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Abstract. In this paper, we study unsupervised anomaly detection al-
gorithms that learn a neural network representation, i.e. regular patterns
of normal data, which anomalies are deviating from. Inspired by a similar
concept in engineering, we refer to our methodology as surrogate anomaly
detection. We formalize the concept of surrogate anomaly detection into
a set of axioms required for optimal surrogate models and propose a new
algorithm, named DEAN (Deep Ensemble ANomaly detection), designed
to fulfill these criteria. We evaluate DEAN on 121 benchmark datasets,
demonstrating its competitive performance against 19 existing methods,
as well as the scalability and reliability of our method.
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1 Introduction

Anomaly detection (AD) is a crucial subdomain of data analytics with countless
applications ranging from fraud detection [24] to health monitoring [10]. In all
of these domains, anomalies are rare, exceptional or interesting objects that are
highly deviating from the residual (regular) data [46]. Generally, anomaly detec-
tion can be approached in three primary ways: with extensive access to labeled
anomalies (supervised), with access to a limited number of labeled anomalies
(semi-supervised), or without labeled anomalies (unsupervised). In this paper,
we focus on unsupervised anomaly detection. This setting poses the unique chal-
lenge of identifying a wide range of anomalies without any predefined anomalous
patterns or examples to follow. At the same time, this approach is particularly
valuable in real-world scenarios, where obtaining labeled data may be costly or
impractical. Consequently, employing methods capable of detecting deviations
from a purely data-driven inferred notion of normality becomes essential.

To solve the task of unsupervised anomaly detection, various anomaly de-
tection algorithms have been proposed. Methods such as AnoGan [43] aim to
model the probability density distribution of normal samples and consider sam-
ples in low-density regions as abnormal. Other algorithms, like KNN [14], con-
sider samples that are further away in the variable space from other samples
as more anomalous. Approaches like Isolation Forests [39] measure how easily
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Fig. 1: Example of surrogate anomaly detection: Anomalies are detected by learn-
ing a representation that encodes the regular patterns of normal data and mea-
suring deviations from the expected behavior.

samples can be separated. Still, it can be shown that both of these alternative
approaches effectively model densities too [7,20].

While density estimation is an intuitive solution to anomaly detection, any
method based on this approach has two fundamental drawbacks. First, they do
not scale well to high-dimensional data, which is known as the curse of dimen-
sionality [3]. Second, there is usually no explicit modeling of the data-generating
process involved, which limits how well the method generalizes to new data.

In contrast to modeling complex density distributions for high dimensional
input data, we consider in this paper algorithms that learn low dimensional rep-
resentations as approximations of the underlying regular patterns in the data.
More specifically, we are inspired by surrogate models in engineering applica-
tions [33], where simple surrogate models are used to approximate more complex
or expensive processes. Similarly, we search for models that capture a pattern of
the underlying data-generating process instead of modeling the whole distribu-
tion, which we will subsequently refer to as surrogate anomaly detection models.
An illustrative toy example of such a model is shown in Figure 1.

Some existing algorithms can be considered instantiations of such surrogate
anomaly detection models. Autoencoder [53] and PCA-based anomaly detec-
tion [9] learns an identity function to compress regular data and measure the
deviation of anomalies as the reconstruction error. DeepSVDD [51] learns a rep-
resentation in which regular data can be modeled by mapping it to a lower
dimensional constant, where anomalies deviate highly from this constant value.
Because these algorithms don’t need to model the entire density distribution in
its original input space, they scale more effectively to high dimensional data [13].

However, these methods are not without limitations either. Unlike density es-
timation methods, the objective of training a surrogate is much less well-defined,
leading to an unlimited amount of options on how to create such a surrogate,
each with its own drawbacks. We exploit this variability to formalize the idea of
surrogate models into a blueprint for creating arbitrary surrogates. Within this
framework, we propose five axioms that an ideal surrogate model should satisfy.
Based on these, we suggest a new surrogate AD algorithm called DEAN, which,
to the best of our knowledge, is the first algorithm adhering to all of them.
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We evaluate our algorithm by following the procedure outlined in a recent
benchmark survey paper [21], comparing it against 19 competitors across 121
datasets. Our algorithm performs highly competitively, showing only minor per-
formance differences with the best non-surrogate competitors and outperforming
all other surrogate-based methods.

Our main contributions are: (1) the formulation of a general framework for
surrogate anomaly detection; (2) the establishment of guiding axioms for design-
ing optimal surrogate algorithms; and (3) the development and comprehensive
evaluation of a novel algorithm based on these principles.

To ensure the reproducibility of our results, our implementation, as well as
our appendices containing further details about our experiments, are publicly
available at github.com/KDD-OpenSource/DEAN.

2 Related Work

This section reviews related work with a focus on three key aspects: unsupervised
anomaly detection, emphasizing approaches that extract meaningful patterns,
ensemble methods, which, as discussed later, may enable the extraction of diverse
patterns, and surrogate models in a more general context.

2.1 Unsupervised Anomaly Detection

Anomaly detection in an unsupervised setting inherently faces the challenge of
defining a suitable objective without ground truth labels. A common suggestion
is to model the densities of normal, expected samples [46], under the assumption
that samples in low-density regions are less likely to be generated by the same
process as normal data, and are therefore more likely to be anomalies. However,
density estimation fundamentally suffers from the so called curse of dimension-
ality [3], which limits how well these algorithms work on high-dimensional data.

Instead of modeling the densities of normal samples, certain anomaly de-
tection methods extract a characteristic pattern that normal samples typically
satisfy and test, whether new samples conform to this pattern. Examples of
this are DeepSVDD [51], which tries to learn a representation in which every
sample is mapped close to a certain point, or reconstruction-based methods like
Autoencoder [53] and PCA [9], which try to learn a lower dimensional latent rep-
resentation, that captures all necessary information to reconstruct (only) normal
samples.

These anomaly detection algorithms are less affected by the curse of di-
mensionality, because latent patterns typically do not increase significantly in
complexity with additional features [13]. Still, these algorithms also have flaws.
DeepSVDD requires careful training or will simply not perform well [21], and
using reconstruction-based algorithms requires choosing a suitable size of the
latent space, which is difficult without feedback through labeled anomalies [42].
Thus, in this paper, we generalize such models and suggest an optimal approach
based on axioms that outline essential properties.

https://github.com/KDD-OpenSource/DEAN/blob/master/supplementary.pdf
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2.2 Ensemble Methods

Ensembles are a powerful method in machine learning [2]; techniques such as
bagging, boosting, and stacking are well-established for combining multiple sub-
models into a superior model. In supervised tasks, the availability of labels fa-
cilitates the coordination of submodels [11]. While there exist approaches to
mitigate this, for example with synthetic ground truth anomalies [18], in un-
supervised settings, the absence of labels complicates this process. Thus, many
unsupervised anomaly detection approaches simply aggregate the anomaly scores
produced by various algorithms [30]. This strategy takes advantage of the fact,
that errors made by diverse submodels tend not to be repeated across the entire
ensemble [8].

One effective approach is the use of homogeneous ensembles, which merge
many similar and simple submodels that, although weak individually, collectively
yield robust performance through a combination of specialization and diver-
sity [39,12]. Moreover, model-independent methods such as feature bagging [36]
can further enhance diversity by ensuring that submodels specialize in different
subsets of data dimensions, which can also improve explainability [29].

2.3 Surrogate Models

Surrogate models are simplified abstractions of more complex or computationally
expensive models [33]. In engineering, they are commonly employed when, for
example, physical simulations are too costly [45]. In machine learning, surrogates
have been used to approximate, accelerate, or explain other machine learning
models. This has been applied to uncertainty estimation [54], explainability (both
globally [44], and locally [50]), surrogate task-based models [57], and to accelerate
anomaly detection [16].

In contrast, we propose surrogate anomaly detection to directly learn an ap-
proximation of the regular patterns in the input data. This approach enables a
more reliable measurement of deviations compared to traditional density esti-
mation methods, particularly for complex, high-dimensional data.

3 Theory of Surrogate Anomaly Detection

In engineering applications, surrogate models are frequently employed when the
underlying processes are too complex to model directly. Similarly, when it comes
to anomaly detection, it may be impractical to model a complex distribution di-
rectly. Here, we define a surrogate as a model that approximately learns charac-
teristic patterns of normal samples and identifies anomalies through deviations
from these patterns.

This idea can be formalized by requiring that a learnable function f : Rd →
Rk approximates a target pattern g : Rd → Rk over the set X ⊂ Rd of normal
data samples:

f(x) ≈ g(x), ∀x ∈ X (1)
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For example, consider a dataset where each normal sample satisfies x0 = x1.
In this case, if we set f(x) = x0 and g(x) = x1, any significant discrepancy
between x0 and x1 would indicate an anomaly. In practice, f may be realized
by training a neural network to map high-dimensional input data to a lower-
dimensional latent space (with k ≪ d), where the underlying structure of nor-
mality is more apparent.

The target pattern g may be chosen in various ways. For instance, in an
autoencoder g is the identity function, i.e., gAE(x) = x. However, since suf-
ficiently expressive neural networks are universal function approximators [41],
there are no inherent restrictions on the choice of g; the only requirement is that
it represents a pattern that is largely invariant across normal samples.

To quantify the extent to which a sample x deviates from the learned pattern,
we can measure the difference between f(x) and g(x):

score(x) = ∥f(x)− g(x)∥ (2)

Since the goal is to ensure that normal samples conform to the learned pat-
tern, we can minimize the aggregate deviation over the training data Xtrain by
employing the loss function

L =
∑

x∈Xtrain

score(x) (3)

A critical observation is that while minimizing this loss drives f(x) closer to
g(x) for normal samples, it does not directly enforce a high anomaly score for
abnormal ones. Consequently, surrogate models may require additional mecha-
nisms to avoid trivial solutions, as discussed in [25].

In summary, Equations 2 and 3 provide a general framework for developing
surrogate anomaly detection algorithms. Although any function g consistent with
the definition may be used, its effectiveness in yielding a well-performing anomaly
detector may vary considerably.

3.1 Surrogate Axioms

To guide the selection of the pattern function g in our surrogate model, we pro-
pose five axioms that an optimal surrogate algorithm should satisfy. We assume
that a performance measure m(f) (e.g., AUC-ROC) exists, which evaluates how
well a model separates anomalies from normal samples.

First, note that the comparison in Equation 2 depends not only on the relative
deviation of f(x) from g(x), but also on the magnitude of ∥g(x)∥. If ∥g(x)∥
varies significantly across samples, this may unfairly bias their anomaly score
assignments.

Axiom 1 (Scale Consistency) The pattern function g should produce outputs
of similar scale for all inputs: ∀x1, x2 ∈ Rd it holds that ∥g(x1)∥ ≈ ∥g(x2)∥.
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An optimal surrogate must also yield similar results under identical training
conditions, ensuring that any observed performance is not a mere artifact of
random initialization.

Axiom 2 (Reliable Training Procedure) When learning to approximate g
multiple times under identical training conditions, the variance in performance
should be small. For learned instances f1, ..., fn it holds that V ar(m(fi)) ≤ δ2,
where the constant δ > 0 is as as small as possible.

It is also crucial to be robust against trivial solutions – functions that (locally)
minimize the loss L, yet have no ability to discern between normal and anomalous
samples – since such solutions render the model useless for anomaly detection.

Axiom 3 (Robustness to Trivial Solutions) There should be no trivial so-
lution ftrivial such that ∇L(ftrivial) = 0 and ftrivial(x) ≈ c for all x ∈ Rd and
some constant c ∈ Rk.

Hyperparameter selection poses a significant challenge in anomaly detec-
tion [15,59]. Thus, an optimal surrogate should exhibit stability under reason-
able variations in hyperparameters, that do not fundamentally alter the model’s
methodological design or learning dynamics.

Axiom 4 (Hyperparameter Invariance) For any two reasonable hyperpa-
rameter sets HA and HB, let fHA

and fHB
be the corresponding learned models.

Then the performance difference should be bounded as |m(fHA
)−m(fHB

)| ≤ η,
where η > 0 is chosen to be as small as possible.

Finally, because anomalies can be both complex and subtle, it is impera-
tive that the surrogate model possesses sufficient expressive power. The model
must be able to capture intricate patterns in the data, allowing it to accurately
distinguish between normal and anomalous behavior.

Axiom 5 (Complex Pattern Learning) The learnable function f needs to
be represented by a universal function approximator, capable of approximating
any continuous function g : Rd → Rk to arbitrary precision on subsets of Rd.

3.2 Axiom Compliance

Both of the most established deep anomaly detection paradigms that conform to
our surrogate definition exhibit significant deviations from the proposed axioms,
highlighting inherent limitations in their design.

Autoencoder: An Autoencoder [53] defines its surrogate usually via the
identity function gAE(x) = x, training a neural network to reconstruct its input
while enforcing a compression step to prevent the trivial layer-by-layer identity
mapping. However, this approach violates Axiom 4 because the latent dimension-
ality must be carefully chosen, which critically affects performance. Moreover,
autoencoders can converge to local minima – such as outputting the mean of



Unsupervised Surrogate Anomaly Detection 7

the training samples (violating Axiom 3) – and the lack of consistent scaling in
g results in biased anomaly scores (violating Axiom 1).

DeepSVDD: DeepSVDD [51] constructs its surrogate model using a con-
stant pattern function gSV DD(x) = c, where c is a predetermined constant, usu-
ally chosen as the mean output of the initialized network. To mitigate the risk
of learning a trivial constant prediction, the method suggests avoiding bounded
activation functions and removing the learnable shifts4 from each network layer.
Unfortunately, the latter restriction limits the network’s capacity to learn com-
plex patterns, thereby breaching either Axiom 3 or Axiom 5.

4 A Minimal Surrogate: The DEAN Model

Given that no surrogate known to us adheres to all aforementioned axioms, we
propose a novel deep learning-based approach. We observe that increased com-
plexity in the pattern function g often leads to arbitrary weighting of different
samples (Axiom 1) and intensifies challenges during training for the function f
that needs to be learned (Axioms 2 and 3). Thus, we advocate for selecting the
simplest possible function g that adequately identifies the essential data patterns.

Depending on the measure of complexity, one might consider g0(x) = 0 as
the simplest option. However, this surrogate violates Axiom 3 by introducing a
local minimum where every weight in the last layer becomes zero [51]. Although
such a minimum might not always be reached [27] or could be avoided using reg-
ularization, these strategies would, in turn, compromise our remaining axioms.
Instead, we propose gDEAN (x) = 1 and the surrogate generated by it. While
a local minimum may still occur via the learnable shifts in the final layer, it is
more manageable, as we demonstrate later (Section 4.2).

Thus, we train a neural network to output a constant value of 1. In accordance
with our framework, the loss and score functions are defined as

L =
∑

x∈Xtrain

∥f(x)− 1∥, score(x) = ∥f(x)− q∥ (4)

where
q =

1

∥Xtrain∥
∑

xT∈Xtrain

f(xT ) ≈ 1

This choice of q ensures that the distribution of normal samples is centered,
thereby improving the robustness of the anomaly score.

Since we only learn a one-dimensional pattern with this approach, the model
may, in the worst case, fix only one feature as a function of the remaining ones,
which can lead to an increased number of false negatives. While one might extend
g to a higher-dimensional constant vector g(x) = (1, 1, . . . , 1)T , this typically
results in significantly correlated outputs across the network’s features and may
violate Axiom 4. To address these challenges, we propose using an ensemble of
surrogates. Specifically, we combine many independently trained submodels with
4 We refer to the bias term of a neural network as "learnable shift" to reduce confusion.
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gDEAN into a more effective model F . An integer constant, denoted by power,
guides the aggregation of these models:

scoreF (x) =
1

∥F∥
∑
fi∈F

∥fi(x)− qi∥power (5)

where each qi is computed analogously to q. Owing to the simplicity of our
surrogate, training each neural network takes only seconds, thus allowing us to
combine a large number of submodels. The use of fully independent networks
facilitates parallelization, reduces the correlation among learned patterns, and
permits the application of ensemble methods such as feature bagging [36] to
further improve diversity and runtime consistency in high-dimensional settings.
Feature bagging additionally can ensure a constant number of features for each
submodel, resulting in a close-to-constant runtime for higher dimensional data.

We refer to this overall setup as DEAN (Deep Ensemble ANomaly detection).

4.1 DEAN Parameterization

In our instantiation of DEAN, we advocate for a diverse ensemble of simple and
efficient feedforward networks.

Network Architecture: We use a basic Multi-Layer Perceptron (MLP)
with only a few hidden layers. Hidden layers are constructed with bias terms
and use ReLU activations, while the output layer excludes a bias term and
employs a SELU activation to mitigate the risk of dead neurons.

Ensemble Structure: A large ensemble size allows specialization in a vari-
ety of different patterns. For high-dimensional datasets, feature bagging is used
to promote the diversity of submodels by training each on a random subset of
the available features. For datasets with few features, all of them may be used
to ensure critical correlations are captured.

Power Parameter: The power parameter allows controlling the sensitivity
of the aggregated anomaly score. A higher value accentuates significant devia-
tions in one model over multiple smaller deviations across models.

Training Configuration: A lower-than-standard learning rate is paired
with a relatively high batch size. This configuration not only stabilizes train-
ing but also encourages the network to converge towards local minima, which is
beneficial for ensemble diversity.

4.2 Axiom Compliance of DEAN

DEAN is designed to fulfill all of our surrogate axioms. Since g(x) = 1 for all x,
Axiom 1 (Scale Consistency) is satisfied. The compliance with Axioms 2 (Reliable
Training Procedure) and 4 (Hyperparameter Invariance) is best evaluated via
experimental comparisons (see Section 5.4). We now discuss the more challenging
Axioms 3 (Robustness to Trivial Solutions) and 5 (Complex Pattern Learning).
These are non-trivial because the meaningless function ftrivial(x) = 0 · x + 1
perfectly minimizes the DEAN loss and is independent of its input.
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Axiom 3: Given its ensemble structure, DEAN inherently mitigates triv-
ial solutions. In the event that they occur, their contribution to the ensemble
anomaly score is zero since ftrivial(x) = 1 for all x implies that ∥ftrivial(x)−q∥ =
0. Thus, with a sufficient number of submodels, the overall performance of DEAN
remains unaffected by any individual trivial solution.

Axiom 5: DeepSVDD addresses a similar issue of trivial solutions by re-
moving learnable shifts entirely [51]; however, this approach limits the network’s
capacity and violates Axiom 5. To still mitigate this risk, while preserving expres-
siveness, we remove learnable shifts only from the final layer. This adjustment
increases the complexity required to achieve a trivial solution, making it less
likely to be reached during training, while ensuring that the network retains the
ability to approximate any function (see Appendix B).

5 Experimental Evaluation

To experimentally evaluate our method, we refer to the protocol outlined in the
survey paper ADBench [21]. ADBench recommends 121 datasets (57 of which
are entirely uncorrelated) for benchmarking unsupervised anomaly detection al-
gorithms, as well as a set of baseline algorithms to compare against.

5.1 Experimental Setup

Following the approach of ADBench, we compare DEAN against a total of 19
state-of-the-art algorithms. This includes KNN [14], LOF [6], CBLOF [22], Isola-
tion Forest [39], PCA [9], DeepSVDD [51], OCSVM [5], LODA [47], HBOS [19],
COPOD [37], ECOD [38], SOD [34] and DAGMM [60]. In addition, we con-
sider a regular Autoencoder [53], as it is also a surrogate algorithm, as well as a
variational autoencoder [28] and a normalizing flow [49] as deep learning density-
based competitors. To further capture recent advances not originally considered
in ADBench, we also compare against NeuTral-AD [48] (which leverages con-
trastive learning), DTE [40] (based on diffusion models), and GOAD [4] (which
employs geometric transformations). In contrast to ADBench, all models are
trained on uncontaminated data (one-class setting).

For the parameterization of DEAN, we adhere to the guidelines proposed
in Section 4.1 in order to train an ensemble of 100 submodels for 50 epochs
each, using early stopping with a patience of 10 epochs. We adopt the following
specific hyperparameter choices: A feedforward neural network with three hidden
layers of 255 neurons each. A lower-than-standard learning rate of 0.0001 and
a rather high batch size of 512. Feature bagging with 200 random features per
model for datasets containing at least 200 features. A power parameter set to 9,
emphasizing pronounced deviations in anomaly detection. We consider variations
in ensemble size and other hyperparameters in Sections 5.3 and 5.4. Detailed
information regarding the implementation and parameterization of the compared
methods can be found in our code repository.
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5.2 Anomaly Detection Performance

Algorithm AUC-ROC (all) AUC-ROC (larger half of datasets)

DEAN
Autoencoder [53]
DeepSVDD [51]
PCA [9]

NF [49]
DTE [40]
GOAD [4]
DAGMM [60]
NeuTral [48]
VAE [28]
SOD [34]
OCSVM [5]
LOF [6]
LODA [47]
KNN [14]
IForest [39]
HBOS [19]
ECOD [38]
COPOD [37]
CBLOF [22]

Table 1: Distribution of AUC-ROC performance for all evaluated algorithms.
Deep learning models (blue) and shallow models (yellow) are differentiated by
surrogate status (squares for surrogates, triangles for non-surrogates). Mean and
median values are shown in green and purple, respectively.

Our primary performance evaluation metric is the Area Under the Receiver
Operating Characteristic (AUC-ROC). For additional insight, we provide a com-
plementary evaluation based on the Area Under the Precision-Recall Curve
(AUC-PR), alongside individual results for each dataset, in Appendix E and F.

A summarization of the observed AUC-ROC performance is given in Table 1.
Consistent with the results from ADBench, our analysis shows that no method
outperforms all others in a statistically significant manner across all datasets.
Our algorithm performs highly competitively when averaged across all datasets
and is only slightly outperformed by KNN and LOF. These competitors do not
scale well to the more challenging datasets. Thus, when only considering the
larger half of the datasets studied here, the median performance of DEAN is
higher than all competitors considered.

To further illustrate our findings and provide a concise ranking of perfor-
mance, we provide the critical difference diagrams in Figure 2. In these dia-
grams, a Friedman test [17] is used to determine if significant differences exist
between algorithm performances (measured in AUC-ROC), and algorithms with
no significant differences are connected using a Wilcoxon test [56]. We consider
p-values below p ≤ 5% after Bonferroni-Holm correction [26] to be significant.

Notably, DEAN performs significantly stronger than every other surrogate or
deep learning algorithm, with the exception of NeuTral (see Figure 2a). Similar to



Unsupervised Surrogate Anomaly Detection 11

ADBench, widely recognized shallow algorithms such as KNN, LOF, and CBLOF
remain strong competitors. Our algorithm outperforms CBLOF, but does not
quite achieve the same average rank as KNN and LOF. We attribute this outcome
to the fact that benchmark datasets are often low-dimensional, contain a large
number of samples, and exhibit anomalies that are relatively simple in nature.
This combination favors distance-based methods, as differences in local densities
are more pronounced; however, they may not capture the complexity encountered
in real-world applications. Moreover, the lazy learning paradigm intrinsic to
KNN and LOF, which necessitates the retention of training instances during
inference, is well known to scale badly to large, high-dimensional datasets [1].

For instance, when considering only the larger half of the datasets, DEAN
emerges as the best fit, outperforming every competitor (see Figure 2b). This per-
formance advantage, coupled with its scalability and robust learning framework,
makes DEAN particularly well suited for advanced tasks where the expressive
power of neural networks is needed without introducing unnecessary complexity.

4 6 8 10 12 14 16
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(a) Using all ADBench datasets.
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(b) Using only the larger half of datasets.

Fig. 2: Critical difference diagrams comparing the AUC-ROC performance. A
lower rank indicates better performance, while algorithms with no statistically
significant differences are connected by a horizontal line. DEAN is depicted in
green, other deep learning algorithms in blue.

5.3 Runtime and Ensemble Analysis

Figure 3 provides an overview of our runtime measurements and the impact of
using (larger) ensembles on the performance of deep learning-based surrogate
models. To this end, Figure 3a reports both the median and maximum runtimes
across datasets to account for the substantial variability in dataset sizes. All
experiments were conducted on a system running Ubuntu 22.04.3 LTS, powered
by an Intel® Xeon® w9-3495X processor with a base clock of approximately
3400 MHz and turbo boost frequencies up to around 4500 MHz and with 495 GB
of RAM available. The runtime measurements were obtained using single-core
execution for each algorithm to ensure a fair comparison.

As expected, deep learning methods generally exhibit longer runtimes, with
the DEAN ensemble showing a median runtime of approximately 15 minutes
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Fig. 3: (a) Overall runtime overview across all datasets; DEAN is depicted in
green, other deep learning algorithms in blue, and shallow algorithms in yellow.
(b) and (c) average AUC-ROC performance changes with varying ensemble size.

per dataset. Notably, for a DEAN ensemble comprising 100 submodels, this
corresponds to an average training time of less than 9 seconds per submodel.
However, it is important to emphasize that deep learning methods are particu-
larly well-suited for GPU acceleration, and DEAN, as an ensemble method of
independently optimized submodels, can be almost perfectly parallelized. Fur-
thermore, due to the use of feature bagging, the worst-case runtime scenario is
significantly mitigated, with most deep learning approaches requiring compara-
ble or even longer runtimes.

Naturally, the runtime is also rather sensitive to the number of submodels.
As illustrated in Figure 3b, while increasing the number of submodels improves
performance, the relationship is non-linear. Using only 13 submodels results in
an average performance that is merely 2% lower than that achieved with 100
submodels, yet it requires approximately 87% less training time. At the same
time, the continued performance improvement with additional submodels reflects
the high variance of the individual models used in DEAN, incentivized by the
simplicity of the submodels. In contrast, Figure 3c shows that ensembles based
on Autoencoder or DeepSVDD methods exhibit nearly constant performance,
likely due to their complex, less diverse submodel characteristics.

5.4 Evaluation of Axiom Compliance

Compliance with Axioms 2 and 4 is difficult to assess theoretically, therefore
we evaluate these properties experimentally on the same datasets. For Axiom 2,
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Figure 4 demonstrates that the repetition uncertainty of DEAN – calculated as
the standard deviation across 10 runs per datasets and then averaged – is lower
than that observed for other surrogate deep learning algorithms under identical
training conditions. For Axiom 4, we present DEAN’s performance when eval-
uated with modified hyperparameter sets. Since the average performances are
nearly equal, one may argue that the influence of such modifications is negligible.
This is also in stark contrast to DeepSVDD [21] and Autoencoder [35] behavior.

DeepSVDD AE DEAN
0%

1%

2%
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4%

σ
A
U
C
−
R
O
C

3.39%

2.33%

1.52%

Uncertainty through repetition: 1.52%

75% 76% 77% 78% 79% 80%
average AUC-ROC

DEAN
lr× 2

lr× 0.5
power+ 1
power− 1

batchsize× 0.5
epochs× 2

max_bag− 50
max_bag+ 50

layers+ 1
layers− 1

Uncertainty through hyperparameters: 1.58%

Fig. 4: Left: Repetition uncertainty for various surrogate algorithms, Right:
DEAN performance with varied hyperparameters and the resulting uncertainty.

6 Anomaly Detection Beyond Benchmarks

While DEAN reliably achieves competitive performance with an easy-to-configure
parameterization, real-world applications often demand flexibility beyond stan-
dard benchmarks. The simplicity of our submodels and the inherent ensemble
structure render DEAN highly adaptable.

For instance, the ensemble structure facilitates explainability via Shapley
values [29]; feature bagging helps mitigate the high computational cost of such
methods. In addition, the ensemble character natively supports a distributed
implementation through federated learning [55]. The ensemble also enables the
incorporation of secondary requirements, such as robustness against adversarial
attacks by pruning or reweighting less robust submodels [8]. The simplicity of
each submodel also permits modifications in the training procedure to incor-
porate additional information [31], such as in semi-supervised anomaly detec-
tion [52] or outlier exposure [23]. Moreover, employing different machine learning
models within the DEAN framework can yield lightweight variants suitable for
resource-constrained devices such as IoT systems [32].

To summarize, we see three major ways DEAN can be adapted: (1) altering
the selection of submodels, (2) adjusting the ensemble weighting, and (3) modi-
fying the submodel training procedure. As a proof-of-concept, we apply all three
adaptations for the task of fair anomaly detection [58] (see Appendix B).
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7 Conclusion

In this paper, we present the first systematic study of surrogate models for
anomaly detection and establish a comprehensive framework for constructing
such models from mathematical functions. We propose five axioms that any
optimal surrogate anomaly detection algorithm should satisfy and employ these
axioms to develop DEAN, a novel algorithm that meets all of them.

An extensive evaluation demonstrates that it not only performs competitively
– particularly excelling over other deep learning-based methods and alternative
surrogates – but also offers exceptional adaptability. In the future, we believe
that the axiomatic design of DEAN, based on an ensemble of simple submodels,
can furthermore facilitate straightforward modifications to enhance secondary
anomaly detection goals, like explainability, adversarial robustness, or fairness.
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