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Abstract. Large Language Models (LLMs) aligned using Reinforcement
Learning from Human Feedback (RLHF) have shown remarkable genera-
tion abilities in numerous tasks. However, collecting high-quality human
preferences creates costly bottlenecks in practical deployments, and hence,
training data are often budgeted. In these scenarios, it is crucial to collect
training data (e.g., contexts, a pair of generations for each context, and a
preference indicating which generation is better) carefully, yet most of
the existing methods sample contexts uniformly at random from a given
collection. Given this, under the Bradley-Terry-Luce preference model
and with a small budget of training data, we show that uniform sampling
of contexts could lead to a policy (i.e., an aligned model) that suffers a
constant sub-optimality gap from the optimal policy. This highlights the
need for an adaptive context sampling strategy for effective alignment un-
der a small sample budget. To address this, we reformulate RLHF within
the contextual preference bandit framework, treating generations as ac-
tions, and give a nearly complete characterization of the sub-optimality
gap in terms of both lower and upper bounds. First, when the action
set is a d-dimensional hypercube and the number of samples is T , we
show an Ω(d/

√
T ) lower bound. Next, we propose an algorithm, Active

Preference Optimization (APO), that iteratively collects preferences for
the most uncertain contexts. We show that the sub-optimality gap of the
policy learned via APO matches the lower bound up to a log factor and
a non-linearity constant. Finally, we perform experiments on practical
datasets to validate APO’s efficacy over existing methods, establishing it
as a sample-efficient and cost-effective solution for LLM alignment.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has proven highly effec-
tive in aligning Large Language Models (LLMs) with human preferences [6,20,8].
This approach involves collecting extensive data, each comprising a context (e.g.,
a movie review), a pair of generations (e.g., completions of the review), and a
preference indicating which generation is better than the other. First, a reward
model is trained to classify preferred generations, and subsequently, a language



2 N. Das et al.

model policy is trained using RL (e.g., Proximal Policy Optimization [28]) to out-
put high-reward generations while minimizing divergence from a reference policy.
Given the practical success, recent theoretical advances have been made in train-
ing reward models as well as aligning policies from pairwise comparisons [26,5,32].
In these settings, the learner doesn’t have any control over selecting the contexts,
and the aim is to minimize cumulative loss or regret due to not knowing the
ground-truth reward or the optimal policy in advance. However, in the case of
aligning LLMs using RLHF, the learner has control over both the contexts and
actions, i.e., the contexts and generations for which preference data needs to
be collected, yet most of the existing RLHF algorithms pick contexts uniformly
at random from a given pool [29,20]. This is followed by first generating a pair
of responses for each sampled prompt based on a supervised fine-tuned (SFT)
policy and then sending all the pairs to a human labeler to collect preferences.

The success of RLHF hinges on the quality of human preferences. This could
create costly bottlenecks in practical deployments since high-quality preferences
are expensive to collect as this demands a certain level of expertise from labelers.
Hence, there is often a budget on the number of contexts and associated generation
pairs that could be sent to expert labelers for comparison. While uniform sampling
of contexts as a simple approach has been proven effective for aligning LLMs so
far, one is bound to ask whether this is a good enough strategy, especially given
a fixed budget for labeling. Or do we need potentially more involved sampling
strategies to deliver better model alignment under budget constraints? Such
algorithms need to be sample efficient as high-quality samples are expensive to
obtain, while they should not compromise on the performance of the aligned
policy. This work takes a step in developing theory and algorithms for RLHF
under a small sample budget.

1.1 Overview of Main Results

We first show that the naive way of collecting preferences by choosing contexts
uniformly at random can lead to wastage of samples under the Bradley-Terry-Luce
(BTL) preference model characterized by a finite dimensional parameter [3,15].

Result 1 (Constant sub-optimality under uniform context sampling)
There exists an instance of the alignment problem for which an algorithm that (i)
collects preferences by sampling contexts uniformly at random, (ii) learns a reward
model by maximizing likelihood of the preferred generations, and (iii) trains a
greedy policy w.r.t. the learnt reward model suffers an Ω(1) sub-optimality gap5

with high probability when the sample budget is smaller than number of contexts.

To the best of our knowledge, this is the first provable negative result for the
alignment performance of RLHF algorithms that sample contexts uniformly under
a small sample budget. This necessitates designing of RLHF algorithms that
adaptively sample contexts, with an aim to improve alignment of the learned policy
5 Measured by the maximum difference between latent rewards of the optimal policy

and the trained policy over the context set.
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with human preferences. Our next result benchmarks the alignment performance
of any RLHF algorithm under the BTL preference model when there is no
restriction on how contexts can be sampled.

Result 2 (Lower bound on sub-optimality for any sampling strategy)
For any RLHF algorithm there exists an instance of the alignment problem for
which the policy that the algorithm outputs after collecting T samples (contexts,
generations and preferences) would suffer a sub-optimality gap Ω

(
d/

√
T
)
, where

d is the dimension of the parameter characterizing the BTL model.

This is the first theoretical lower bound on the alignment performance of RLHF
algorithms, which has been crucially missing in the literature. This result effec-
tively eliminates the possibility of achieving better than sub-linear convergence
under a finite sample budget. Next, we propose an algorithm – Active Preference
Optimization (APO) – that achieves this sub-optimality gap by iteratively sampling
the most uncertain contexts and collecting preferences for their generation pairs.

Result 3 (Upper bound on sub-optimality for APO) The sub-optimality gap
of the policy learned via APO after collecting T samples scales as Õ

(
d
√
κ/T

)
with

high probability, where d is the parameter dimension and κ is a problem-dependent
nonlinearity constant.

Next, we generalize our result from parameterized BTL model to non-
parametric preference models with function approximation. We propose an
analogue of APO albeit with non-trivial modifications, namely APO-Gen, that
achieves a similar sub-optimality gap (see Subsection 4.2 and Appendix D). This
is the first known upper bound on the alignment performance of an active context
selection strategy under generic preference models, which recovers the result for
the parameterized BTL model as a special case.

Result 4 (Upper bound on sub-optimality under general preferences)
The sub-optimality gap of the policy learned via APO-Gen after collecting T samples
scales as Õ

(√
dE log(NT )/T

)
with high probability, where N and dE measure the

complexity of the underlying preference model.

Empirical evidence. For practical purposes, we propose a batch version of
APO to make it computationally more efficient (see Section 5). We experiment with
GPT-2 on IMDb sentiment dataset [16] and demonstrate significant improvement
in LLM alignment over uniform context sampling and prior baselines [18,19]. We
show similar improvement in the performance of the aligned policy on Anthropic-
HH dataset [2] with Gemma-2b. Our work contributes towards a sample-efficient
and practical solution to preference data collection for RLHF.

1.2 Comparison with Prior Work

Active learning in the context of Preference-based Reinforcement Learning
(PbRL) [26,5], which is used as a theoretical framework for RLHF, has re-
ceived some attention recently. In PbRL literature, the problem of learning the
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reward function by actively querying the human labeller has been considered
in [24,4,14,10,31]. The work [14] provides variance and entropy-based heuristics
for learning the optimal policy without providing any provable guarantee. On
the other hand, in [24], the authors design an algorithm for learning the reward
function by actively synthesizing trajectories via a volume removal scheme over
the distribution of the unknown parameter. They show that under certain strong
assumptions, their algorithm makes progress in reducing the uncertainty over the
parameter distribution. Similarly, [4] also aims at actively learning the reward
function using model epistemic uncertainty as well as the entropy estimate of
acquiring a data point but does not provide any provable guarantee. Hence,
both of these are orthogonal to our work since they consider learning the reward
function, whereas we focus on learning a policy - while learning a good reward
function is sufficient for learning a good policy, it is not at all necessary.

In [31], the authors propose a pure exploration strategy for the PbRL problem
that finds an ε-optimal policy with O(κ2d2/ε2) queries to the human labeler.

Instead of modeling RLHF as a PbRL problem, we model it as a contextual
dueling bandit problem, where contexts model prompts and actions model genera-
tions of an LLM. This necessitates a strategy for not only actively selecting actions
but also selecting contexts actively. This is a major point of departure from most
active-learning based PbRL works and from pure exploration in dueling bandits
literature [7,17]. It is unclear apriori what should be the optimal strategy to
select the context, towards which we show that a design-matrix-based exploration
bonus is sufficient (see Section 4). Moreover, a direct comparison shows that our
result (Theorem 3) is tighter in terms of κ. In [10], the authors consider an active
learning-based approach to regret minimization in the contextual dueling bandits.
Again, [10] does not address the question of context selection but rather allows
contexts to be adversarially presented to the learner, who only chooses action
given the context and whether to observe the labeler feedback.

Existing works closest to ours are [19,18], which also investigate the problem
of actively selecting prompts and generations for RLHF in LLMs. [19] proposes
an algorithm that actively selects contexts using a heuristic based on generation
uncertainty, but they do not give any theoretical guarantee for the proposed
method. [18] proves a sub-optimality gap bound for an active context selection
strategy that goes down sub-linearly with the number of samples. However, they
assume a strong restrictive condition on the preference model, which doesn’t hold
in general for the BTL model. We remove this restrictive assumption and provide
an improved guarantee (see Remark 2 for a detailed comparison).

2 Problem Setup

We have a set of contexts X and a set of possible actions per context A. To learn
using preference feedback, the agent selects x ∈ X and a, a′ ∈ A to present to
a human labeller, who then reveals a binary preference y that takes value 1 if
a wins over a′ and 0 otherwise. We assume that given (x, a, a′), y is sampled
from the Bradley-Terry-Luce (BTL) preference model [3,15] with r∗ as the latent
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(unknown) reward function, i.e.,

P [y=1|x, a, a′; r∗] = exp(r∗(x, a))

exp(r∗(x, a)) + exp(r∗(x, a′))
,

The goal of the agent is to first learn r∗ over T rounds of sequential interaction
with the labeller, collecting dataset D = (xs, as, a

′
s, ys)

T
s=1, and then employ the

learned reward to train a policy π : X → A, which will eventually fetch high
latent rewards r∗(x, π(x)).

In this work, we consider linear latent rewards r∗(x, a) = ϕ(x, a)⊤θ∗, where
θ∗ ∈ Rd is the unknown reward parameter, and ϕ : X ×A → Rd is some known
and fixed feature map. For instance, such a ϕ can be constructed by removing the
last layer of a pre-trained language model, and in that case, θ∗ corresponds to the
weights of the last layer. With this model, for any θ ∈ Rd, one can equivalently
write the probability of sampling ys = 1 given (xs, as, a

′
s) as

P [ys=1|xs, as, a
′
s; θ] = σ

(
(ϕ(xs, as)−ϕ(xs, a

′
s))

⊤θ
)
= σ(z⊤s θ) ,

where σ(w)= 1
1+e−w is the sigmoid function and zs = ϕ(xs, as)− ϕ(xs, a

′
s) is the

feature differenc of actions as and a′s for context xs.
With this, the latent reward parameter θ∗ is typically estimated by minimizing

the binary cross entropy loss (log-loss) [20], which is equivalent to maximum
likelihood estimation (MLE). Specifically, At round t, the MLE of θ∗ is computed
as θ̂t = argminθ∈Θ Lt(θ) using the preference dataset {(xs, as, a

′
s, ys)}t−1

s=1, where
log-loss Lt(θ) is given by

Lt(θ) = −
∑t−1

s=1
ys log(σ(z

⊤
s θ)) + (1− ys) log(1− σ(z⊤s θ)). (1)

The above optimization problem is convex if we let the constraint set Θ ⊂ Rd to
be convex, and hence can be solved using standard algorithms [9].

Performance Measure. Our goal is to learn a policy over the collected data
D, which has high rewards or, equivalently, low sub-optimality. Formally, the
sub-optimality gap of a policy πT trained on the dataset D is defined as

R(T )=maxx∈X maxa∈A {r∗(x, a)−r∗(x, πT (x))} . (2)

Here, our policy πT competes with the Condorcet winner for a given context –
an action that fetches a higher reward than all other actions. The sub-optimality
gap is the worst possible difference in rewards over the set of contexts. Prior
work [18] competes against the Borda winner – an action that fetches a higher
reward on average than another randomly chosen action – a weaker competitor
(the Condorcet winner is also the Borda winner but not the other way around).

Remark 1. To the best of our knowledge, common practical implementations of
the RLHF pipeline use the following method: (i) remove the top layer of the
LLM and convert it into an encoder, (ii) append a new linear layer on top of
it, and (iii) output the logit score. Hence, the linear reward assumption is not
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restrictive in the sense that we only train the linear layer, keeping the encoder
fixed. In practice, however, one needs to train the encoder, and hence, a more
general function class needs to be considered. To this end, we generalize this
setup to preference models with bounded class complexities, removing the need
for explicit linear reward models (see Section 4 and Appendix D for details).

3 Lower Bounds

We first illustrate the pitfall of a learner who samples contexts uniformly. We
characterize such a learner in preference-based learning/RLHF and then show that
such a learner can suffer a constant sub-optimality gap under budget constraints.

Definition 1 (Uniform Learner). Say an algorithm Alg samples T contexts
uniformly at random from a set X and for each context xt, picks two actions
at, a

′
t from a set A. For each chosen triplet (xt, at, a

′
t), Alg queries the preference

model parameterized by θ∗ and observes a stochastic preference yt∈{0, 1} between
the actions. Alg then solves an MLE on this data to obtain θ̂, and learns a greedy
policy with respect to θ̂. We call such an algorithm Alg a Uniform Learner.

Theorem 1 (Lower bound for uniform context sampling). There exists a
problem instance (X ,A, θ∗) for which the policy learnt by a Uniform Learner Alg
under the budget T ≪ |X | suffers Ω(1) sub-optimality gap with high probability.

Proof (Sketch). We show the result for d = 2 for simplicity. The main idea is to
divide the set of contexts into two groups—good and bad. Further, every context
has only two actions, a and a′. The good group has a large number of contexts,
so the uniform learner mostly samples contexts from this group. For all context
x in the good group, the feature difference ϕ(x, a) − ϕ(x, a′) = zg is the same.
For bad contexts, this feature difference is zb, such that ⟨zb, zg⟩ < 0. Finally, θ∗
is taken as the angle-bisector of zg and zb.

From this construction (Fig. 2 in Appendix A), we have that a gets a higher
reward for every context. Then, we show that the uniform learner only samples
context-actions corresponding to zg when the sample budget T is much smaller
than the number of contexts. Under this scenario, the MLE estimate of the
uniform learner correctly classifies the reward of a to be higher than that of a′ for
all the good contexts, but it wrongly classifies the rewards for the bad contexts.
Thus, for bad contexts, the uniform learner suffers a constant suboptimality gap.
Details are in Appendix A. ⊓⊔

Theorem 1 effectively shows that the uniform learner cannot make efficient
use of the sampling budget because its performance may not increase with an
increasing budget. Now, it is essential to characterize the limits of learning in this
setting. To this end, we prove a lower bound on the sub-optimality gap of any
algorithm with no restriction on how contexts and action pairs can be sampled.
Note that standard regret lower bounds for dueling [25] and logistic bandits [1]
are not applicable here because we bound the sub-optimality gap and not regret.
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Theorem 2 (Lower Bound for any sampling strategy). Let X be a finite
set of contexts, Θ = {− 1√

T
, 1√

T
}d, A = {− 1

2 ,
1
2}

d. Then, for any algorithm, there
exists a parameter θ∗∈Θ such that sub-optimality gap of a policy learnt by the
algorithm after collecting T samples satisfies6

Eθ∗ [R(T )] ≥ Ω
(
d/

√
T
)

.

Proof (Sketch). Without loss of generality, choose any x ∈ X . Let πT (x) denote
the action chosen by the policy learnt using T samples. Define the event Eθ,i =
{sign(πT,i(x)) ̸= sign(θi)}, for all i ∈ [d], where πT,i(x) and θi are the i-th
coordinates of πT (x) and the parameter θ ∈ Θ, respectively. Note that under the
event Eθ,i, the algorithm suffers a sub-optimality of 1√

T
for the i-th coordinate.

We need to lower bound the probability of this event. To this end, let θ′ ∈ Θ be
such that θ′i = −θi and θ′j = θj for j ̸= i. Note that Ec

θ,i = Eθ′,i. Therefore, from
Lemma 3 (Appendix B), we have, Pθ[Eθ,i] + Pθ′ [Eθ′,i] ≥ 1

2 exp(−DKL(Pθ,Pθ′)).
Next, we need an upper bound on DKL(Pθ,Pθ′). Using [12, Lemma 15.1] and

Taylor expansion of log-sigmoid, we obtain DKL(Pθ,Pθ′) ≤ 1
8Eθ

[∑T
t=1⟨zt, θ − θ′⟩2

]
,

where zt = at − a′t. Since zt ∈ [−1, 1]d, and θ, θ′ are equal in every coordinate
except the i-th one, we have, DKL(Pθ,Pθ′) ≤ 1

8

∑T
t=1 Eθ[(2zt,iθi)

2] ≤ 1
2 . Hence,

1

|Θ|
∑

θ∈Θ

∑d

i=1
Pθ[Eθ,i] ≥

d

4
exp(−1

2
) .

Therefore, there exists a θ∗ ∈ Θ such that
∑d

i=1 Pθ∗ [Eθ∗,i] ≥ d
4 exp(−

1
2 ). Finally,

it is easy to see that the expected sub-optimality gap is lower bounded by the
expected gap for context x. Hence, we have the following chain of inequalities:

Eθ∗ [R(T )] ≥ Eθ∗

[∑d

i=1
1[Eθ∗,i] · 2|θ∗i |

]
=

2√
T

∑d

i=1
Pθ∗ [Eθ∗,i] ≥

d exp(−1/2)

2
√
T

which completes the proof. Details are in Appendix B. ⊓⊔

To the best of our knowledge, Theorem 2 gives the first lower bound for general
active-learning algorithms, which was missing in prior work [18,19]. Now, the
immediate question is whether one can design an algorithm that learns a policy
whose sub-optimality gap matches this lower bound. In the next section, we
present an algorithm Active Preference Optimization (APO) that achieves this
up to log factors and an instance-dependent non-linear factor.

4 Our Approach: Active Preference Optimization

At each round t, APO (Algorithm 1) proceeds by computing the MLE estimate
θ̂t based on the data obtained in the past t− 1 steps (1). Based on θ̂t, our goal
6 Expectation is over the randomness of (x1, a1, a

′
1, y1, . . . , yT ) under hypothesis θ∗.
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Algorithm 1 APO: Active Preference Optimization
Require: Context set X , action set A, feature map ϕ : X × A → Rd, regularization

λ > 0, and failure probability δ ∈ (0, 1]. Initialize θ̂1 = 0.
1: for t = 1, . . . , T do
2: Choose the triplet (xt, at, a

′
t) using (3) and (5).

3: Observe preference feedback yt∼Ber
(
σ(z⊤t θ∗)

)
, where zt = ϕ(xt, at)− ϕ(xt, a

′
t).

4: Compute reward estimate θ̂t+1 that minimizes the constrained log-loss (1).
5: Compute (scaled) design matrix Ht+1(θ̂t+1) via (4).
6: Compute final policy πT (x) using (6).

is to maximize exploration. To do this, for a context x ∈ X , we compute the
uncertainty bt(x, a, a

′) for each action (a, a′) available for that context and choose
the one which maximizes this, i.e., we choose the pair

(at(x), a
′
t(x)) = argmax(a,a′)∈A×Abt(x, a, a

′), (3)

where bt(x, a, a
′) = ∥ϕ(x, a) − ϕ(x, a′)∥H−1

t (θ̂t)
and Ht(θ̂t) is a matrix that de-

scribes a confidence ellipsoid around the unknown reward parameter θ∗ after
t− 1 steps of data collection. For any θ ∈ Θ, this is defined as

Ht(θ)=∇2Lt(θ)+λId=
∑t−1

s=1
σ̇(z⊤s θ)zsz

⊤
s +λId , (4)

where zs = ϕ(xs, as)−ϕ(xs, a
′
s) is the feature difference for the triplet (xs, as, a

′
s).

Intuitively, the confidence ellipsoid keeps shrinking along whichever direction
(in Rd) we decide to explore. Thus, for a given context x, choosing the pair
(at(x), a

′
t(x)) maximally reduces the uncertainty among all other possible action

duels. However, our algorithm picks not only the action pair that maximizes
uncertainty but also the context that increases it the most, i.e.,

xt = argmaxx∈X bt(x, at(x), a
′
t(x)) . (5)

This is a crucial step in our approach that ensures that the uncertainty of the
reward function over all contexts decreases at a fast rate, which in turn ensures a
low sub-optimality gap. After T rounds, we define θT = 1

T

∑T
s=1 θ̂t as the average

of all the past parameter estimates. Our final policy πT for any context x ∈ X is
to play the action that maximizes the reward parameterized by θT , i.e.,

πT (x) = argmaxa∈A(x) r̂T (x, a) = argmaxa∈A(x) ϕ(x, a)
⊤θT . (6)

4.1 Suboptimality Gap of APO

We make the following assumption, which is standard in the literature [32,23].

Assumption 1 (Boundedness) (a) θ∗ lies in the set Θ = {θ ∈ Rd| ⟨1, θ⟩ =
0, ||θ|| ≤ S}. (b) Features are bounded, i.e., ||ϕ(x, a)|| ≤ 1, ∀ (x, a) ∈ X ×A.
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The condition ⟨1, θ⟩ = 0 ensures identifiability of θ∗. Now, we define a key
quantity that captures learning complexity under the BTL preference model:

κ = max
x∈X

max
a,a′∈A

max
θ∈Θ

1

σ̇(ϕ(x, a)⊤θ−ϕ(x, a′)⊤θ)
. (7)

This parameter κ specifies difficulty in learning via the worst-case non-linearity
in preference feedback. Note that we don’t need the knowledge of κ beforehand.
Next, we present the guarantee that our algorithm enjoys.

Theorem 3 (Sub-optimality gap of APO). Let δ ∈ (0, 1]. Under Assumption 1,
setting λ= 1

4S2(2+2S)2 and γ = O
(
S
√
d log (ST/d) + log (T/δ)

)
, the policy πT

returned by APO, with probability at least 1− δ, enjoys the suboptimality gap

R(T ) ≤ O

(
γ

√
S log

(
1 + (T/λκd)

)
κd/T

)
.

Comparison with lower bound and dependence on κ. Theorem 3 implies an
Õ
(
d
√
κ/T

)
upper bound on the sub-optimality gap of APO policy. This matches

the lower bound of Theorem 2 in parameter dimension d and number of samples
T , implying optimal scaling w.r.t. these two terms (up to a log factor). There
remains a gap in characterizing the optimal dependence on the non-linearity
parameter κ, which, in the worst-case, can be exponential in the parameter
norm S. In the logistic bandit literature, the state-of-the-art regret guarantee
is (almost) κ-independent - the dependence is only in terms independent of
T [27,13]. We believe the

√
κ dependence is unavoidable in the RLHF setting

as the sub-optimality gap is w.r.t. real-valued rewards r∗(x, a) = ϕ(x, a)⊤θ∗

instead of the sigmoid rewards σ(ϕ(x, a)⊤θ∗) in logistic bandits. Given this, we
conjecture that it could be possible to improve the lower bound of Theorem 2 to
Ω
(
d
√

κ/T
)
. We keep this as an interesting future direction.

Proof (Sketch). First, we quantify the error in estimating θ∗ in the following
lemma. This is obtained by using a novel inequality derived from the self-
concordance property of the sigmoid function (i.e., |σ̈| ≤ σ̇) and adapting the
arguments from [13]. Proof of this lemma is deferred to Appendix C.

Lemma 1 (Estimation error at round t). Let δ ∈ (0, 1]. Under the hypothesis
of Theorem 3, with probability ≥ 1− δ, for some universal constant C > 0,

∥θ∗−θ̂t∥Ht(θ̂t)
≤CS

3/2
√
d log (St/d) + log (t/δ) ,

where θ̂t is the estimated reward parameter that minimizes the constrained log-
loss (1) and Ht(θ̂t) is the (scaled) design matrix (4) at round t.

The proof of Theorem 3 proceeds by upper bounding the sub-optimality gap
for every context with the error in parameter estimation times an arm-dependent
quantity. Specifically, for context x, let zT (x) = ϕ(x, a∗(x))−ϕ(x, πT (x)) denotes
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the fetaure difference for the triplet (x, a∗(x), πT (x)), where a∗(x) is the optimal
action at context x. Then, from (2), the sub-optimality gap for context x can be
bounded as zT (x)

⊤θ∗≤zT (x)
⊤θ∗−zT (x)

⊤θT = 1
T

∑T
t=1zT (x)

⊤(θ∗−θ̂t). Here, the
first inequality is because ϕ(x, πT (x))

⊤θT ≥ ϕ(x, a∗(x))⊤θT , which follows from
definition of πT , and so zT (x)

⊤θT ≤ 0. Then, by Cauchy-Schwarz inequality, we
get zT (x)

⊤θ∗ ≤ 1
T

∑T
t=1∥zT (x)∥Ht(θ̂t)−1∥θ∗−θ̂t∥Ht(θ̂t)

.

Now, we apply Lemma 1 to upper bound ∥θ∗ − θ̂t∥Ht(θ̂t)
. Next, we note

that ∥zT (x)∥Ht(θ̂t)−1 ≤ ∥zt∥Ht(θ̂t)−1 by the design of our algorithm. To bound
this, consider the regularized sample covariance matrix of feature differences,
defined as Vt =

∑t−1
s=1 zsz

⊤
s + κλId. Compare this with Ht(θ), which scales each

rank-one component inside the sum by its variance given that the parameter is
θ (see Eq. 4). A key relation between these two matrices is that Ht(θ) ≽ Vt/κ.
Using this, we upper bound ∥zt∥Ht(θ̂t)−1 by

√
κ∥zt∥V −1

t
. Finally, applying Elliptic

Potential Lemma (Lemma 10) finishes the proof. Details are in Appendix C. ⊓⊔

Remark 2. To the best of our knowledge, [18] is the only work similar to ours with
theoretical guarantees. Therefore, we highlight in detail the major differences.
First, the algorithm design is entirely different as we choose both the actions for
any context by maximizing the exploration bonus bt(x, a, a

′), while [18] chooses
one action uniformly at random. This can be wasteful in practice as the choice
of the second action is equally crucial in preference-based learning. Further, the
context selection rule is entirely different. While we pick the context with the
highest exploration bonus (Eq. 5), [18] uses an uncertainty estimate calculated via
upper and lower confidence bounds of the rewards. Moreover, their suboptimality
gap scales linearly with κ, while our guarantee only scales as

√
κ.

Next, [18] competes against the Borda winner, while we do so against the
(stronger) Condorcet winner. Moreover, [18] assumes that the Borda function
g∗(x, a)=Ea′∼Unif(A)[σ(r

∗(x, a)−r∗(x, a′))] lie in the same function space as the
reward function r∗(x, a) = ⟨θ∗, ϕ(x, a)⟩. This assumption doesn’t hold in general
due to the non-linearity in σ and hence restricts the preference probabilities. The
assumption holds trivially if each ϕ(x, a) is a one-hot vector ex,a, but it pushes
θ∗ to |X | · |A| dimensions and blows up the suboptimality gap significantly. We
remove this restriction and provide the guarantee in dimension d ≪ |X | · |A|, by
crucially exploiting properties of the sigmoid function.

Remark 3 (Extension to Direct Preference Optimization (DPO)). Another pop-
ular alignment algorithm DPO [22] does not train a reward model separately,
rather it uses the log-probability rθ(x, a) = log πθ(a|x)− log πref(a|x) as the re-
ward, where θ ∈ Rd parameterizes the policy to be learnt. For example, Softmax
policies take the form πθ(a|x) ∝ exp(fθ(x, a)), where fθ is a differentiable func-
tion. Now if we assume fθ to be linear, then πθ becomes a log-linear policy, i.e.,
log πθ(a|x) ∝ ⟨θ, ϕ(x, a)⟩, which eventually makes rθ a (shifted) linear function.
Hence, one would be able to apply our proposed approach to learn the policy
parameter θ directly from the preference dataset D.
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4.2 Generalization Beyond BTL Model

In this section, we remove the assumption of the BTL preference model and
assume access to a non-parametric function class

F={f : X×A×A → [0, 1] : f(x, a, a′)+f(x, a′, a)=1} ,

where f(x, a, a′) denotes the probability that action a wins over action a′ (denoted
by a ≽ a′) given context x when the preference function is f , i.e., f(x, a, a′) =
P[a ≽ a′|x, f ]. Note that in this case, there is no latent reward model, and hence,
this is a strict generalization of the BTL model. Now, we assume that there is
a realizable f∗ ∈ F from which preferences are observed at each round t, i.e.
yt ∼ Ber(f∗(xt, at, a

′
t)). Further, we assume a Condorcet winner at each context

x ∈ X w.r.t. f∗, i.e. there is an action a∗(x) ∈ A such that f∗(x, a∗(x), a) ≥ 1/2
for all a ∈ A. Accordingly, the sub-optimality gap of policy πT is defined as

R(T ) = maxx∈X f∗(x, a∗(x), πT (x))− 1/2 .

In this setting, we propose a generalization of APO, namely, APO-Gen (Algorithm
3 in Appendix D). Similar to APO, it selects a context and a pair of actions at
each round by maximizing an uncertainty score that depends on the complexity
of the function class F . However, unlike APO, (a) at each round, it prunes out
sub-optimal actions for every context, and (b) after T rounds, the final policy is
to sample an action uniformly from the remaining near-optimal actions for each
context. APO-Gen enjoys the following guarantee (details, proof in Appendix D).

Theorem 4 (Suboptimality Gap of APO-Gen). Let δ ∈ (0, 1), and N (F) and
dE(F) be the covering number and Eluder dimension of F respectively. Then,
with probability ≥ 1− δ, the policy returned by APO-Gen enjoys sub-optimality gap

R(T ) ≤ Õ

(√
log(N (F)T/δ)dE(F)/T

)
,

For the BTL preference model, we have logN (F) = O(d log T ) and dE(F) =
O(κ2d log T ). Hence, we get an Õ(κd/

√
T ) sub-optimality gap for APO-Gen,

which is
√
κ factor loose than Theorem 3. This is because we crucially use

self-concordance of the sigmoid function in Theorem 3 to shave this extra
√
κ

factor. Nevertheless, this result is general enough to subsume other preference
models (e.g., Thurstone) beyond the BTL model.

5 Experiments

We first present a practical version of APO, which largely follows the former
with minor changes adapted for the computationally efficient implementation
required in large-scale experiments. Next, we present experimental results that
demonstrate the efficacy of APO over random sampling (hereafter denoted by
Random) and baselines [18,19]. Hyperparameter details are given in Appendix F.
The experiment code can be found here.

https://github.com/nirjhar-das/active-preference-optimization
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Algorithm 2 APO (Practical version)
Require: Context-generation pairsM={(x, a, a′)}, sample budget T , encoder ϕ, SFT

policy πSFT, log-loss L, batch size B, uncertainty regularizer λ>0, KL regularizer
β>0, learning rate η>0. Initialize V1 = λI, θ̂1 = 0,D = ∅.

1: for batch t = 1, . . . , ⌊T/B⌋ do
2: Set bt(x, a, a

′) = ∥ϕ(x, a)− ϕ(x, a′)∥
V −1
t

for each (x, a, a′) ∈M. Set Mt = ∅.
3: for j = 1, . . . , B do
4: Pick (xt,j , at,j , a

′
t,j) = argmax

(x,a,a′)∈M\Mt

bt(x, a, a
′); Observe preference yt,j .

5: Update Mt ←Mt ∪ {(xt,j , at,j , a
′
t,j)} and D ← D ∪ {(xt,j , at,j , a

′
t,j , yt,j)}.

6: Update θ̂t+1 ← Gradient-step(L, θ̂t,D, η).
7: Update Vt+1 ← Vt +

∑B
j=1 zt,jz

⊤
t,j , where zt,j = ϕ(xt,j , at,j)− ϕ(xt,j , a

′
t,j).

8: Set reward r̂T (x, a) = ϕ(x, a)⊤θ̂⌊T/B⌋+1∀(x, a) and policy πT ← PPO(πSFT, r̂T , β).

5.1 Practical Version of APO for RLHF

In this practical version of APO (Algorithm 2), we access preference data in
batches instead of being fully online. At the start of each batch t, we first
compute the uncertainty bt(x, a, a

′) of each triplet (x, a, a′) (Step 2). This is
similar to Algorithm 1 except that here we compute the norm w.r.t. the inverted
sample covariance matrix of feature differences V −1

t instead of Ht(θ̂t)
−1 (Step 7).

We do so since it is both compute and memory efficient for large scale experiments.
To maximize exploration, only those B triplets (x, a, a′) are sent for labeling in
a batch that have the highest uncertainty bt(x, a, a

′), and those are stored in a
buffer D. At the end of each batch t, we update the parameter estimate θ̂t via a
black-box gradient-descend-based algorithm (e.g. Adam [11]) on the log-loss (1)
over the dataset D. Finally, after the budget T is exhausted, we first learn an
estimate r̂T of the latent reward model r∗, and then align the policy via proximal
policy optimization (PPO) [28], which takes as input the SFT policy πSFT, the
learnt reward model r̂T and a KL-regularizer β, and returns πT .

5.2 Results on Controlled Sentiment Generation Task

In this experiment, we consider a user group that prefers positive sentiment
completions for movie reviews in the IMDb dataset [16]. The goal is to output
generations a that exhibit positive sentiment, catering to the user group’s prefer-
ences for a given context x. For controlled evaluation, we generate preference pairs
(a, a′) utilizing a pre-trained sentiment classifier where P(positive-sentiment |
x, a) > P(positive-sentiment | x, a′). We generate a total of 10000 preference
samples (x, a, a′) and use 4:1 train-test split. For the SFT policy, we fine-tune
GPT-2 [21] on preferred reviews from the train set (8000 samples) and use this
GPT-2 backbone for both reward learning and policy alignment.

For reward training, we adaptively select context and generation pairs
from the train set. We use the feature representation ϕ(x, a), and estimate the
uncertainty bt(x, a, a

′) for each (x, a, a′) in the train set and select top-B samples
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Fig. 1. Top Row: Controlled Sentiment Generation Task: Left: Evaluation
accuracy of trained reward model vs. no. of samples (in %) comparing APO with Random.
Middle: Sentiment score distribution of aligned policies trained on reward model
learned with APO and on Random’s highest accuracy reward model. Generations by
APO-trained reward is more shifted towards positive, showing better alignment than
Random. Right: Win rates of APO, AE-DPO [18] and APL [19] and Random against SFT
policy. APO outperforms AE-DPO, APL and Random by 72 : 62 : 56 : 54 win rate. Bottom
Row: Single-turn Dialogue Task: Left and 2nd Left: Evaluation accuracy of
trained reward model vs. no. of samples comparing APO with Random, when the number
of epochs is 5 (Left) and 20 (2nd Left). Evaluation accuracy of APO is higher than
the Random in both cases. 2nd Right: Reward distribution of APO-aligned, SFT and
Random-aligned policies for generations on prompts in the test dataset. Clearly, APO’s
alignment is better than Random. Right: Win rates of APO and Random aligned policies
against SFT policy. APO outperforms Random by 55 : 40 win rate.

to update the reward model. We repeat this process K times and return the final
trained reward model. We evaluate the performance of the trained reward model
against Random (where we select B samples randomly at every batch) on the test
set of 2000 samples. Figure 1 (Top Left) shows the result: evaluation accuracy of
the reward model learned by APO is much higher than the one learned via Random
even when APO’s sample budget is only 5% of the data and Random’s is 40%.

For policy alignment, we align the SFT policy with respective trained
reward models (via APO and Random) using PPO (step 8). To demonstrate the
effectiveness of adaptive sampling, we use the reward model trained on a sample
budget of only 10% for APO, while we use the highest accuracy reward model
(corresponding to 40% samples) for Random. Similar to [22], the generations of
aligned policies are evaluated against the ground truth reward r∗ for positive
sentiment, which is provided by the pre-trained sentiment classifier. From Figure 1
(Top Middle), it can be seen that the reward distribution of the generations of
APO -aligned policy achieves a higher density of positive sentiment compared to
that aligned by Random. Moreover, from Figure 1 (Top Right) it is evident that
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APO outperforms APL [19], AE-DPO [18] and Random in terms of win-rate against
the SFT policy demonstrating the efficiency of the proposed method.

5.3 Results on Single-turn Dialogue task

In this experiment, we use Anthropic-HH [2] preference dataset and instruction-
tuned Gemma-2b [30] language model. We collect all the contexts with single-turn
dialogues and split these into two sets in a 4:1 ratio. We put samples from the
larger collection into three buckets based on reward difference between chosen
and rejected responses using Mistral-7b reward model as latent reward r∗. These
buckets contain data points that are progressively easier to classify: (B1) reward
difference between −1 to 1, (B2) reward difference between 1 to 3 and (B3) reward
difference of more than 3. Out of these three buckets, we take 4500 samples from
(B1), 2500 from (B2), and 1000 from (B3) to carefully curate a collection of 8000
training samples. Such a collection (more samples taken from the buckets with
a smaller reward difference and fewer samples from the bucket with a larger
reward difference) highlights the importance of selecting prompts carefully to
obtain useful information during reward training – randomly sampling contexts
to collect feedback is more likely to hurt the performance in such a setting. For
the test set, we sample 2000 data points from the smaller collection set aside.

Reward Evaluation. We compare the reward models learnt by APO and
Random by computing the % of samples in the test set for which the models assign
higher reward to the chosen responses than to the rejected responses. We study
how this accuracy changes with the number of batches or epochs, keeping the
sample budget the same (Fig. 1 (Bottom Left) for 5 epochs and Fig. 1 (Bottom
2nd Left) for 20 epochs). We observe that APO always outperforms Random. We
also see that the reward accuracy increases with an increasing number of epochs
for a given sample budget. We show results by varying training samples till 4000
as we want to demonstrate the effectiveness of APO under budget constraint.

Win Rate. Based on reward models learnt by APO and Random, we fine tune
the SFT policy with PPO to obtain APO-policy and Random-policy respectively.
Then we generate responses for contexts in the test set using APO, Random, and
SFT policies, and get them evaluated by the Mistral-7b reward model. The
reward distributions of these three policies are shown in Fig. 1 (Bottom 2nd
right). It can be seen that APO has a higher density of positive rewards. Win rate
of APO-policy and Random-policy against SFT policy is shown in Fig. 1 (Bottom
Right), which shows that APO outperforms Random by a 55 : 40 win rate.

6 Conclusion

In this work, we studied whether sampling prompts uniformly at random from a
dataset to solicit feedback is sample efficient. We first showed that this method
can suffer a constant suboptimality gap when aligning a language model policy
with human preferences. Next, we characterized the sub-optimality gap lower
bound for any active-learning algorithm with sample budget T and problem

https://huggingface.co/Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback
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dimension d, showing it to be Ω(d/
√
T ). Then, we proposed an algorithm APO,

which actively samples prompts to achieve an Õ(d/
√
T ) sub-optimality gap. We

also extended the results of APO to general function approximation to better
capture modern-day RLHF training. Finally, we showed its efficacy over the
random-sampling baseline on practical datasets. Although APO’s sub-optimality
gap is minimax optimal in d and T , the optimal dependence on κ is unknown
and seems to be an interesting future work.
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