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Abstract. In this paper, we study a new decision-making problem called the
bandit max-min fair allocation (BMMFA) problem. The goal of this problem is
to maximize the minimum utility among agents with additive valuations by re-
peatedly assigning indivisible goods to them. One key feature of this problem is
that each agent’s valuation for each item can only be observed through the semi-
bandit feedback, while existing work supposes that the item values are provided
at the beginning of each round. Another key feature is that the algorithm’s re-
ward function is not additive with respect to rounds, unlike most bandit-setting
problems. Our first contribution is to propose an algorithm that has an asymptotic
regret bound of O(m~/T InT/n + m+/T In(mnT)), where n is the number of
agents, m is the number of items, and 7 is the time horizon. This is based on a
novel combination of bandit techniques and a resource allocation algorithm stud-
ied in the literature on competitive analysis. Our second contribution is to provide
the regret lower bound of £2(m+/T/n). When T is sufficiently larger than n, the
gap between the upper and lower bounds is a logarithmic factor of 7'.

Keywords: Fair allocation - Max-min fairness - Bandit feedback.

1 Introduction

In this paper, we introduce a new sequential decision-making problem, the bandit max-
min fair allocation (BMMFA) problem, in which some indivisible goods are divided
among some agents in a fair manner. The problem is motivated by a problem of design-
ing a subscription service as follows: the company rents items (e.g., clothes, watches,
cars, etc.) to users for a certain period, collects the items when the period ends, receives
feedback from users, and, based on that feedback, decides which items to rent to whom
in the next period. In such a service, the company would like to make all the users as
happy as possible. How can we ensure such a fair allocation?

This problem can be regarded as an online variant of the fair allocation problem,
which has been a central problem in algorithmic game theory. The classical settings of
the fair allocation problem [15] assume that the valuation of each agent for items is
known in advance. However, this is not necessarily the case in practice. In the above
subscription service, even agents may not recognize their own valuations until they
receive items. Therefore, this paper aims to maximize the agents’ utilities while learning
the valuations of agents through repeatedly allocating items.
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We briefly introduce the BMMFA problem. Let [n] = {1,...,n} be a set of n
agents with additive valuations, M be a set of m items and 7" be the time horizon. The
value of each agent i € [n] for each item e € M follows an unknown distribution D,
over [0, 1] with the expected value ji;e. For each round ¢ = 1,..., T, the value v}, of
agent ¢ with respect to an item e is sampled from D,. independently of the round ¢. We
denote by a matrix a € {0,1}"*™ an allocation of items to agents, where a;. = 1 if
and only if agent 7 receives item e. In each round, the algorithm decides an allocation
a' of M based only on the past feedback, and observes values v, only for (i, €) such
that a!, = 1. The utility of agent 7 obtained at round ¢ (denoted by X) is the sum of the
values for items which are allocated to agent 4, i.e., X} := Y ., vl al,. The utility of
agent ¢ at the end of round 7" is X; = 23:1 Xt

As a fairness notion, we adopt the max-min fairness, which is a prominent notion
in the fair allocation literature [24,3,15]. Then, the sequence of allocation a',...,aT is
said to be fair if the egalitarian social welfare, which is the smallest cumulative utility
among agents min;e,) X;, is maximized.

The performance of the algorithm is evaluated by an expected regret R, which is
the expected difference between the egalitarian social welfare of an optimal policy and
that of the algorithm. We assume that an optimal policy chooses a sequence of alloca-
tions z*, ..., 7 such that minepu 37—, Yo ps Hie!, is maximized. Therefore, the
expected regret R is explicitly defined to be

T
. : ; tot
RT =E zrg[lrrj Xz ng[lrl;l} ; eEZM VieTie

We have two features in the definition of the regret compared with most other bandit
problems: (a) an optimal policy knows all the expected values p;e = E [vf,] for all
(i,e) € [n] x M but may make different allocations across the 7" rounds, and (b) an
algorithm’s expected reward is E [min;e [, X;|, which is not additive with respect to
rounds.

To be more specific about (a), a naive definition of an optimal policy would be
choosing a fixed allocation Z that maximizes min;e |, ZtT:l > ecm MieTic. However,
this fixed-allocation policy may not be reasonable for our problem. To see this issue,
consider the case where m < n and all agents have value 1 for any items. Any fixed-
allocation policy has zero egalitarian social welfare since at least one agent receives
nothing in every round, while we can achieve positive value by allocating items de-
pending on the round.

For the point (b), min; X; is the fairness measure to be maximized. The problem
is that analyzing E [minie[n] X 1] is difficult if we naively use the existing bandit tech-
niques. Our model is similar to the combinatorial multi-armed bandit (CMAB) prob-
lems [18]. However, even in the most general setting of CMAB, the algorithm’s reward
is the sum of the per-round rewards (min;¢[,) X, ¥in our setting), and the optimal policy
selects a fixed action for all rounds. This implies that the CMAB framework does not
cover our setting.

Another similar allocation problem is studied in the context of competitive analy-
sis [22,31,26]. Roughly speaking, in each round, one item arrives and agents reveals
the values for the item, and then the algorithm decides who to receive the item so that
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the overall egalitarian social welfare is maximized. However, those resource allocation
problems assume that the full information (Ufe)ie[n],ee M are given at the beginning of
each round, whereas only semi-bandit feedback (v, ); ...t —1 is given at the end of each
round in BMMFA. An optimal policy is assumed to know the realization of all the item
values in advance, and the performance metrics are defined differently (see Appendix
A of the full version [27] for the detail). Therefore, the existing results do not carry to

our setting.

1.1 Our Contributions

In this paper, we first define a regret that is suitable for BMMFA. Next, we propose an
algorithm that achieves a regret bound of O(m+/T InT/n 4 m+/T In(mnT)) when T
is sufficiently large. In addition, we provide a lower bound of £2(m+/T'/n) on the regret.
The gap between these bounds is O(max{In 7", n\/In(mnT)}), which is a logarithmic
factor of T'. Although this paper mainly addresses the case of a known time horizon T,
we note that the same regret bound can be achieved even when 7' is unknown, by using
the well-known doubling trick [11]. In the following, we describe the techniques used
in the analysis of the regret upper and lower bounds.

Upper Bound Due to the features of our regret definition, it is hard to naively apply
the existing approaches. We propose an algorithm by combining techniques of regret
analysis and competitive analysis. For this, we employ an idea similar to the resource
allocation algorithm proposed in [22] in the context of competitive analysis. This is sim-
ilar to the multiplicative weight updated method [2]. To estimate the item values given
by the semi-bandit feedback, we incorporate upper confidence bounds (UCB) [32] on
(e for each (i, e), and adopt the error analysis used in [6] for the bandits with knapsacks
problem. Our algorithm simply allocates each item to an agent with the largest UCB,
discounted by a factor depending on the past allocations. However, the regret analysis is
challenging. If we directly analyze the regret, we need to connect the algorithm’s choice
(depending on UCBs) to the algorithm’s reward (in terms of p;,’s). This is not easy be-
cause the reward is non-additive and UCBs do not imply future item values. We bypass
this issue by introducing a surrogate regret, defined with expected item values. We show
that the original regret and the surrogate differ by at most O(m+v/T' InT), and the sur-
rogate regret has a bound of O(mv/T InT/n + m\/TIn(mnT) + mInT In(mnT)).
These facts imply an upper bound on R7. We remark that our algorithm runs in O(mn)
time per round.

By this analysis, the average egalitarian social welfare E [minie[n] X/ T] of our
algorithm achieves per-round fairness up to an additive error of o(1) when m is fixed.
Here, we refer to per-round fairness®as maximizing the expected minimum utility per
round through a stochastic allocation.

Lower Bound The proof of the lower bound primarily follows the standard method for
the multi-armed bandit (MAB) problem by [S5]. We first lower bound the regret by aver-
aging over a certain class of instances for BMMFA. Then, by using Pinsker’s inequality,

3 Alternative choices are maximizing the minimum expected ex-ante utility min;cp,) E [X;] or
using only deterministic allocations. In fact, the same guarantee holds for any choice.
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we reduce the problem of lower bounding the regret to computing the Kullback-Leibler
divergence of certain distributions. The main difference from the standard method for
MAB is that we “divide” the problem into m/n subproblems, each with n agents and
n items, by treating m /n as an integer. Intuitively, the lower bound £2(m+/T /n) arises
from the number of subproblems times the lower bound of §2(+/T') for each subprob-
lem. This idea of dividing the problem is similar to the proof of the lower bound for the
online combinatorial optimization problem [4].

Furthermore, our results are valid for variants of our setting. We will explain this in
Section 4.1 of the full version [27].

1.2 Relation to Multi-Player Bandits

The situation of multiple agents choosing items has been actively studied in the context
of multi—player bandits (MPB). In this problem, n agents repeatedly choose one of K
items (or arms). In the following, we explain the difference between MPB and BMMFA
from three perspectives.

The first difference is the correspondence between agents and items: in MPB, each
agent chooses exactly one item per round, and there may be items that are not chosen
by any agent. In BMMFA, on the other hand, each item is assigned to an agent, and
there may be agents who receive no items or multiple items.

The second difference is the objective function: most MPB studies aim to maximize
the sum of agents’ utilities and do not consider fairness among the agents. See a survey
[14] for details. However, some recent studies address the fairness issues [28,30,37,13].
These studies aim to maximize an objective function of the form Z?:l F((X})iem))»
where F((X});ejn)) represents a fairness measure at round ¢ (e.g. Nash social wel-
fare [37] or the minimum expected utility over agents [13]). With such objective func-
tions, the algorithm prioritizes per-round fairness rather than overall fairness. In fact,
this approach can hinder the achievement of overall fairness because the algorithm lacks
an incentive to eliminate the disparity in cumulative utility among agents*. On the other
hand, in our setting, even if a disparity in utility occurs during the learning process, the
algorithm adaptively allocates items to make an agent with small utility happier.

The third perspective involves the differences in the “optimal” policy used as a
benchmark for evaluating regret. In the context of bandit problems, including prior
studies addressing fairness among agents such as [28,13], the optimal policy typically
consists of repeatedly making a single fixed decision. In contrast, in BMMFA, the op-
timal policy can vary its allocation at each round. In other words, we assume a stronger
optimal policy than in similar problems.

These distinctions make it impossible to directly compare the challenges of BMMFA
with that of related problems.

# Consider an instance with two agents and two goods a and b. The value of a is 1 and that of
bis ¢ < 1 for both agents. Any sequence of allocations that gives one item for one agent
maximizes Zthl min;e(o) Xf. However, to maximize the minimum of cumulative utilities,
we need to assign a to either agent once per two rounds.
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1.3 Other Related Work

In the MAB problem, there are K arms, and the algorithm chooses one arm in each
round and receives a reward corresponding to the chosen arm. In recent years, there has
been research into how to choose an arm that satisfies a certain constraint representing
fairness. A commonly used constraint for fairness is that “the ratio of the number of
rounds each arm has been drawn to the number of rounds must be greater than a certain
value” [34,20,19,36]. In BMMFA, we can view an allocation as an arm. However, as
the above notion ignores the utility of agents, it is not suitable for our purpose.

There is a vast body of literature on online fair allocation in combinatorial opti-
mization and algorithmic game theory. Recent studies include problems with a fairness
notion such as envy-freeness [10], maximum Nash social welfare [7], p-mean wel-
fare [9,21]. They are just a few examples; see also a survey [1]. Offline sequential
allocation problems have also been studied [29,35]. In this context, the goal is to obtain
a sequence of allocations with both overall and per-round fairness guarantees.

The one-short, offline version of BMMFA has been studied in combinatorial op-
timization under the name of the Santa Clause problem [24,12,17,23,25]. The prob-
lem is NP-hard even to approximate within a factor of better than 1/2 [33]. [8] pro-
posed an Q(%)-approximation algorithm for a restricted case. [3] provided the
first polynomial-time approximation algorithm for the general problem and this was
improved by [25].

Finally, we note that BMMFA can also be viewed as a repeated two-player zero-sum
game [16]. Further details can be found in Appendix B of the full version [27].

2 Model

The bandit max-min fair allocation problem is represented by a quadruple ([n], M, T,
(Dic)ie[n),ecnr)> Where [n] == {1,...,n} is a set of n agents, M = {1,...,m}isa
set of m items, T is the time horizon, and D, is a probability distribution over [0, 1]
representing the value of agent ¢ for an item e. For each i € [n] and e € M, let p;,
be the expected value of D;.. Assume that [n], M and T are known in advance, while
(Die)ie[n],eEM is not.

Each allocation of items to agents is expressed as an n-row by m-column 0-1 matrix
a € {0,1}™*™, where a;e = 1 if and only if agent ¢ receives item e in the allocation.
Let A C {0,1}"*™ be a set of allocations, i.e.,

A= {a € {0, 1} Y,y aie = Lforallc € M}.

Foreachround ¢t = 1,...,T, let vfe be a random variable drawn from D,.. Note
that the random variables {v}, : i € [n],e € M,t = 1,...,T} are mutually indepen-
dent and are unknown to the algorithm in this step. In round ¢, the algorithm chooses an
allocation a' € A depending only on the previous allocations (as)z;ll and the feedback
obtained by the beginning of round ¢. Then, the algorithm receives semi-bandit feed-
back: the algorithm is given the values v?, for all (4, ) such that af, = 1. The reward
of an algorithm ALG is defined by

ot T t ot
ALG = minien) D2 g Deenr VieGie-
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The expected regret Rr is defined to be the expectation of the difference between
the egalitarian social welfares of an optimal policy and an algorithm. We assume that an
optimal policy takes a sequence of allocations x!, ..., z7 € {0,1}"*™ that maximizes
the egalitarian social welfare min;¢, Zt 1D eeM wiewt, with respect to the expected

values, i.e., min;ey thl > e Miexl,. Formally, we define

OPT = mlnze Zt 1 Zee]\/[ ie Z€7
Ry = [OPT — ALG].

For the regret analysis, we introduce surrogate values of OPT and ALG as

OPT, = min¢, Zt 12 eeM [ieThe,

ALG,, = min;ey thl > e ns Hielle
and a surrogate regret

R :=E[OPT, — ALG,].

In fact, RY. is not so far from Ry as the following lemma shows. The proof is found in
Lemma 1 of the full version [27].
Lemma 1. |Ry — RY.| = O(mvVTInT).
Furthermore, OPT , is upper bounded by the optimal value of the following LP:

maxp, 1 - P
s.t. P <> e HieTie (Vi € [n]),
D ieln) Tie = 1 (Ve € M),
0<z <1 (Vi € [n], Ve € M).

(LP)

Indeed, if we set &;, = Zt 12t /T (i € [n],e € M), then Z is a feasible solution
to (LP). Let (P*,z*) be an optlmal solution of (LP). We will see 7' - P* — E[ALG,,]
to obtain an upper bound on RY..

Note that (LP) can be interpreted as maximizing the minimum expected per-round
utility when a stochastic allocation is allowed. Since P* upper bounds the maximum
“expected minimum” per-round utility, bounding 7"- P* —E [ALG,] leads to per-round
fairness on average; see Remark 1.

In what follows, we assume P* > 0 because otherwise RY. = 0. Moreover, intu-
itively, if P* is sufficiently small, then a per-round utility > .,/ pieal, of any agent i
is not far less than P*, and hence ALG,, is also close to P*7T". Therefore, the difficulty
of our problem lies in the case when P* is large. This is a nature of max-min fair alloca-
tion problems. Indeed, existing results in [22,31] for competitive analysis also assume
that the offline optimal value is sufficiently large.

3 Algorithm

In this section, we describe an algorithm that has a regret bound of O(m+/T InT/n +
my/T In(mnT) + mInT In(mnT)). The regret bound will be shown in the next sec-
tion. The algorithm is based on the resource allocation algorithm in [22,31]. The brief
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description of (a multiple-item variant of) the algorithm is as follows. It is assumed that
the values v!, for all (7, €) are given at the beginning of each round. Let ¢ > 0 be a pa-
rameter, which will be set later. We denote by u! the cumulative utility of agent i at the
end of round ¢. In each round ¢, the algorithm chooses an allocation a? that maximizes
a total sum of utilities with respect to item values discounted with u;. More specifically,
a’ achieves maxae A Y i) cenr (1 — )i mat ay,.

Due to the feedback model, a direct application of the above resource allocation
algorithm is impossible in our setting. It is also not clear whether the existing result
carries to due to the different definition of OPT.

To address those issues, we estimate each value using an upper confidence bound
(UCB), and reconstruct the performance evaluation by incorporating the error analysis
used in [6].

Forv e Ry and N € Z,,letr(v,N) = \/Craq - v/N + Craa/N, where Cyaq is a
positive constant independent of v and N. For each round ¢ and (i,e) € [n] x M, we
define

v, = Die + (Dje, Nieyt) (1)

as a UCB of v{,, where N, is the number of rounds in which item e is assigned to
agent ¢ in the first ¢ — 1 rounds and ;. is the average of the V;. , samples of vfe. For

this setting of UCBs, the following useful result is known.

Theorem 1 ([6]). Let © be the average of N independent samples from a distribu-
tion over [0, 1] with expectation v. For each Craq > 0, it holds that Prllv — D] <
r(7,N) < 3r(v, N)] > 1 — e~ UCa), This holds even if Xi,...,Xn € [0,1] are
random variables, 1 = % Zf’zl X, is the sample average, and v = + Zi\’: JE[X |
X1y, X

We will set the constant Ci,q = ©@(In(mnT)). Then, by using the union bound, we
have

Hie € [@fe - I‘(@fe, Nie,t)7 @fe + r(@fev Nie-,t)]
for any (i,e) € [n] x M and round ¢ with probability at least 1 — +. We call this event
a clean execution [6] and denote it by £.

Our algorithm is summarized in Algorithm 1. We devote the first n rounds to collect
one sample of each item value. At the subsequent rounds ¢, assuming v/, as an estima-
tion of 1;, we choose an allocation a’ maximizing Zvﬁe[n],eeM(l — g)uf‘l/m@fe -at,.
We can obtain a easily just by allocating each item e to the agent with the largest
discounted UCB for e.

4 Regret Analysis

The goal of this section is to prove the following theorems, which provides an asymp-
totic guarantee on Ry.

Theorem 2. The regret R for Algorithm 1 is bounded as

52 7
Rr<m-+eW' +n-e om W'+ P* + O(err),
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Algorithm 1 Allocation algorithm
Parameter: ¢ € (0,1).
1: fort=1,...,ndo
2:  Assign all items to agent ¢ and receive values vl for each e € M.
3: end for
4: Set o™ asin (1) foreachi € [n] and e € M.
5
6
7

: Letuj = 0 foreachi € [n].
cfort=n+1,...,Tdo
Let a’ be an allocation a € A maximizing

Z Z (1- E)#uzilﬁfe - ie-

i€[n] e€M

8:  Receive values v}, for each (4, e) such that af, = 1.
9:  Setuf + ui"' + 3, Veal, foreachi € [n].
10:  Set /" accordingly as in (1).

11: end for

where W' = P*(T'—n), err = O(y/Craam?T+Craam InT') and Cyoq = O(In(mnT)).
IfT > e?* +n, by setting ¢ = In(T —n)/VT —n, we have Ry = O(mv/TInT/n +

err).
Weakening the assumption on 7" to 7' > n yields another regret bound.

Theorem 3. The regret Ry for Algorithm 1 is also bounded as

meT mlnn
+

Rr < + O(err).

IfT > n, by setting e = \/nlan/T, we have Ry = O(m+/T Inn/n + err).

By Lemma 1, we have Ry < R4+ O(mvT InT) = RY.+ O(err). Then, to prove
Theorems 2 and 3, it suffices to show the upper bound on the surrogate regret R..

First, we prove Theorem 2. As described before, R% < TP*—E[ALG u]- For each
agent 4, let X! be random variables representing the reward of the agent i at round ¢
with respect to the expected item values, i.e., X = >° ., ptica},. For notational con-
venience, let W’ = P*(T — n) and let ALG), = min ¢y S 41 X}. The following
simple calculations allow us to ignore regret in the first n rounds:

Ry < PPT —E [minie X7, 11 XY
= P*'n+ W' —E[ALG,| <m+W'-E[ALG)]. 2)
Then, in the rest of this section, we bound W’/ — E [ALG:J .

For each agent 7, let X} be a random variable representing the reward of the agent i
at round ¢ if values are replaced with their UCBs, i.e., X! =3, M ot at . In addition,

ee’

let ALG' = min;e iy, ZtT:n 41 X! be the total reward of Algorithm 1 after round n
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with respect to the UCBs. We first claim that E {ALG'} is not far from E [ALG/,] in
the follwing lemma. Let err i= E [ALG'| — E [ALGY,].

Lemma?2. err =E [ALG’} -k [ALGL] = O(/Craam?T + CragmInT).

The proof of Lemma 2 is similar to the proof of Lemma 5.6 in [6] and is given in
Lemma 2 of the full version [27]. Lemma 2 implies that we only need to evaluate

W' —E [ALG’} . We proceed based on the idea in [22,31].

By the union bound and Markov’s inequality, the probability that ALG’ is at most
(1—e)W'is

T
Pr | min Z X< —-ew
i€[n] Waoull
T
< Zprl d Xi< (1—5)W’]
1€[n] t=n+1
B T
i€[n]
< Z E [(1 — ) Ziznt Xf} /(1 — 5)7(173“/ . A3)
i€[n]

If the rightmost value in (3) is sufficiently small, then we can bound the regret by m +
O(eW’) with high probability. For s = n,n + 1,..., T, let us define ¢(s) as

B(s) = D (1—e)m Zimnn X (1 - 5P*)T—s'

m
i€[n]

We note that the rightmost value in (3) is equal to E[@(T')]/(1 — &)(1=e)W'/m
Lemma 3. In a clean execution of Algorithm 1, $(s) is monotone non-increasing in s.

Proof. Since the feasible region of (LP) is a subset of the convex hull of some inte-
gral allocations of M to [n], we can decompose x* as a convex combination of inte-
gral allocations y',..., 3" so that z* = Zje[k} Ajy?, where \; > 0 (V5 € [k]) and

Zje[k] A; = 1. We note that y',...,y" are not necessarily optimal solutions to (LP).
Then, fors =n+1,...,T — 1, letting o; = (1 — 5)% 2ient X:, we can see that
Bs+1) = a;-(L—g)mX . (1 Zpr)T !
1€[n] m
€ = S T—s—1
<Y an (- 2% (-5
i€[n] m m

9 *\ 73 T —s—1
<D i (1= —P) - (1- —P")

m
1€[n]



10 T. Harada et al.

Here, the first inequality holds by X *'/m € [0,1] and (1 — £)* < 1 — ex for any
x € ]0,1]. As for the second inequality,
Zie[n] Qg - Xisﬂ 2 Z?:l Aj Zie[n] D e @fjlyzje
= Zie[n] D eem @fjlee
holds for each i € [n] by the choice of a’ in line 7. Since we assume a clean execution,
it further holds that 3", ,, 05" 2l > 3. oy piewle > P*.

The proof of Lemma 3 requires a connection between a utility with respect to the UCBs
and an optimal policy. This task is made easier if we use the surrogate regret.

2w’

Lemma 4. &(n)/(1—&)=aW'/m <. o=,

Proof. By Lemma 3 and 1 — x < e~" for any x, we have

*\T—n ,
2(n) = Zie["]<1 - 5-) o e .
(1- 5)(17"7)‘” (1- 5)(1—5)%’ T (1- E)(l—s)‘%’

2w’ P
This is bounded by n - e~ Zm since m < e==="/2 for any € € [0,1).

Now we are ready to prove theorems.

Proof (Proof of Theorem 2). By applying Lemmas 3 and 4 to (3), we see that

ALG! ALG 1
E[&(T) | €] 1
- (1- 5)(176)W//m T

P(n) Lo w1

B (1_5)(1_5)W'/m +T <n-e +T'

This implies that
2w/
W —E [ALG’] <eW' 4 (n-e~ B + 1/T)W'
2w’
<eW' 4+ n-e zn W 4 P*. 4)
This together with (2) and Lemma 2 implies that

2w/
Rf}Sm—l—aW’—&-n-e_TVXW'—i—P*—I—O(err). ©)

Let T’ :== T —n (> e7*), and we set ¢ = 1\‘}%. Then it follows that eW’ + n -

E2 ’ * /
e~ W = PVT'InT' + nP*T' 2= 0T < p*/T'InT' + nP*. Therefore,
from (5), we finally see that

Ry <m+ P*VT'InT' +nP* + P* 4+ O(err) = O(ﬂ\/TlnT—F 67’7’).
n

This completes the proof of Theorem 2.
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Proof (Proof of Theorem 3). Leti* € arg min; Zz;n 41 X!. Under the clean execution
&, we have

(1— o) Sl X < 37 (1 ) Tl X

1€[n]

—B(T) < d(n) =n (1 = EP*>TH,

m

where the inequality follows from from Lemma 3. By taking the logarithm of both
sides, it follows that = 3> Xt In(1—¢) < (T'—n)In (1 e )—Hnn As we
have —x — 22 < In(1 — x) < —z for z < 1/2, we obtain

ep* A
e Z < —n) - — +Inn.
t n+1
Therefore, under the clean execution &, it follows that
—ALG =W Z Xt <e Z X+ lnn<—sT—|— " nn.
t=n-+1 t=n-+1
Since £ occurs with probability at least 1 — 1/7", we have
W —E [ALG’} —ET +7 " Inn + P*(T — n)/T. ©6)

Applying (6) to the proof of Theorem 2 instead of (4) yields Theorem 3.

Remark 1. We observe the outcome of Algorithm 1 almost achieves per-round fair-
ness on average across rounds. Here we mean per-round fairness by attaining the max-
imum expected minimum utility per round with a stochastic allocation, whose value

is bounded by P*. Indeed, by (4), we have P* — E |min;c, % Zthl X < P*—

+E [ALGH =P'(e+n-e” ST + 241) + O(4E), and this is o(1) under the as-
sumption of Theorem 2.

5 Lower Bound

In this section, we prove a lower bound on R; and Rr.

Theorem 4. For bandit max-min fair allocation problem with m > n, the surrogate
regret RY. of any algorithm is at least Q(m\T /n).

IfT > max{n,m?} > 2 and m/n > [2338InT] in addition, then the regret Ry
is also at least 2(mv/T /n).

We first prove this for any deterministic algorithm based on the idea of [5,4], and then
extend the proof to any randomized algorithm. In the following, we use ALG to denote
both an algorithm and its reward.
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Fix any deterministic algorithm. Let b be a positive integer and m = nb. We use
twoindex (j,k) (j =1,...,nand k = 1,...,b) to represent one item e. An item (7, k)
is called the j-th item in the k-th item block k. Then, we can write the set of allocations
as follows:

A={ae{0, 1}t 3 a; ;5 =1forVj,k}.

Similarly, we define the set of optimal allocations as follows:

* nxnxb . Zz i, 5,k = 1 fOI'Vj7]€
A {ae{O,l} i )

For any o € A*, j € [n] and k € [b], let I, ; 1, be the unique ¢ such that ¢; j ; = 1.

Now we design a hard instance for the problem. Let € € (0, 1) be a parameter. We
first choose o € A* arbitrarily and set a distribution D; ; . (of agent i for item (j, k)) to
be a Bernoulli distribution Ber (1/2 + e« j1). We refer to (Ber (1/2 + e j 1)) j.k
as a-adversary. Moreover, for each a € A* and k' € [b], we also define another
adversary called (oo — k')-adversary as follows: D, ;i = Ber(1/2) if £ = &/, and
D, ;r = Ber(1/2+¢€q; ;) otherwise. Note that for an allocation § € A*, the
(a — k')-adversary is the same as the (3 — k')-adversary if o; jr = [, for each
i € [n],j € [n] and k € [b] \ {k'}. When we use an a-adversary, for each agent i
and each item (j, k), we say that (4, j, k) is a correct assignment if o; j , = 1. We use
P, [-] and E,, [-] to denote the conditional probability and expectation when we choose
an c-adversary at first.

Let a* € A" be the most unfavorable adversary that minimize the reward. Let 14; ; 1
be the expected value of each D; j x. We denote No o = 3, ; ; i j ka5 ; - Then we
have

1
. t t
Eq- [ALG,] = E4- |min E Pig k@i x| < ” E E,. E i j ks j. g
t,j,k acA* t,i,7,k

b
1 €
= §bT+ 77’7,|.A*| Z Z Ea [Na,k]a )

k=1 acA*

where we substitute 11 j x = 3+¢€q; ;x in the last equality. Next, we show the following
lemma.

Lemma 5. Foreach0 < e <1/4, Ey [Ny ] <Ea—k [Nak] + 2enT/Ea—k [Nk

Proof. Let o € {0,1}"*" denote the feedback that the algorithm observes at round
t, i.e., the (j,k) entry of o is vj, ; , where 4’ is the agent who receives (j, k). In ad-
dition, for t = 1,...,T, we denote by S; = (c!,...,0t) € {0,1}"*** all feedback
observed up to round t. In the rest of the proof, we use the following notation on the
KL-divergence:

Pa—k [St}

K, = Z Po—k [St] In W,

StE{O,l}"XbXt
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t
K, = Z Po_k [Si] In M.

S, {0Tnxbxe Py [0?]S-1]

By the chain rule, we have K; = Zthl K. Since the algorithm is assumed to be
deterministic, we can treat N, j as a function f of S7. Then, the following holds:

Ea [Nak] = Ea—k [Na k] = Ea [f(ST)]—lE K [f(S7)]

3 SSr)(Ba 1] = Pos 1)
S A(50)(Pa [Sr] ~ Pack [S7))

St:P, [ST] >SPo_k [ST]

i Y (BalSt] - Pack[S1))

ST:Po[ST]|>Pa—r[ST]

= % Z [Py [S7] — Pa—r [ST] |
St

nT nT
< S V2Kr = —\2500 K ®)

where N, , == f(St), the first inequality is due to N, , < nT and the last inequality
is due to the Pinsker’s inequality. K, is computed as follows.

IN

IN

Claim. Fix any S;_1 and let P(S;_1) be the number of correct assignments (4, j, k)
in a' such that k" = k, ie, P(S;-1) = Y. ;_ @ijkal ;. Then, we have K| =
I 2 Ea i [P(Si-1)] .

The proof of the claim can be found in Claim 3 of the full version [27]. By applying the
claim to (8), it follows that

nT

Ea [Na,k} - Ea—k [Noc,k] S 7 1 — 52 ZEO[ k St 1)]

nT 1
= 5 — <
5\ Tz Bk [Nak] < 26nT'\/Bay [N s],

where the last inequality follows from the convexity of —In(1 —z) and 0 < e < 1/4.
This completes the proof.

By the definition of an (v — k)-adversary, we obtain

Z Ea—k [No/,k] = ' Z Z ]E()z—k [Noz,k]

aEA* BEA* a:(a—k)=(B—k)

:% Z Es_x Z Za;j,kai,j’k

peA* a:(a—k)=(B—k) t,i,j
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:% S Eaok D oab; Y. ik

BeEA* t,i,j a:(a—k)=(8—k)
1 *
= Z (nT - (n—1)!) = |A*|T.
T BeA*

By this result, Lemma 5 and the Cauchy-Schwartz inequality, it follows that
Yo Ea [Nak] < |AYT 4 2enT/|A*| - |A*|T

and then, ;%= S S oear Ea [Nak] < ebT (% + 25\/?). Note that OPT,, =
(1/2 + £)bT. By tuning £ = 1/(8+/T), we finally have the following lower bound:

OPT,, — E,- [ALG,,] > &bT (1 - % - zex/f> > 3—12b\/f =6 (%\/T) C)

By Yao’s principle, the lower bound also applies to randomized algorithms. This
concludes the proof of the first part of Theorem 4.

Lower Bound for Rt

Next we show a lower bound on Ryz. Under the assumptions 7' > max{n, m?} and
m/n > [23381InT', we claim that OPT,, is close enough to E [OPT], whose proof is
found in Lemma 6 of the full version [27].

Claim. OPT,, < E[OPT] + (35 — 135)bVT.

Since we can show that E,- [ALG] < $bT + AT 2221 Y acar Ba [Na,k] in a way
similar to (7), the lower bound by/T' /32 established in the first part of Theorem 4 is
also a lower bound of OPT,, — E[ALG]. This holds also for randomized algorithms.
Plugging the clam into (9), we finally see that E [OPT] — E,~ [ALG] > Tloob\/» =

e (% \/T) . Then we see that the second part of Theorem 4 holds.

6 Conclusion and Discussion

In this paper, we introduced the bandit max-min fair allocation problem. We have pro-
posed an algorithm with a regret bound of O(m~/T In T /n +m+/T In(mnT)) when T
is sufficiently large, and showed a lower bound £2(m+/T /n) on the regret. Thus, when
T is sufficiently large, the bounds matches up to a logarithmic factor of 7.

We remark that the regret bounds also apply to variations of our problem. One such
case is maximizing the minimum “expected” utility: ALGg = min; E {Zt’e uieage}
where the regret is defined as OPT,, — ALGg. In this setting, we have ALGg > ALG,,
and then similar proofs work to derive the same bounds.

For another, our algorithm works even when each agent’s bundle in each round must
satisfy a matroid constraint. We detail this in the full version [27].
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One future work is to close the gap between the upper and lower bounds on Rr.
An upper bound with a weaker assumption on 7" and a lower bound using E [OPT)]
directly are also open. Another potential future work is to extend the problem setting to
reflect practical situations. For example, in a subscription service, the rental period can
be different depending on situations. It would be possible to improve a regret if users let
us know what they probably dislike (i.e., item e with u;. being almost zero). We believe
that such an extension of the problem provides insight into real-world applications.
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