fraudulent. We divide the training, validation, and
testing datasets randomly according to the ratio of 8:1:1.

Criteo dataset contains data on user ad clicks over 7 days from the CriteoLabs
website. This task focuses on predicting the click-through rate of users clicking
on displayed advertisements based on user information and information about
the currently visited page. We randomly sampled the clicks and hit an overall
positive-to-negative sample ratio of 1:100. We followed the original train and
test split.

4.2 Baselines

We compare the proposed method with the following competitive and main-
stream methods which aim to improve the model’s performance over the top-
ranking part. In addition, we have chosen Partial AUC optimization meth-
ods as a comparison of direct AUC optimization methods such as mini-batch
AUC(MBAUC) and SPAUCI methods.
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ALM [19] first introduced the constraint optimization problem to enforce

maximal AUC through prioritizing FPR reduction at high TPR.

— RankReg [17] add a ranking-based regularization term to improve TPR while
reducing FPR.

— MBAUC [7] leverage the direct optimization of AUC for binary classification
problems.

— SPAUCIT [22] proposed a non-convex strongly concave min-max regularized

problem of instance-wise loss functions for PAUC optimization.

Besides, following previous work [19, 17], we consider applying regularizer-based
methods with several widely-used cost-sensitive loss functions: Cost-Weighted
Binary Cross Entropy loss(WBCE) [30], Symmetric Marginal Loss(S-ML) [15],
Symmetric Focal Loss(S-FL) [14], and Label Distribution Perceived Marginal
Loss(LDAM) [4].

4.3 Implemetation Details

For the binary imbalanced classification dataset Insurance and Fraud, we adopt
MLP as the backbone architecture with shape [512, 2]. As for the CTR predic-
tion task of Criteo, we choose DeepFM (8] as the backbone architecture with the
embedding dimension of 32. Throughout all the experiments, we set the batch
size to 2048 and used the Adam optimizer.

4.4 Evaluation Metrics

To evaluate the overall classification performance of our proposed method and
the baselines described above, we follow the existing works to use the standard
metric AUC. Besides, in risk-concern imbalance learning scenarios, the minor-
ity class of high-risk positive samples is our primary concern. Therefore, we
adopt PAUC@k and Prec@k metrics to evaluate the performance within the
top-ranking part. In practice, we focus on the top 3% part, but we also focus
on some specific percentage on the top to further investigate the influence of
our proposed method, i.e., top 1%, 2%, 3%, 4%, 5%, respectively. For all exper-
iments, we report the results with 95% confidence intervals on the average of 5
runs.

4.5 Main Result

As shown in Table 2, we can observe that the proposed method outperforms the
baseline models on different datasets and losses. Grouped by base loss, it can be
seen that our proposed TRAL reach the best performance within each group.
This shows that applying this model to other loss functions as well as the base
model can be improved, reflecting the generalizability of this model.

For the Insurance dataset, it is clear that the proposed TRAL is consistently
better on most metrics. Comparing the results within each block, we can see that
the method in this paper achieves a significant improvement over both ALM
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Table 2. Model comparison on three real-world datasets. We record the mean results
over 5 runs. * indicates a significant improvement compared with the best baseline
(p < 0.05 on paired t-test).

Insurance Fraud Criteo
Methods auc  pauc@3% prec@Q3%| auc pauc@3% prec@Q3%| auc pauc@3% prec@3%
MBAUC 0.5417  0.3215 1.5410 | 0.8234 0.6215 36.45 0.7255  0.0829 4.512
SPAUCI 0.5701 0.3417 1.5787 | 0.8248 0.6473 37.19 0.7215 0.0883 4.676
BCE 0.5516  0.2987 1.5085 | 0.8257  0.6061 30.80 0.7029  0.0609 3.619
+ALM 0.5488 0.3025 1.5117 | 0.8226  0.5996 34.54 0.7056  0.0787 4.560
+RankReg| 0.5526  0.3091 1.5245 | 0.8267 0.6117 35.61 0.7080 0.0781 4.509
+TRAL 0.5548  0.3157 1.5469 | 0.8363  0.6209 37.47 0.7133  0.0812 4.594
WBCE 0.5523  0.2991 1.5236 | 0.8261 0.6072 31.23 0.7034  0.0678 3.754
+ALM 0.5531  0.3029 1.5145 | 0.8297  0.6092 34.37 0.7067 0.0814 4.494
+RankReg| 0.5512  0.3061 1.5164 | 0.8289 0.6107 34.79 0.7045 0.0817 4.531
+TRAL 0.5587  0.3154 1.5457 | 0.8324 0.6217 38.32 0.7157  0.0823 4.572
S-ML 0.5547  0.3107 1.5577 | 0.8334 0.6125 35.61 0.7131  0.0726 3.975
+ALM 0.5619  0.3201 1.5684 | 0.8418 0.6217 36.24 0.7191  0.0826 4.561
+RankReg| 0.5642  0.3217 1.5687 | 0.8416 0.6231 36.17 0.7201  0.0831 4.562
+TRAL 0.5701  0.3301 1.5774 | 0.8501 0.6314 37.24 0.7295 0.0873 4.662
S-FL 0.5551  0.3312 1.5578 | 0.8350 0.6157 35.17 0.7143  0.0721 4.013
+ALM 0.5621  0.3314 1.5664 | 0.8421 0.6234 36.41 0.7221  0.0832 4.570
+RankReg| 0.5627  0.3320 1.5658 | 0.8427 0.6238 36.50 0.7225  0.0831 4.579
+TRAL 0.5710 0.3397 1.5780 | 0.8523 0.6327 37.36 0.7237 0.0845 4.842%*
LDAM 0.5567  0.3340 1.5601 | 0.8352 0.6206 35.24 0.7165  0.0743 4.102
+ALM 0.5634  0.3407 1.5721 | 0.8435 0.6301 36.67 0.7251  0.0841 4.617
+RankReg| 0.5629  0.3398 1.5717 | 0.8437 0.6311 36.71 0.7246  0.0847 4.621
+TRAL |0.5714* 0.3421* 1.5801 |0.8543* 0.6424 38.47* |0.7307* 0.0871 4.836

and RankReg. Comparing the different loss functions vertically, we can see that
our method achieves relatively best results in each metric when combined with
LDAM.

Similar results can be observed on the Fraud and Criteo dataset except for
pauc@3%, where SPAUCI has the best score. This is because SPAUCI is specif-
ically optimized for Partial-AUC. However, as mentioned earlier, pauc@3% can
only reflect the model’s ability to categorize and identify positive samples within
the top-ranking part to a certain extent. In addition, the actual training speed
and convergence speed of SPAUCI method is prolonged, which is not practical
for the actual data scale faced by the industry.

Note that our optimization goal in this task is the performance of the model
in the part with the highest prediction scores, so the global AUC metric is a
reference metric for us rather than an optimization focus of interest. However,
we still achieve high AUC scores in many experiments, which shows that our
approach not only improves the model’s ability to recognize top-ranking samples
but also enhances the model’s global classification ability at the same time.

In addition, unlike the RankReg method that introduces the rank index of
positive samples as a regularization term, our proposed TRAL is mainly based
on the ALM method and introduces the definition of negative sample difficulty
to measure the effect of the sample on the regularization term. Therefore, it can
be seen that the enhancement of the proposed method in this paper is the most
significant on the Fraud dataset. This is because the Fraud dataset has relatively
the least difficult data and the largest number of simple negative samples among
the three datasets. Vanilla classification methods can quickly obtain a high AUC
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Table 3. Ablation Study of different update strategies for cache module on Insurance
datasets.

Insurance

Methods | AUC PAUC@3% Prec@3%
TRAL 0.5714 0.3421 1.5801
w/o cache| 0.5571  0.3341 1.5617
w/o hns |0.5412  0.3217 1.5210
threshold | 0.5532  0.3331 1.5512
percent 0.5545  0.3315 1.5524
baseline |0.5567  0.3340 1.5601

score on this dataset, however, to further improve the model’s prediction ability
for the top-ranking samples will soon face a serious overfitting problem. The
proposed TRAL, however, combines the difficulty of negative samples with the
ALM method to make the regularization term work consistently, which further
improves the model’s performance.

4.6 Ablation Study

To visually verify the usefulness of the various components of the proposed
TRAL in this paper, we performed ablation experiments on the Insurance dataset.
We chose to use the TRAL combined with WBCE loss as the baseline model.
Based on this, we do the following for the cache module and the computation
of the regularization term, respectively: (1)w/o cache: remove the cache mod-
ule, (2)w/o hns: remove the hard negative sample strategy and store the cache
model for positive samples only, (3)threshold: update the cache with the k pos-
itive samples with the lowest scores within each batch, (4)percent: update the
cache with the k% positive samples with the lowest scores within each batch,
(5)baseline: the baseline MLP model with LDAM loss.

As can be seen from Table 3, the decrease in the effectiveness of the models
with the corresponding modules removed is very significant. The removal of the
cache module directly decreases the effectiveness of the model by 2.5% points.
It is worth noting that, the method of removing the dynamic negative sampling
mechanism is less effective than simply removing the entire cache module. This
implies that if a cache module is added directly, the effect on the model prediction
results is likely to be negative. In our experiments, we found that after a certain
number of iterations, the number of incorrectly predicted positive samples in each
round of training is less than the pre-set cache size, which leads to a portion of
the samples in the cache not being updated. These “stubborn” positive samples
cause the model to overfit, and thus worsen the model’s prediction effect.

4.7 Parameter Analysis

In the main experiment, we chose the top 3% as the main criterion to evaluate the
model effect, which is based on the actual scenario needs of our online business
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Table 4. Illustration of the performance of the top-ranking part over different ratio.
* indicates a significant improvement compared with the best baseline (p < 0.05 on
paired t-test).

Prec
Methods Q@1% @2% @3% @4% @5%
BCE 4.1150 3.8671 3.6192 3.4205 3.0239
ALM 6.3956  5.2553 4.5603 4.1517 3.9956

RankReg| 5.5431 4.7230 4.5094 4.3210 4.0479
TRAL 7.0897* 5.4536 4.5945% 4.2830 4.0452
MBAUC | 5.5912 5.1250 4.5120 4.1457 4.0537
SPAUCI | 6.6931 5.3793 4.5760 4.3500 4.0650

and the empirical scores from the past analysis. In order to further explore the
impact of the proposed methodology on the model prediction scores in different
degrees, we explored the variation of the prediction effects in different scales
from top 1% to 5%. In Table 4, we list the corresponding experimental results
with different percentages. Among them, for the PAUC optimization methods,
we set their FPR objectives upper bounds to the corresponding percentages as
well to obtain an approximate top-ranking optimization objective.

Compared to the PAUC class method, the improvement of TRAL is more
significant in scenarios with smaller top ratios. This result is in line with our
expectations. As mentioned earlier, the PAUC class of optimization methods
may penalize some results that are predicted accurately in the top-ranking part
because they focus on the model’s ability to classify the positive samples with
the highest scores rather than the positive samples within a certain portion of
the highest predicted scores.

5 Related Works

5.1 Imbalance Learning.

Existing imbalance learning methods can be mainly categorized into three main
types: pre-processing, mid-processing, and post-processing according to their
action stages. Pre-processing methods mainly act in the data processing stage,
changing the data distribution through resampling or data augmentation to in-
crease the number of minority class samples and mitigate the imbalance prob-
lem [27,5,31]. Post-processing methods, on the other hand, aim to correct the
model’s inherent bias towards the majority class by utilizing techniques such
as calibrating the model’s predictive distribution based on the data distribu-
tion. Mid-processing methods mainly rely on designing category-sensitive loss
functions to modify the optimization objective during the training process [30,
23,9,24,13]. For example, Weighted Binary Cross-Entropy(W-BCE) increases
the impact of minority category samples on the loss function by multiplying
their contribution by a scaling factor [30]. Other methods, such as Symmetric
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Marginal Loss [15] and symmetric Focal Loss [14], introduce margin-based penal-
ties to enhance the separation of class decision boundaries. In addition, Class
Balanced BCE [6]and Label Distribution-Aware Margins [4] address the imbal-
ance problem by inversely weighting the loss according to the class frequency or
minimizing the margin-based generalization boundaries.

Additionally, some studies focus on extreme multi-label classification (XMLC),
aiming to address the optimization issues of long-tail classes when multi-class
models are dominated by mainstream samples. Since Bhatia [3] proposed the XC
benchmark dataset in 2016, researchers have made notable progress. Schultheis
[21] introduced an expected test utility (ETU) framework to optimize generalized
at-k metrics, tackling long-tail label challenges by deriving optimal prediction
rules and efficient approximations with regret guarantees. Later, they advances
the algorithm by developing a consistent Frank-Wolfe algorithm for complex
macro-at-k metrics within the population utility framework and transforming
classifier optimization into confusion matrix optimization to address budgeted
predictions at k in multi-label classification. [20] .

The method proposed in this paper mainly belongs to the category-sensitive
loss in the mid-processing approach and is combined with the model-based ap-
proach. We optimize the regular term based mainly on the work of ALM [19],
so that the loss function can focus more on the prediction effect of the model on
the top-ranking samples, and ensure the concentration of the positive samples
through the dynamic caching mechanism introduced in this paper so that the
regular term can work continuously.

5.2 Partial-AUC Optimization.

The concept of partial-AUC was initially introduced by [16], with initial re-
search efforts primarily concentrated on its application to straightforward linear
models. A distribution-free, rank-based method was employed for the first time
to optimize PAUC in a seminal work [16]. Another study [25] focused on the non-
parametric estimation of PAUC and incorporated feature selection iteratively to
construct the ultimate classifier model. A more sophisticated approach [18] was
later introduced, where a cutting-plane algorithm was developed to identify the
instances that most significantly violated the constraints. This method broke
down the PAUC optimization into several smaller problems, which were then
addressed through a structured SVM-based technique. Despite these advance-
ments, many of the existing methods faced challenges such as a lack of differen-
tiation properties or intractable optimization issues. To address this, an implicit
function theorem was introduced to formulate a rate-constrained optimization
problem that treated the quantization threshold as a function of the model’s
parameters [12]. A recent study by [28] made significant strides in enabling end-
to-end optimization of PAUC in deep learning models. This was achieved by
streamlining the complex sample selection process inherent in PAUC optimiza-
tion into a two-tiered optimization strategy. The inner layer was dedicated to
selecting instances, while the outer layer focused on minimizing the loss function.
Despite this progress, these methods were subject to approximation errors when
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estimating the actual PAUC. Subsequent research in [29, 33] introduced a PAUC
estimator with smooth properties, offering theoretical assurances of convergence
for their algorithm. Nevertheless, the utility of this algorithm was constrained by
its slow rate of convergence, particularly when applied to the Two-way PAUC.

6 Conclusion

The prevalent utilization of deep learning in data mining has limitations on
imbalanced datasets, where the minority class, often of primary interest, is un-
derrepresented and less effectively modeled compared to the majority class. This
paper introduces an Augmented Lagrangian method base optimization transfor-
mation that prioritizes the model’s prediction within the top-ranking part. The
proposed TRAL method leverages the modified DCG metric’s ranking proper-
ties to enhance top prediction effectiveness, incorporating these as regularization
terms within the optimization function. Furthermore, to stabilize regularization
against the challenge of scarce positive samples, we have defined the concept of
sample difficulty and developed a Dynamic Cache mechanism, thereby improving
the model’s accuracy in top-ranking predictions, which is particularly relevant
in risk-aware domains such as insurance and fraud detection.
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A  Appendix

A.1 Proof of the equivalence of £; and DCG

In this part, we focus on proving that the optimization target above equals
optimizing the top-ranking part’s performance.

Lemma 1. Optimizing Equationd is equivalent to optimizing the upper bound
of DCGQG.

Proof. Consider that for a positive sample ac , its rank order rank(z; ) represents
that rank(z; F) negative samples can have a hlgher score than x:r Therefore,

rank(z]) =1+ Z sign(f — flzf)+0; > 0), (11)
JEN

and by sign(zx > 0) < e®, we have

Tcmk:( < 1+ Ze z;)— f(z+)+5 (12>
JjEN

The upper bound of DCG can be achieved as follows.

DCG = Z log2 (rank +1) Zlog Wle™ +1)

< x]' _ f(mj)""é
_Zlog Ze e i4+1) (13)

i€P JEN

ef(ac*)

:Z—lo =L,

icP ef(m+) + Z eN 6 + (5

Lemma 2. Optimizing Equation 9 is equivalent to optimizing the lower bound
of DCG

Proof. The lower bound of DCG can be achieved by the following process.

- 1
DCG = exp(log(i;) log, (rank(i) + 1) )

= eXp(Z rcmlk(i)>

i€P (14)
1
> exp() - )
s Zke/\f ef(@e)=F (&) +0k 4 q
=e i,
By Lemma 1 and Lemma 2, we have
e £ < DCG < L;. (15)

Consequently, minimizing ¢ is equivalent to minimizing DCG , and further,
by constraining the number of top k samples for computing the DCG, we can
explicitly optimize the top-ranking prediction performance.



