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Abstract. Offline reinforcement learning has become a powerful tool
for optimizing recommender systems by learning from logged user in-
teractions. However, existing methods rely on conservative exploration,
limiting their ability to discover diverse and high-reward content. This
paper introduces Bias-Reducing Aggressive Variance-Driven Exploration
(BRAVE), an uncertainty-aware exploration strategy that effectively bal-
ances exploration and exploitation while addressing data bias to some
extent in recommender systems. Unlike traditional offline RL methods
that penalize uncertainty, BRAVE leverages uncertainty as a positive
signal, guiding the agent toward underrepresented yet potentially high-
reward recommendations. We evaluate BRAVE on KuaiRec, KuaiRand,
and Yahoo datasets, demonstrating its effectiveness in prolonging user in-
teraction and identifying highly relevant items, leading to improved user
satisfaction. Moreover, BRAVE’s strong performance on biased datasets
underscores the potential of aggressive exploration in offline RL, pro-
viding a novel approach to breaking filter bubbles and reducing bias in
recommender systems.

Keywords: Recommender systems - Reinforcement learning - Uncer-
tainty - Data bias.

1 Introduction

Recommender systems are central to many digital platforms, from e-commerce to
entertainment, helping users discover content that aligns with their interests [12].
Despite their success, these systems often face challenges related to bias in the
data and limited exploration of diverse content. A key issue is the filter bubble
effect, where users are repeatedly exposed to similar content based on previ-
ous interactions, which can result in decreased long-term user satisfaction [10].
Therefore, improving recommendation systems requires overcoming biases and
ensuring that recommendations better reflect the true preferences of users.
Reinforcement Learning (RL) [1] trains agents to make sequential decisions
by maximizing cumulative rewards based on their interactions with the environ-
ment. In particular, offline RL has emerged as a powerful method for optimizing
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recommender systems. It leverages historical interaction data to learn effective
policies without the need for real-time user engagement, making it especially
advantageous in scenarios where gathering immediate feedback is costly or im-
practical. The primary objective of offline RL is to enhance long-term user sat-
isfaction by developing policies that effectively optimize user engagement and
retention over time. Model-based RL has emerged as a promising approach in
this field because of its sample efficiency [7]. By constructing a world model that
simulates user-item interactions based on historical data, model-based RL allows
the agent to predict the outcomes of different actions and plan accordingly. The
accuracy of the world model is critical, as it determines how well the agent can
generalize beyond the training data.

A significant challenge in offline RL for recommender systems is the bias
inherent in logged data [3], such as exposure and selection biases, which makes
it difficult to train models that accurately predict user preferences and evaluate
recommender systems reliably in offline settings. The sparsity of data, where
only a small fraction of possible user-item interactions are recorded, compounds
this challenge. Another challenge is extrapolation error for offline RL. To miti-
gate extrapolation error, many offline RL methods adopt conservative strategy.
They either constrains the policy to avoid selecting risky or out-of-distribution
actions (30,16, 6| or gives a pessimistic estimate of the Q-function to account
for uncertainty in the value of actions that have limited or no prior observa-
tions [29,17,15]. While this reduces extrapolation errors, it limits exploration,
which can reinforce existing biases, restrict recommendation diversity, and en-
hance the filter bubble effect. Notably, model-based offline RL has the potential
to reduce the need for conservative exploration. By improving the accuracy of
the world model, exploration can be more effectively guided, even in sparse or
biased datasets, allowing the system to better capture true user preferences and
promote diverse recommendations without relying on overly cautious strategies.

This paper introduces Bias-Reducing Aggressive Variance-Driven Exploration
(BRAVE), a model-based offline RL approach designed to enhance exploration
in recommender systems by leveraging uncertainty, which represents the confi-
dence in world model prediction outcomes. We show that uncertainty can serve
as a valuable signal to distinguish between user-item pairs likely to generate
positive feedback and those that are not. To leverage this insight, we propose
a refined reward function that integrates uncertainty to promote guided “ag-
gressive exploration”, directing the system to explore underutilized state-action
pairs with higher uncertainty, rather than relying on random exploration. Com-
pared to conventional conservative exploration strategies, aggressive exploration
prevents premature convergence on suboptimal solutions and promotes greater
diversity in recommendations, helping to break filter bubbles. Through extensive
experiments on three datasets, our results show that BRAVE significantly en-
hances cumulative rewards, interaction length, and single-round reward. These
findings demonstrate that our exploration strategy not only mitigates the biases
inherent in offline data but also improves recommendation quality, showcasing
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the potential of uncertainty-driven exploration to optimize recommender systems
and increase user satisfaction. The contributions of this paper are:

— We analyze the impact of data bias on user-item predictions and enhance
model robustness through uncertainty-based improvements for underrepre-
sented interactions.

— We introduce BRAVE, an exploration strategy that leverages uncertainty
to promote diverse recommendations, effectively breaking recommendation
loops and reducing bias.

— Extensive experiments demonstrate that BRAVE outperforms baseline meth-
ods, achieving higher cumulative rewards, longer interaction lengths, and
improved single-round rewards.

2 Related Work

Offline RL faces the challenge of extrapolation error, where policies may select
actions outside the data distribution, resulting in unreliable outcomes. To mit-
igate this issue, many offline RL methods adopt conservative strategies. These
strategies either constrain the policy to avoid risky or out-of-distribution ac-
tions [30, 16, 6] or provide pessimistic estimates of the Q-function to account for
uncertainty in actions with limited or no prior observations [29,17,15]. For ex-
ample, CQL [17] bounds the Q-function to avoid overestimation. BCQ [6] uses a
generative model to restrict the action space to actions observed in the dataset.
CRR [24] compares learned Q-values with observed ones, filtering out suboptimal
actions and reducing deviations from the dataset.

While model-free offline RL methods mainly focus on regularizing the learned
policy to prevent actions outside the observed data distribution, model-based of-
fline RL methods lie in improving the world model’s accuracy to ensure more
reliable decision-making from fixed datasets [13]. Meanwhile, a set of model-
based offline RL approaches still incorporate conservative strategies like penal-
izing out-of-distribution state-action pairs [28,27, 14]. For instance, MOPO [28]
penalizes rewards based on model uncertainty, helping to minimize the influence
of unreliable predictions. COMBO [27] regularizes the Q-function to penalize
actions that fall outside the distribution of the training data.

Numerous studies have explored offline RL in recommender systems (7, 4, 33,
31, 34]. Nonetheless, biases in logged data and extrapolation errors still remain
significant challenges in the domain of interactive recommendations [21, 3].

3 Method

3.1 Preliminaries

RL is a key area of artificial intelligence focused on developing optimal decision-
making policies through interaction with an environment, represented by the
Markov Decision Process (MDP) M = (S, A, T,r,v). Here, S is the state space,
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A is the action space, T' defines transition dynamics, r is the reward function,
and v € (0, 1) is the discount factor prioritizing immediate rewards. The goal is
to learn a policy 7(a|s) that maximizes the expected discounted return:

thr(st»at)] . (1)
t=0

Offline RL derives optimal policies from fixed datasets, D. = {(s,a,r,s')},
collected from prior policies, but faces challenges like distributional shift, re-
quiring effective generalization to unobserved states and actions. Model-based
offline RL uses learned models of the environment’s dynamics to simulate in-
teractions without real-time feedback. By estimating transition dynamics T and
reward function 7 from D,, it creates a new MDP, M = (S’,A,T,f,’y). While
data-efficient, this approach relies heavily on the model’s generalization capa-
bility; poor generalization can lead to suboptimal decision-making and hinder
real-world performance.

In recommendation tasks, an action a € A involves recommending an item i
to a user based on a recommendation policy. The reward function # := #(s,a)
captures user feedback on action a conditioned on the user’s state s. This feed-
back can manifest in various forms, such as whether the user clicks on the item
or the duration of engagement with content. The user state s € S reflects evolv-
ing preferences, but it is typically unobservable and must be inferred from past
interactions using a user model. We formalize the user model as:

J(’l‘r) == Eﬂ—yT

st41 = User(so, [a1, a2, - .., arq1], [F1, P2y« o oy Teg1])s (2)

where the User function estimates the state based on an initial state sg, a
sequence of historical actions [a1,as,...,a:], and their corresponding rewards
[f1,72,...,7++1]. The initial state sy can be initialized using demographic or
historical data, or randomly. In this framework, the transition dynamics T and
the reward function 7 are estimated from a static dataset D.. This enables the
formulation of MDP.

3.2 'World Model Study

In offline RL for recommender systems, it is crucial to construct a world model
that simulates user state transitions and predicts the reward for each poten-
tial user—item interaction. While user—item interaction matrices form the typical
training resource for such models, these matrices are frequently biased. Bias
arises when recommendation policies selectively expose only certain items to
users, yielding exposure bias, or when repeated exposure to popular items con-
fines users to filter bubbles that reduce diversity and ultimately reduce long-
term retention. Although a handful of unbiased datasets, such as Coat [22] and
Yahoo! [19], have been collected by randomizing item exposure, they tend to
be small and sparse, making them costly and less representative for large-scale
training. Consequently, a key question is how to harness the abundant but biased



Title Suppressed Due to Excessive Length 5

data effectively. Specifically, (1) how does the bias in partially observed matrices
degrade the accuracy of user—item score predictions in the world model, and (2)
how can we mitigate such bias in offline RL? To investigate these questions, we
leverage datasets KuaiRec (biased) [8] and KuaiRand (unbiased) [9], both from
the short video platform Kuaishou, to examine the impact of data bias on model
performance and potential strategies for debiasing design.

World Model. We use DeepFM [11] to predict user-item interaction scores
and generated user and item embeddings. Due to the partial observation of
the training interaction matrix, some users and items had significantly more
interaction logs than others, leading to an imbalance in prediction accuracy.
To mitigate this issue and incorporate uncertainty, we modeled the predicted
interaction scores ¢; with a Gaussian distribution [5]:

Gi ~ N(po(zi), 05 (), (3)

where pg(z;) is the predicted interaction score, and 03 (x;) represents the vari-
ance, capturing the uncertainty in the prediction. The world model is trained by
minimizing a negative log-likelihood loss function:

N

£0) = 53 (g~ mle) P + g lowode) ).

i=1 v

where N is the total number of observed interactions, y; is the ground truth
interaction score, pg(x;) and o3(z;) are the predicted score and variance for
sample x;, respectively.

By incorporating this uncertainty-aware training objective, the model not
only predicts accurate interaction scores for each user-item pair but also quan-
tifies its confidence through the predicted variances.

To further improve reliability, we adopt an ensemble of world models. The
final predictions for the scores are obtained by averaging the predicted scores
across the ensemble, while the variance for each sample z; is taken as the maxi-
mum value among the predicted variances from the ensemble:

1

il (m) (.. 200\ — 2(m) (..
M pg (wi),  og(wi) mznf?“)iMae (z:), (5)

NE

po(r;) =
m=1
where M is the number of models in the ensemble, and uém) (x;) and og(m)(
are the score and variance predictions from the m-th model, respectively.

;)

World Model Performance. We evaluate the ability of the trained world
model to differentiate between positive and negative items within the evaluation
matrix.
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Fig. 1. Distribution of predicted scores and variance for true positive and true negative
samples.

Differentiating Positive and Negative Samples. To assess the model’s perfor-
mance, we analyze the normalized predicted scores x; for both positive and neg-
ative samples. The score distributions for these categories across the KuaiRec
(biased) and KuaiRand (unbiased) datasets are shown in Figure 1(a). Our anal-
ysis reveals that the predicted scores for positive samples are skewed towards
higher values, indicating that the world model effectively captures user prefer-
ences:

po(x;|positive) > pg(z;|negative). (6)

Ezamining Uncertainty in Predictions. We also examine the model’s uncertainty
measure, specifically the predicted variance Ug (z;), for both positive and negative
samples. The distributions of these variances, illustrated in Figure 1(b), show
that positive samples tend to have higher variance than negative samples:

o4 (z;|positive) > o7 (x;|negative). (7)

This suggests that the model is more uncertain when predicting scores for posi-
tive samples. This phenomenon may arise because many user-item pairs in the
training data lack interactions or are associated with low watch times. As a re-
sult, the model becomes more confident in identifying negative samples, while
the limited number of positive samples during training leads to increased pre-
diction uncertainty. These findings imply that the uncertainty measure o3 (x;)
could be used as an additional signal to classify positive and negative samples,
beyond relying solely on the predicted scores.

The Effect of Biased Training Data on Uncertainty. We observe significant differ-
ences in the variance distributions between KuaiRec and KuaiRand. In KuaiRec,
the variance distribution for positive samples exhibits a heavy tail, indicating
that some positive samples are associated with substantially higher uncertainty.
In contrast, the distributions for positive and negative samples in KuaiRand are
more similar, with no heavy tail present. The discrepancy may arise from the
biased nature of KuaiRec, which predominantly includes items recommended
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based on personal preference analysis and popular items with high interaction
frequencies. This bias leads to fewer diverse examples of positive user-item inter-
actions in the training data, limiting the model’s ability to confidently predict
less common positive samples. Consequently, the lack of diverse training sam-
ples for positive interactions contributes to heightened uncertainty in the model’s
predictions, as evidenced by the heavy-tailed variance distribution in KuaiRec.

Because our analysis of datasets within recommendation systems is broadly
applicable, these phenomena still occur when the world model is altered, rather
than being incidental to a specific model.

3.3 Reward Enhancement

Building on the insights gained from the world model, we observed that the
variance generated for each sample reflects the model’s confidence in its predic-
tions and provides valuable information about the underlying data distribution.
Notably, potential positives tend to exhibit comparatively larger predicted un-
certainty than negatives. This characteristic is likely tied to both the sparsity
and the bias inherent in the training data, as well as domain-specific dynamics
in recommender systems.

Inspired by the findings, we propose an enhanced reward function that incor-
porates predicted variance to promote exploration in offline RL. The enhanced
reward function is defined as:

7(s,a) = 7(s,a) + AU(s, a), (8)

where 7(s,a) is the predicted reward from the world model, U(s, a) represents
the variance derived from the Gaussian prediction of the world model, capturing
the uncertainty associated with the sample and A is a scaling factor controlling
the contribution of the variance term. This function not only captures user pref-
erences through the predicted reward but also incentivizes the agent to explore
state-action pairs with higher uncertainty, which may reveal potential positives.

Exploration-Exploitation Balance and Bias Mitigation. The enhanced
reward function combines the predicted reward (7 (s, a)) with the variance-driven
term (AU), effectively balancing the exploitation of promising user preferences
with the exploration of uncertain, potentially positive interactions. By integrat-
ing both factors, the reward function focuses the RL agent’s attention on in-
teractions that not only exhibit strong indicators of user preference but also
hold the potential for discovery in regions of the state-action space marked by
uncertainty.

This design is effective for both biased and unbiased datasets, as the dis-
tribution of predicted variance for positive samples consistently shifts to the
right compared to that of negative samples. However, it is particularly impactful
for biased datasets, where frequently interacted or popular items dominate the
training data, reinforcing narrow recommendation loops. In such datasets, the
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distribution of predicted variance for positives not only shifts but also exhibits
a heavy tail—a distinct shape compared to that of negatives. This heavy-tailed
distribution provides a critical signal for distinguishing positives from negatives,
especially for underrepresented interactions. By leveraging this variance signal,
the enhanced reward function is expected to break the cycle of bias by guiding
the RL agent to explore diverse interactions, including those with high promise
but limited representation in the data. This approach ensures that the model
considers a broader range of interactions, promoting diversity and fairness in rec-
ommendations while still maintaining strong alignment with user preferences.

Learning Pipeline. In this paper, we adopt the experimental setup of DORL [7]
with our primary contribution being the redesign of the reward function informed
by our empirical study of the world model in recommender systems.

We employ DeepFM as the underlying model to estimate the user state s.
DeepFM predicts entries in the user-item interaction matrix as reward signals
7, while simultaneously generating user embeddings e,, and item embeddings e;.
The evolution of the user state is achieved by dynamically integrating recent
actions and their feedback, ensuring that the representation adapts to both im-
mediate user reactions and long-term behavioral trends. At timestamp ¢, the
updated user state sy is computed as:

t

1 .
St4+1 = N Z [eak @ 7"(5]“ ak))] ) (9)
k=t—N+1

where N denotes the number of most recent actions considered for the state up-
date. Here, e,, corresponds to the embedding of action aj, capturing its latent
features, while #(sg,ay) represents the predicted reward for action ag, condi-
tioned on the prior state s;. The operation @& combines the action embedding
with the predicted reward, yielding a unified representation that integrates user
feedback. Advantage Actor-Critic [20] (A2C) algorithm is adopted to train the
recommendation policy, leveraging its ability to model dynamic user preferences
and adapt to sequential decision-making.

3.4 Conservative Strategy vs. Aggressive Strategy

Exploration in model-based offline RL plays a crucial role in balancing the trade-
off between exploiting known high-reward actions and discovering new, poten-
tially optimal actions. In practice, most existing methods adopt conservative
exploration strategies, designed to mitigate risks associated with OOD actions.
However, we argue that aggressive exploration can be more suitable for rec-
ommendation systems due to their distinct dynamics, such as users’ desire for
diversity and tolerance for novelty.

Conservative strategies are widely used in high-stakes environments like
robotics, where trial-and-error can lead to catastrophic failures. Offline RL meth-
ods, whether model-based or model-free, tend to exhibit conservative behaviors.
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Model-free methods either constrains the policy to avoid selecting risky or out-
of-distribution actions or gives a pessimistic estimate of the Q-function. Model-
based offline RL methods learn from historical data, but the limited and unrep-
resentative nature of this data introduces uncertainty, leading many methods
to adopt pessimistic policies to avoid high-risk actions. For instance, MOPO
(Model-Based Offline Policy Optimization) employs a conservative reward func-
tion defined as:

7(s,a) = r(s,a) — A\U(s, a), (10)

where 7(s, a) is the predicted reward from the learned reward model and U(s, a)
represents the uncertainty of that prediction. This formulation penalizes actions
that lead to highly uncertain outcomes, ensuring that the policy remains within
the offline data distribution. MOPO has demonstrated effectiveness in domains
such as robotics, where safety and reliability are critical.

In recommender systems, many studies adopt the concept of penalizing un-
certainty from general offline RL algorithms. For example, Gao et al. proposed
the following reward function [7]:

7(s,a) =r(s,a) — A\yU(s,a) + AgPr(s), (11)
Similarly, Zhang et al. developed a refined reward function [32]:
#(s,a) = 7(s,a) x (1= U(s,a)) + ApPp, (12)

In both modified reward functions, uncertainty (U(s,a) or U(s,a)) is penalized,
although these works introduce entropy-based penalties Pg(s) to promote diver-
sity. These methods aim to increase diversity on one hand, while being reluctant
to abandon conservatism on the other, resulting in opposing effects.

Aggressive Exploration in Recommendation Systems. While conserva-
tive strategies are effective in high-risk domains like healthcare, autonomous
driving, and finance, such conservatism can be overly restrictive in recommender
systems. In recommender systems, where the cost of exploration is relatively low,
users actively seek diverse and novel content. A conservative approach that fo-
cuses primarily on exploiting past behaviors and known preferences often limits
the discovery of new and unexpected content, which can lead to stagnation and
reduced user engagement.

Several studies highlight the adverse effects of homogeneous recommenda-
tions. Specifically, users become dissatisfied when they are repeatedly exposed
to similar content, ultimately leading to decreased system usage and reduced sat-
isfaction [2]. Furthermore, recommending overly familiar items, while ensuring
relevance, fails to foster long-term engagement because users do not experience
novelty or serendipity [26]. Consequently, an exclusive reliance on conservative
strategies may hinder the system’s ability to discover optimal solutions within
unexplored areas of the content space. In contrast to previous methods, our ap-
proach embraces uncertainty rather than penalizing it, treating it as a signal to
encourage exploration. This is the core ingredient of our exploration strategy.



10 K. Shi et al.

Additionally, unlike methods that promote action diversity at the policy level,
our exploration is directly tied to the world model, leveraging the structure of
the offline data to guide exploration more effectively. By aligning exploration
with data-informed insights, our method enables the discovery of high-reward
actions that conservative strategies often overlook.

4 Experiments

4.1 Experimental Setup

In this study, we evaluate our proposed approach using three widely recognized
recommendation datasets: KuaiRec [8], which features a biased training set with
a fully observed evaluation matrix; KuaiRand [9], which consists of both unbiased
training and evaluation sets; and Yahoo [19], characterized by biased training
data with a randomly sampled evaluation set.

For our evaluation, we utilize three key metrics: Cumulative Reward (R ),
which represents the total rewards accumulated during an interaction session;
Interaction Length (Length), defined as the number of consecutive recommenda-
tions made before the termination of a user session; and Single-Round Reward
(Reach ), which reflects the average reward obtained from a single recommenda-
tion step. To simulate user interaction termination effectively, we implement a
quit mechanism consistent with methodologies employed in prior research [7, 32,
10]. This quit mechanism is easily triggered when the system repeatedly recom-
mends items from the same category to a user, reinforcing the need for diversity
in recommendations, as excessive familiarity of items can diminish user satisfac-
tion and engagement [2, 26].

We compare our method against a range of baseline approaches, includ-
ing bandit algorithms (e-Greedy and Upper Confidence Bound (UCB) [18]), as
well as model-free methods like SQN [25], BCQ [6], CQL [17], and CRR [24].
Additionally, we assess model-based offline RL techniques, including IPS [23],
MBPO [13], MOPO 28], and DORL [7]. Comprehensive details regarding the
datasets, implementation specifics, and baseline methodologies are available in
the supplementary materials.

4.2 Overall Performance

The experimental results are shown in Table 1, and the corresponding training
curves are presented in Figure 2.

In terms of cumulative reward, the most crucial performance metric that
reflects long-term user satisfaction and engagement, our approach significantly
outperforms all baseline methods across three datasets. Specificallyy, BRAVE
achieves a relative improvement of 38.2% over the best baseline on KuaiRec,
12.0% on KuaiRand and 3.90% on Yahoo.

For KuaiRec, both BRAVE and DORL achieve an interaction length above
26, while all other baselines fall below 17. Similarly, for KuaiRand, BRAVE and
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Fig. 2. Training curves for Rtra, Reach and Length.

DORL show approximately a 6% improvement in interaction length over other
methods. (In Yahoo, items are finely categorized, leading to very few overlaps.
This makes it challenging to trigger the quit mechanism in the experimental
setting. Thus, the maximum value we set for the interactive environment can
be easily reached across different methods.) Importantly, BRAVE outperforms
DORL in terms of single-round reward, with relative improvements of 24.3%
on KuaiRec, 12.9% on KuaiRand and 5.70% on Yahoo. These gains highlight
BRAVE’s ability to learn from logged data while uncovering users’ true prefer-
ences.

In addition, the performance of the five model-based offline RL approaches
(BRAVE, DORL, MBPO, MOPO, and IPS) is superior to that of model-free
methods and bandit methods for KuaiRec and KuaiRand. This may be at-
tributed to the sparsity of training data in recommender systems, where model-
based approaches can better leverage the limited interactions by using learned
models to simulate missing data. In contrast, model-free methods, which rely
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Fig. 3. Impact of hyperparameter A on Rira, Reach and Length.

Table 1. Performance comparison on datasets KuaiRec, KuaiRand and Yahoo. (The
best results are indicated in bold, and the second-best results are underlined.)

KuaiRec KuaiRand
Rira Reach Length Rira Reach Length
UCB 3.606 + 0.609  0.853 £+ 0.114 4.219 + 0.389 | 1.651 £ 0.152 0.372 4+ 0.028 4.431 £ 0.212
e-greedy| 3.515 £ 0.731 0.828 + 0.129 4.219 £+ 0.405 | 1.711 4+ 0.126  0.351 £ 0.025 4.880 £ 0.270
SQN 4.673 £ 1.215 0.913 + 0.055 5.111 £ 1.288 | 0.912 4+ 0.929 0.182 £+ 0.058 4.601 + 3.712
CRR | 4.163 £ 0.253 0.895 &+ 0.037 4.654 £+ 0.215 | 1.481 4+ 0.124 0.226 £+ 0.015  6.561 + 0.352
CQL 2.506 + 1.767  0.684 + 0.228  3.224 + 1.365 | 2.032 + 0.107 0.226 + 0.012  9.000 + 0.000
BCQ 2.123 + 0.081  0.708 £+ 0.027  3.000 + 0.000 | 0.852 + 0.052 0.425 + 0.016  2.005 + 0.071
MBPO | 12.043 £+ 1.312 0.770 £ 0.029 15.646 £+ 1.637 | 10.933 4+ 0.946 0.431 4+ 0.021 25.345 + 1.819
IPS 12.833 + 1.353 0.767 + 0.023 16.727 4+ 1.683 | 3.629 + 0.676  0.216 + 0.014 16.821 + 3.182
MOPO | 11.427 + 1.750 0.892 + 0.051 12.809 =+ 1.850 | 10.934 + 0.963 0.437 £ 0.019 25.002 + 1.891
DORL | 20.494 4+ 2.671 0.767 & 0.026 26.712 + 3.419 | 11.850 4 1.036 0.428 + 0.022 27.609 + 2.121
Ours |28.328 + 2.052 0.953 + 0.063 28.010 + 1.072(13.277 + 0.960 0.483 + 0.021 26.860 + 2.351

Yahoo
Rira Reach Length
UCB | 66.758 4+ 1.254  2.225 #+ 0.042 30.000 £ 0.000
e-greedy| 64.344 £ 1.291  2.145 +0.043  30.000 + 0.000
SQN | 57.727 £ 5.751  1.924 £ 0.192 30.000 + 0.000
CRR | 57.994 + 1.675 1.933 = 0.056 30.000 £ 0.000
CQL | 62.291 £ 3.347  2.076 £+ 0.112 30.000 + 0.000
BCQ | 61.739 £ 1.781  2.058 £ 0.059 30.000 £ 0.000
MBPO | 64.550 £+ 2.157  2.152 £+ 0.072 30.000 £ 0.000
IPS 57.850 & 1.796  1.928 4+ 0.060 30.000 £ 0.000
MOPO | 65.510 & 2.100  2.184 4 0.070 30.000 £ 0.000
DORL | 66.351 £+ 2.224  2.212 4+ 0.074 30.000 £ 0.000
Ours (69.360 + 1.362 2.338 + 0.0637 30.000 £+ 0.000

Methods

Methods

directly on the observed data, may struggle to generalize effectively from sparse
interactions.

4.3 Debiasing Ability

In Figure 2, we observe that the top-performing methods, including MOPO,
MBPO, DORL, BRAVE, and IPS, exhibit significant performance variation on
the biased KuaiRec dataset compared to the unbiased KuaiRand dataset. This
variation likely stems from their interaction with exposure bias. (Yahoo differs
from KuaiRec and KuaiRand by originating from a different platform and show-
ing minimal performance variation across all methods, suggesting it is easier to
learn from. Thus, we exclude it from the following discussion.)
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For KuaiRec, exposure bias is inherent, meaning that certain items are more
likely to be shown to users based on previous recommendations or popularity,
which creates a skewed distribution of item interactions. This leads to an over-
representation of certain items, resulting in a reduced diversity of interactions.
Methods such as BRAVE and DORL, which balance exploration and exploita-
tion—where DORL enhances policy entropy as outlined in Eq. 11—can explore
diverse options and break the recommendation loops caused by the exposure
bias. This can lead to significant improvements in interaction length by offering
a broader selection of items, which helps mitigate the filter bubble. In contrast,
interaction logs in KuaiRand are gathered by randomly inserting randomly se-
lected videos into users’ recommendation streams. This random exposure strat-
egy ensures unbiased interaction data. Since there is less skew in the interactions,
methods like BRAVE and DORL do not experience as much of an advantage
from their exploration strategies. The improvements are relatively smaller be-
cause there is already a good balance of diversity in the logged data.

This explains why performance differences between methods are more pro-
nounced in biased dataset KuaiRec but less significant in unbiased dataset
KuaiRand, highlighting the importance of how exploration and exploitation
strategies interact with data bias in recommendation systems.

4.4 Comparison among MOPO, MBPO and BRAVE

We compare three methods—MOPO, MBPO, and BRAVE—which all use the
same world model but differ in how they handle uncertainty: MOPO penalizes
uncertainty, MBPO ignores it, and BRAVE encourages it. On three datasets,
BRAVE significantly outperforms both MOPO and MBPO in terms of cumula-
tive reward, highlighting the potential of aggressive exploration strategies in rec-
ommendation systems. BRAVE achieves a larger interaction length (on KuaiRec
and KuaiRand) and higher single-round reward, which both account for its high-
est cumulative reward. The increased interaction length can be attributed to
BRAVE'’s ability to explore a wider range of item possibilities. This strategy is
particularly effective at breaking the filter bubble. In our experimental setup, this
exploration leads to improved user retention, as users are exposed to more diverse
items and engage with the platform for longer periods. The higher single-round
reward is due to BRAVE using uncertainty as an additional signal for distin-
guishing true positive and negative samples, improving prediction accuracy for
unseen items, as suggested in section 3.2.

In addition, MOPO, which employs a more conservative exploration strategy
by penalizing uncertainty, performs better than MBPO in terms of single-round
reward. This is likely because penalizing uncertainty helps improve the pre-
diction accuracy for items that occur more frequently in the training data. By
reducing the model’s exploration of uncertain states, MOPO effectively improves
the reliability of its recommendations for well-represented items in the training
set. However, this approach limits exploration of items that the model is less
confident about (i.e., unseen or infrequent items), which are typically the ones
that could diversify user experiences and break the filter bubble. Thus, MOPOQO’s
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conservative strategy often results in shorter interaction lengths compared to
MBPO.

4.5 Analysis of A Impact on Performance

As shown in Figure 3, the impact of the hyperparameter A, which controls the
contribution of variance (uncertainty) to the reward function, is analyzed on
both KuaiRec and KuaiRand environments. When A < 0, the system penalizes
uncertainty, following a more conservative exploration strategy. Conversely, A >
0 means employing an aggressive exploration strategy.

For the biased dataset KuaiRec, BRAVE shows substantial improvement
as A increases, reaching its peak at A = 0.2. It demonstrats the benefits of
aggressive exploration compared to the conservative approach. This results in
higher cumulative rewards and longer interaction lengths. On the other hand,
for KuaiRand (unbiased), the model’s performance shows less variation across
different A values, but the best performance is still achieved with aggressive
exploration at A = 0.02. Furthermore, a general upward trend in single-round
reward is observed with positive values of A, compared to negative values, across
both datasets. This highlights BRAVE’s ability to more effectively predict and
uncover users’ latent preferences, providing higher-quality recommendations in
dynamic interactive environments.

5 Conclusion

This paper introduced BRAVE, an aggressive exploration strategy for offline
RL in recommender systems. Inspired by the world model study, BRAVE incor-
porates uncertainty into the reward function to enhance the prediction of true
positive and negative items. Unlike prevalent conservative exploration strategies,
BRAVE enables a more effective balance between exploration and exploitation,
ultimately improving cumulative rewards. This exploration method encourages
the model to search for the global optimum, rather than being confined to the
recommendation loops created by the recommendation policy. Through exten-
sive experiments on datasets KuaiRec, KuaiRand and Yahoo, we demonstrated
that BRAVE outperforms baseline methods, uncovering true user preferences
and providing more diverse and relevant recommendations. BRAVE shows sig-
nificant potential for addressing the challenges of bias in offline RL and future
work will focus on refining the exploration strategies further and exploring real-
world applications of BRAVE.
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