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Abstract. Cross-domain recommendation (CDR), which aims to al-
leviate the data sparsity problem in a single domain by integrating
complementary data from multiple domains, has become a practical
and challenging research direction. Although achieving promising per-
formance, we highlight two problems in existing CDR methods. 1) The
representation ability of existing ID-based item embedding is limited.
2) Knowledge transferability across different domains is often insuffi-
cient. To solve these problems, we propose a new cross-domain recom-
mendation method, termed Dual-Channel Heterogeneous Hyper Graph
Convolutional Network(DHHGCN), which primarily consists of two com-
ponents: the intra-domain channel layer and the inter-domain channel
layer. Concretely, within the intra-domain context, we introduce ad-
ditional item features and build heterogeneous hypergraphs to model
fine-grained high-order correlations, resulting in high-quality user and
item representations. In terms of the inter-domain, based on designed
similarity matrices, we construct hypergraphs and guide the network to
learn the relationships via hypergraph convolution, effectively transfer-
ring cross-domain knowledge. Last, an element-wise gating mechanism
is designed to integrate domain-specific knowledge with shared cross-
domain knowledge, enabling dual-target recommendations. Extensive ex-
periments demonstrate the superiority and effectiveness. Our code is
available on GitHub1.

Keywords: Data Mining · Cross-domain Recommendation · Heteroge-
neous Hypergraph · Hypergraph Convolutional Network.

1 Introduction

Cross-domain recommendation (CDR) alleviates data sparsity and cold start
issues by introducing multi-domain user interactions. Early CDR methods aim
to improve performance within a single domain by transferring knowledge from
a source domain to a target domain [39, 40]. However, unidirectional methods
are prone to accumulating noise in intermediate steps, leading to suboptimal
⋆ Co-first authors with equal contributions
1 https://github.com/suda-sklcc/DHHGCN
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learning. This has led to the development of dual-target CDR, reducing negative
transfer from the sparser domain to the richer one [36].

With the development of Graph Neural Networks (GNNs), many methods
have been applied to dual-target CDR. Traditional GNN-based CDR methods
can be categorized into two types: one constructs separate user-item interaction
graphs for each domain, and the other builds a unified interaction graph and
trains a shared model to serve all domains [40]. Although promising results are
achieved, there are two problems as follows. First, most models [23, 3] only con-
struct graph models based on user-item interactions, neglecting to model the
higher-order correlations of useful item attribute information. This limitation
prevents capturing the information propagation among multiple heterogeneous
nodes. Therefore, they fail to uncover fine-grained higher-order correlations be-
tween users and items, considering more information like the price of items.
Second, uneven data distribution leads to the problem of negative transfer dur-
ing cross-domain propagation [37, 38]. Consequently, most models struggle to
effectively transfer shared knowledge, resulting in an inability to appropriately
balance domain-specific features and shareable features.

Therefore, we highlight two key challenges: (1) How to model heterogeneous
attribute information of each domain and obtain fine-grained higher-order corre-
lations to mitigate the sparsity of ID-based single-feature embeddings. (2) How
to extract and transmit shareable heterogeneous information across domains to
ensure effective and sufficient knowledge transfer. To conquer these challenges,
we propose a new cross-domain recommendation method termed Dual-Channel
Heterogeneous Hypergraph Convolutional Network (DHHGCN) model. Specif-
ically, to tackle the first challenge, we first select reasonable item attributes as
the initial features of the nodes in the graph. Then, we construct heterogeneous
hypergraphs and a novel convolution method to learn node embeddings, em-
phasizing both intra-type and inter-type relationships. Moreover, to address the
second challenge, we propose a cross-domain hypergraph construction strategy
and an inter-domain convolution method with an element-wise gating mecha-
nism to aggregate embeddings from both intra- and inter-domain channels. The
contributions of this paper are summarized as follows:

– We propose DHHGCN, a dual-channel heterogeneous hypergraph convolu-
tional network that integrates heterogeneous attributes for cross-domain rec-
ommendation, capturing both domain-specific and shared knowledge.

– We design an inter-domain hypergraph convolution module to transfer share-
able information and introduce an element-wise gating mechanism to fuse
intra- and inter-domain features for dual-target recommendation.

– Extensive experiments and analyses on real-world datasets demonstrate the
superiority and effectiveness of our approaches.
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2 Related Work

2.1 Graph Neural Networks based CDR

Traditional recommendation systems [17, 18] have struggled with data sparsity
and the cold-start problem, leading to the development of CDR [30]. Conven-
tional methods have difficulty capturing user interest migration and model-
ing complex item relationships [14, 9]. Graph Neural Networks (GNNs) offer
a promising solution by effectively modeling graph-structured data and enabling
the exploration of higher-order relationships [4]. BiTGCF [16] utilizes Light-
GCN [8] to aggregate interaction information and introduces a feature trans-
fer layer to enhance graph encoders. DA-GCN [5] combines Recurrent Neural
Networks (RNNs) and GCNs for cross-domain sequential recommendation. Fur-
thermore, some studies have used GNNs to model rich interaction information.
ACDN [15] incorporates users’ aesthetic features into the CoNet to convey share-
able preferences. DDTCDR [13] integrates content information into CDR to
address data sparsity. However, most models only capture pairwise correlations,
leading to missed insights from higher-order interactions and associations among
heterogeneous information. Some models place overly strict dataset requirements
when modeling heterogeneous information, limiting their applicability.

2.2 Heterogeneous Graph and Hypergraph

Heterogeneous graphs allow for the modeling of various node and edge types, en-
abling the encoding of complex relationships among different entities[11, 24, 25].
TrineCDR [38] has proposed effective strategies for leveraging side information
in cross-domain setups. Hypergraphs enable the representation of richer rela-
tional data via hyperedges, allowing for the capture of higher-order interactions
between multiple nodes [21]. Zhou et al. [35] pioneered hypergraph learning
and Feng et al. [4] introduced hypergraph convolutional operations to effec-
tively handle complex relationships. Recently, hypergraphs have been applied
to recommendation tasks [29], such as the development of the multi-channel
hypergraph convolutional network MHCN [28] for social recommendation and
the dual-channel hypergraph convolutional network. H3Trans [26] employs a hi-
erarchical hypergraph network with dynamic item transfer and adaptive user
aggregation modules to enhance multi-domain recommendation performance.
Furthermore, heterogeneous hypergraphs can effectively represent multiple non-
pairwise relationships [22], and as a result, they have gradually been applied
in recommendation in recent years. BiPNet [31] and CoHHN [32] proposed a
heterogeneous hypergraph network to explore various kinds of information for
the session-based recommendation. However, heterogeneous hypergraph has not
been fully explored and utilized in cross-domain recommendation.
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Fig. 1. The heatmap of consumption differences for each user across different domains,
with group 1 in Beauty & Health and group 2 in Cloth & Sports. Darker colors indicate
larger differences, while lighter colors represent smaller differences.

3 Motivation and Framework

3.1 Motivation Study and Data Processing

We examine the Amazon, representative e-commerce dataset to identify suitable
item attributes for feature embedding. We reveal that price is significantly corre-
lated with user preferences. However, absolute price cannot determine whether it
is expensive or cheap [34]. Therefore, we categorize absolute prices into multiple
intervals based on item categories. The formula of the price level pi is as follows:

pi = round

(
ϕ(xi)− ϕ(xmin)

ϕ(xmax)− ϕ(xmin)
× ρ

)
, (1)

where round(∗) denotes the rounding operation, xi represents the absolute price
of an item, xmin and xmax represent the cheapest and the most expensive in each
category respectively, ρ is the total price level. The function ϕ(x) denotes the cu-
mulative distribution function of the logistic distribution. Although users exhibit
varying preferences across different item categories, they tend to demonstrate
consistency in their overall spending levels across various domains. Therefore, to
investigate this, we randomly select 100 users with purchase records in different
domains. By comparing their average spending levels, we can validate the ratio-
nale for incorporating price attributes. Fig. 1 shows that user spending is similar
across different domains, despite varying item prices. Comparative analysis re-
veals that the relationship between item prices and categories is important for
CDR. While price ranges vary within the same domain, recommendations based
on users’ overall spending can help bridge differences across categories and price
ranges, providing more personalized recommendations.

3.2 Overview of the Framework

This paper presents a Dual-Channel Heterogeneous Hypergraph Convolutional
Network (DHHGCN) for the dual-target CDR. As illustrated in Fig. 2. The
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Fig. 2. The framework of DHHGCN. The modeling approach for the intra-domain
channel layer is the same across all domains, so for simplicity, we use domain A as an
example in the model diagram and omit domain B.

framework consists of four main components: input layer, intra-domain channel
layer, inter-domain channel layer, and prediction layer. The input layer takes
in heterogeneous information as initial feature embeddings. In the intra-domain
channel layer, we construct user hypergraphs and item heterogeneous hyper-
graphs for each domain, we perform different types of convolution operations to
extract fine-grained domain-specific features. In the inter-domain channel layer,
we construct inter-domain user and item hypergraphs based on the similarity
matrix, respectively, we also implement a cross-domain graph convolution op-
eration and design an element-wise gating mechanism to enhance the flexibility
and accuracy of feature fusion. Finally, in the prediction layer, we provide rec-
ommendations for both domains based on the obtained node embedding repre-
sentations.

4 THE PROPOSED METHOD

4.1 Preliminary

Our goal is to enhance recommendation performance across two domains, A
and B. The overlapping users between the two domains are denoted as U =
{u1, u2, u3, . . . , um}, with m users. The items set for each domain are IA ={
IA1 , I

A
2 , I

A
3 , . . . , I

A
n

}
, IB =

{
IB1 , I

B
2 , I

B
3 , . . . , I

B
k

}
, where n and k represent the num-

ber of items in domain A and B, respectively. User-item interactions are repre-
sented by matrices RA ∈ {0, 1}m×n and RB ∈ {0, 1}m×k. H ∈ {0, 1}v× erepresent
the association matrix, the adjacency matrix is aij ∈ {0, 1}m×m, σ(∗) is the ac-
tivation function. The graph structures are as follows:
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Intra-Domain Graph: The user hypergraphs are denoted as GA
U
(
Vu, EA

)
and

GB
U
(
Vu, EB

)
. The item heterogeneous hypergraphs, represented as GA

I (Vt
A, Eτ

A)
and GB

I (Vt
B, Eτ

B), consist of different node and edge sets Vt and Eτ . There
are three types of nodes: items ID nodes(Vid), price nodes(Vp) and category
nodes(Vc); The six types of edges defined as Evi, Evp, Evc represent item, price
and category co-occurrence respectively, Epv represents price-attribute items, Epc
denotes price-attribute categories, Ecv indicates category-attribute items.

Inter-Domain Graph: GC
U (Vu, Eu), GC

I (Vi, Ei) represent the user and item
hypergraphs, respectively. The similarity matrices constructed for the user and
item hypergraphs are denoted as HSI and HSU. The degree matrices for the
vertices and edges are represented by DV ∈ Rv×v, DE ∈ Re×e.

4.2 The Intra-Domain Channel Layer:

We first construct intra-domain hypergraphs and heterogeneous hypergraphs for
users and items based on high-order similarity and co-occurrence relationships.
Then, we employ various convolution algorithms to improve information propa-
gation and feature learning. The intra-domain channel is built using domain A
as an example, as domains A and B are identical.

Hypergraph Construction. We first define co-occurrence and higher-order re-
lationships. In user-item interaction data, if both uj and uk interact with item Ii,
they are considered to have a co-occurrence relationship. Based on this, we con-
struct an adjacency matrix Hu = RA for users with co-occurrence relationships.
For higher-order relationships [10], we only select second-order correlations [7] to
avoid noise. Specifically, if uk connects uj and Ii, then uj is considered a higher-
order reachable user of Ii. We extract all such users as the hyperedge Ju (Ii).
The user hypergraph H̃u is computed as follows:

H̃u = Hu ×min
(
1,HT

u ×Hu

)
. (2)

Since hyperedges can contain multiple nodes, an excessive number of hy-
peredges may cause information redundancy. To address this, we propose a hy-
peredge sparsification process, retaining only highly similar users or items. The
importance of hyperedges is measured by their hyperdegree Du ∈ {0, 1}n×n,
thus we filter and prune based on their hyperdegree, removing hyperedges with
lower hyperdegree. We choose the mean degree x of Du as the threshold for
filtering redundant edges.

(Fu)ii =

{
1, if (Du)ii > x
0, otherwise. (3)

The final user hypergraph representation, derived from the co-occurrence
relationship-based association matrix Hu, is shown below, where || denotes the
concatenation operation.

HU = Hu∥H̃u × Fu. (4)
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We create a heterogeneous hypergraph for items using co-occurrence relation-
ships. This hypergraph has three types of nodes: item ID, price, and category
features, i.e., Vt = Vid∪Vp∪Vc; We design six types of edges to capture diverse
feature relationships, enabling a more comprehensive representation of user-item
associations. Evi models co-occurrence relationships, reflecting users’ preferred
item sets. Evp and Evc capture users’ price sensitivity across different price ranges.
Further, Epi and Epc represent items and categories within the same price range,
and Eci connects items in the same category. The final heterogeneous edge set is
Eτ = Evi ∪ Evp ∪ Evc ∪ Epi ∪ Epc ∪ Eci.

Hypergraph Convolution. Based on the constructed user hypergraph, we
adopt traditional hypergraph convolution [27] and incorporate a residual con-
nection mechanism to update node embeddings EU :

E
(ℓ+1)
U = σ

(
D−1

uv
HUDue

HT
UE

(ℓ)
U W(ℓ) +E

(ℓ))
U

)
, (5)

where W(ℓ) ∈ Rc(ℓ)×c(ℓ+1) denotes the shared parameters, c(ℓ) denotes the num-
ber of convolutional layers.

For item heterogeneous hypergraph convolution, we first group neighboring
nodes of the same type to aggregate relevant information for each node type,
thereby distinguishing the importance of nodes within a specific type. For any
node vi, we assume (Nt)i as the set of neighboring nodes of type t. Considering
that nodes of the same type carry homogeneous information, the intra-type
convolution aggregates information by performing a weighted summation of the
neighboring nodes (vt)j , resulting in the node embedding representation (et)i.

(et)i =
∑
j

exp
(
(vt)

⊤
i W(vt)j

)∑
(vt)j∈(Nt)i

exp
(
(vt)⊤i W(vt)j

) (vt)j , (6)

where W ∈ Rd×d is a learnable parameter used to evaluate the similarity between
nodes. Thus, the intra-type convolution yields the feature embedding represen-
tation Et = fa(Nt). Next, we designed an inter-type convolution to aggregate
relevant heterogeneous information from different types, enriching the feature
representation of item nodes from various perspectives. Specifically, we intro-
duce a gating mechanism to perform weighted integration of embeddings from
each type, adaptively assigning weights to each type. This allows the model to
adjust the information fusion method based on the importance of features from
each type. Formally,

O1 = σ
(
E′

t1 +W1Et2

)
, (7)

O2 = σ
(
E′

t1 +W2Et3

)
, (8)

E′
t1 = W3 (Et1∥Et2 ∥Et3) , (9)

where Wk∈1,2,3 are learnable parameters, t1, t2, t3 are there types of nodes.
The formula for updating node embedding based on neighboring nodes is
Ẽt = AtEt(t ∈ id, p, c). Additionally, a residual structure is applied to pre-
vent gradient explosion. We update three types of nodes through a two-type
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convolution, the final calculation formulas for their embedding representations
are given:

E(ℓ+1)
p = E(ℓ)

p +O1 ⊙E
(ℓ)
id +O2 ⊙E(ℓ)

c + Ẽ(ℓ)
p , (10)

E(ℓ+1)
c = E(ℓ)

c +O1 ⊙E
(ℓ)
id +O2 ⊙E(ℓ)

p + Ẽ(ℓ)
c , (11)

E
(ℓ+1)
id = σ

(
W(ℓ)E

(ℓ)
id +E

(ℓ)
id

)
+O1 ⊙E(ℓ)

p +O2 ⊙E(ℓ)
c + Ẽ

(ℓ)
id , (12)

where ⊙ denotes the element-wise product. In summary, the final embedding
representations for domain-specific items and users we obtained are EUA

EUB
,

EIA
, EIB

, and EIA
= EA

id, EIB
= EB

id.

4.3 The Inter-Domain Channel Layer:

CDR could use the similarity of user behavior and item attributes across do-
mains. Random walks, by iteratively traversing the graph, can naturally capture
high-order relational information. To this end, we propose a random walk-based
method to identify similar user/item pairs and construct cross-domain user and
item hypergraphs. Taking nodes u and v as an example, we perform multiple
random walks starting from these nodes. Two stopping count vectors, nu and
nv, record the number of random walks that terminate at each overlapping node.
The similarity s(u, v) is then calculated using cosine similarity as follows:

s(u, v) =
nT
u × nv

∥nu∥2 × ∥nv∥2
= n̂T

u n̂v. (13)

After normalization, to further enhance computational efficiency, we convert
the similarity matrix into a discrete similarity level matrix. This maps contin-
uous similarity values into discrete levels, enabling the model to dynamically
adjust node similarity weights. We employ two thresholds to minimize noise,
capture long-tail information, and enhance correlations between highly similar
nodes. This approach supports fine-grained feature learning and information
propagation in the graph convolutional network. Taking items in domain A as
an example, the final similarity matrix is as follows:

HA
SI =

0, if s(u, v) ≤ t1,
1, if t1 < s(u, v) < t2,
2, if s(u, v) ≥ t2.

(14)

Since the inter-domain similarity matrix connects nodes across both domains,
HA

SI = HSI =
(
HB

SI

)T indicates that the similarity matrices between domains
A and B are symmetric. We then apply an adaptive hypergraph convolutional
neural network on user hypergraph and item hypergraph, respectively:

P
(ℓ)
IA

= σ
(
D

−1/2

HA
SIe

HA
SID

−1/2

HA
SIv

E
(ℓ)
IB

)
. (15)
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The resulting embeddings PIA
represent the inter-domain item embeddings.

Finally, we design an element-wise gating mechanism to integrate feature repre-
sentations of users and items learned from intra and inter-channels. This mech-
anism assigns an adaptive weight to each feature element, enabling flexible and
efficient feature aggregation. Formally,

Ẽ
(ℓ+1)
IA

= GA
I ⊙E

(ℓ)
IA

+
(
1−GA

I
)
⊙P

(ℓ)
IA

, (16)

GA
I = σ

(
W1E

(ℓ)
IA

+W2P
(ℓ)
IA

)
, (17)

ẼIA = Ẽ1
IA

∥Ẽ2
IA

∥ . . . ∥Ẽℓ
IA

, (18)

where ℓ represents the number of neural network layers, GA
I is the element-wise

gating weight vector for item features, and W1 and W2 are weight matrices in
the gating mechanism, used to map item features into the gating space.

4.4 Prediction Layer:

Based on the final embedding representations of users and items obtained, we
utilize cosine similarity to calculate the likelihood R̃ij of user-item interactions
within each domain. Taking domain A as an example:

R̃A
ij =

(ẼUA
)i × (ẼIA

)j

∥ (ẼUA
)i ∥ (ẼIA

)j ∥
(19)

We select binary cross-entropy loss to optimize the model. The formula for
calculating the loss function is:

LA =
∑

UA
i ∈UA,IA

j ∈IA

RA
ij log R̂

A
ij + (1−RA

ij) log(1− R̂A
ij). (20)

Since the objective of our model is to simultaneously enhance the recommen-
dation performance in both domains, the overall loss function is composed of
the loss from domain A and the loss from domain B, as follows: L = LA + LB .

5 Experimental Settings

Datasets. This paper focuses on e-commerce platforms. Therefore, we utilize
datasets from real-world e-commerce platform2, which is widely used in CDR
model experiments and contains rich item attributes [1, 6, 16]. We construct pair-
wise combinations of the four datasets and identify shared users between each
domain pair for CDR scenario. We preprocess the data by treating ratings over 2
as positive samples and considering the rest as negative. We also filter out items
with fewer than 5 total interactions.
2 http://jmcauley.ucsd.edu/data/amazon/
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Evaluation Metrics. We employ the Leave-One-Out method [2, 7] for evalua-
tion. To assess the model’s performance, we select three widely used metrics [2,
7], namely Hit Rate (HR), Normalized Discounted Cumulative Gain (NDCG),
and Mean Reciprocal Rank (MRR). The prediction ranking cutoff is set to
topK = 5, 10.

Parameter Settings. We design key training strategies to improve model ef-
fectiveness and stability. The batch size is 100, the learning rate is 0.001, and
the number of epochs is 200. The model is a hypergraph convolutional neural
network with two layers and an embedding vector size of 128. The inter-domain
similarity matrix threshold values are 2 and 4. Additionally, we use the Adam
optimizer [12] to train the model and implement an early stopping mechanism
to prevent overfitting.

Comparison Methods. We select nine models for comparison with our model,
covering both single-domain and cross-domain recommendation approaches:

SDR: LightGCN [8] simplifies recommendation using graph networks. Co-
HHN [32] incorporates item attributes via hypergraph dual-channel aggregation.
BiPNet [31] introduces a dual-preference heterogeneous hypergraph network that
captures user price and interest preferences;

CDR: PPGN [33] integrates interaction information from multiple domains into
a joint graph and shares user features. DisenCDR [1] enhances CDR performance
by disentangling domain features. ETL [2] captures overlapping and domain-
specific attributes. II-HGCN [7] uses a hypergraph convolutional network for
intra-domain and inter-domain analysis to generate accurate embeddings. Tri-
CDR [19] leverages mixed behavioral sequences to capture global contexts, de-
signing a triple cross-domain attention and contrastive learning strategy for en-
hanced cross-domain knowledge transfer. CrossAug [20] introduces a novel data
augmentation method to effectively leverage interactions between domains.

6 Results and Analysis

6.1 RQ1: Performance Comparison

We conduct experiments on four datasets, evaluating model performance based
on HR, NDCG and MRR. As shown in Table 1, DHHGCN significantly out-
performs all comparative models. Notably, it achieves significant improvements
over single-domain models, demonstrating that our inter-domain channel effec-
tively aggregates shared information to enhance recommendations. Compared to
various CDR models, DHHGCN also surpasses the strongest baselines in each
group. The first set of experiments shows the most significant enhancements in
the MRR and NDCG metrics, with increases of up to 20.63% and 18.40%, respec-
tively. In the second set, performance on the clothing dataset shows even greater
gains, with some cases exceeding 50%. These results highlight the benefits of
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Table 1. Performance(%) results of two groups, in each group, the best results are
marked in bold and the second-best results are underlined.

Beauty & Health

Domain Beauty Health

topK topK = 5 topK = 10 topK = 5 topK = 10

Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR

Single-Domain Recommendation Methods

LightGCN 9.68 5.46 4.31 13.74 5.21 5.83 7.96 3.75 4.71 11.18 4.65 5.35
CoHHN 18.36 12.84 11.19 25.23 15.03 11.96 18.49 13.95 12.44 23.22 15.48 13.07
BiPNet 21.56 13.66 11.06 30.11 16.46 12.23 19.30 14.09 12.38 23.70 15.54 12.99

Cross-Domain Recommendation Methods

DisenCDR 10.43 7.04 5.92 16.06 8.87 6.69 13.06 9.12 7.82 18.84 11.09 8.73
Tri-CDR 22.18 18.77 15.93 37.42 22.02 17.28 20.54 13.73 11.50 27.48 15.97 12.42
CrossAug 22.18 15.70 13.57 31.02 16.61 14.39 23.32 16.61 14.39 30.94 19.06 15.40
PPGN 35.25 20.15 21.88 50.43 24.52 22.66 33.47 19.91 15.49 50.39 27.56 20.31
ETL 35.70 24.92 21.72 48.10 29.64 23.23 36.13 25.20 21.52 49.11 28.78 22.34

II-HGCN 36.82 25.44 21.91 50.98 29.80 23.53 36.70 25.50 21.82 48.91 29.51 23.49
DHHGCN 41.6130.1226.4353.1233.6027.8340.0528.4523.9151.3232.0626.62

Improve(%) 13.00 18.40 20.63 4.20 12.75 18.27 9.13 11.57 9.58 1.85 8.64 13.32
Cloth & Sports

Domain Cloth Sports

topK topK = 5 topK = 10 topK = 5 topK = 10

Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR

Single-Domain Recommendation Methods

LightGCN 2.80 1.21 1.59 4.06 1.52 1.81 6.28 2.75 3.65 9.57 3.39 3.94
CoHHN 10.25 7.07 6.03 14.00 6.53 8.28 8.12 5.73 5.05 11.19 6.73 5.41
BiPNet 23.67 15.12 12.27 33.67 17.54 13.24 10.38 6.11 4.79 16.38 8.05 5.60

Cross-Domain Recommendation Methods

DisenCDR 5.29 3.11 2.41 16.31 9.03 2.64 6.64 4.28 3.51 11.12 5.84 4.25
Tri-CDR 5.83 3.56 2.82 9.71 4.78 3.31 9.32 6.06 5.00 14.21 7.64 5.66
CrossAug 5.81 4.28 3.82 8.55 5.81 4.91 19.14 13.63 11.81 26.27 15.93 12.76
PPGN 10.35 3.04 4.71 10.76 5.41 6.72 10.12 4.59 5.94 18.58 6.03 8.91
ETL 24.91 18.00 18.93 35.15 21.19 20.11 29.38 21.47 19.15 39.36 24.71 20.46

II-HGCN 13.12 9.35 8.07 19.09 11.17 8.83 23.47 16.24 13.96 33.98 19.57 15.27
DHHGCN 40.8031.8229.2148.3034.5430.3334.3724.7222.0743.5127.9623.34

Improve(%) 63.79 76.77 54.3 37.41 63.00 50.80 16.98 15.14 15.25 10.54 13.15 14.08

our model’s intra-domain handling of heterogeneous item information and inter-
domain aggregation of shared knowledge, leading to substantial improvements
across all metrics.
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Fig. 3. The presentation of DHHGCN ablation experiments on four datasets, where
DHHGCN-s retains only the intra-domain modeling part, DHHGCN-h removes the
intra-domain heterogeneous attribute module, DHHGCN-u and DHHGCN-i remove
the inter-domain user and item modules, respectively.

6.2 RQ2: Ablation Study

To validate the design components of DHHGCN, we conduct four ablation ex-
periments focusing on intra-domain heterogeneous attribute information and
inter-domain information aggregation, as shown in Fig. 3. DHHGCN achieves
the best performance across all metrics. Specifically, DHHGCN-s, which retains
only intra-domain modeling, shows significant performance fluctuations due to
the lack of inter-domain information aggregation and transfer. However, it still
outperforms other models in NDCG and MRR, demonstrating the strength of
its intra-domain modeling. DHHGCN-h, which excludes item attribute infor-
mation, performs notably worse, highlighting the importance of heterogeneous
attributes in mitigating data sparsity. DHHGCN-u and DHHGCN-i, which re-
tain only the user or item hypergraph, respectively, also underperform compared
to DHHGCN, further supporting the necessity of the inter-domain component.
These results collectively validate the rationality of DHHGCN’s design.

6.3 RQ3: Experiment on Sparse Datasets

To evaluate DHHGCN’s effectiveness in sparse data scenarios, we sparsify the
dataset by reducing each user’s interaction records by 10%, 30%, 50% and com-
pare it with two top-performing CDR models, ETL and II-HGCN. As shown
in Table 2, all models’ performance declines as data sparsity increases, which
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Table 2. Sparsity data experiment performance(%) of Beauty & Health, the best
results are marked in bold and the second-best results are underlined.

Beauty & Health

Domain Beauty Health

topK topK = 5 topK = 10 topK = 5 topK = 10

Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR

10%

ETL 35.09 23.94 20.28 36.49 24.12 20.10 46.87 27.77 21.88 47.20 27.88 21.65
II-HGCN 38.47 25.36 21.07 34.93 24.19 20.86 50.25 29.23 22.66 47.40 27.97 22.46
DHHGCN 40.7829.4325.9037.7526.6823.1750.5232.6527.0549.4830.5924.78

Improve(%) 6.0 16.05 22.92 3.45 10.29 11.07 0.54 11.7 19.37 4.39 9.37 10.33

30%

ETL 34.36 23.26 19.62 32.05 22.08 18.27 46.17 27.07 21.11 42.75 25.99 19.89
II-HGCN 34.62 22.48 18.50 31.48 22.38 19.37 45.12 26.83 20.32 43.19 26.60 20.51
DHHGCN 40.2229.0125.3735.0625.5922.6148.5831.7926.4646.6029.4124.26

Improve(%)16.18 24.72 29.31 9.39 14.34 16.73 5.22 17.44 25.34 7.9 10.56 18.28

50%

ETL 32.42 20.66 16.80 29.37 18.49 14.91 43.20 24.08 18.24 39.67 21.75 16.27
II-HGCN 31.81 21.16 17.69 28.94 19.33 16.45 44.13 25.18 19.37 42.03 23.70 18.26
DHHGCN 39.5528.3924.7133.1323.3520.3650.0632.1126.2545.9327.7222.17

Improve(%)22.0 34.17 39.68 12.22 20.8 23.77 17.58 27.52 35.52 9.28 16.96 21.41

Fig. 4. The reduction ratios of each model on various evaluation metrics after data
sparsity processing.

aligns with expectations since fewer interactions limit the model’s ability to
capture user preferences. However, DHHGCN demonstrates greater robustness,
with a smaller performance drop compared to the baselines. Fig. 4 further il-
lustrates this: after 50% sparsification, II-HGCN’s metrics drop by over 10%
on average, while ETL shows reductions ranging from 7.6% to 25.82%. In con-
trast, DHHGCN’s performance remains stable, with reductions ranging from
just 0.91% to 12.23%, highlighting its superior ability to handle sparse data.
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Cloth & Sports

Beauty & Health

Fig. 5. Results of HR@5/10, NDCG@5/10, MRR@5/10 for Cloth & Sports and Beauty
& Health under varying thresholds. The best results are highlighted in red font.

6.4 RQ4: Parameter Analysis

To construct inter-domain hypergraphs for users and items, we create a similarity
ranking matrix by setting threshold values, which reduces complexity and en-
hances effective information propagation during convolution. We conduct exper-
iments across a range of potential threshold values for two experimental groups,
as shown in Fig. 5, all metrics exhibit nonlinear gradients. To reduce noise and
improve feature capture for long-tail users and items, we set a threshold t1 to
filter weakly similar nodes, experiments reveal that setting t1 closer to 0 often
yields optimal performance, with best values typically around 0.1 and 0.2. The
threshold t2 helps in distinguishing the similarity strength among similar nodes,
which is useful for aggregating node information by assigning weights based on
similarity levels. We find that when t1 = 0.1, the best performance occurs at
t2 = 0.9; for t1 = 0.2, performance improves with t2 = 0.4. A higher threshold
prioritizes highly similar nodes, benefiting specific metrics but not overall effec-
tiveness, whereas a lower threshold enhances differentiation and leads to uniform
improvements. Based on this, we set t1 = 0.2 and t2 = 0.4 for optimal balance.

6.5 RQ5: Complexity Analysis

In DHHGCN, we identify the inter-type convolution on the heterogeneous hyper-
graph is the most time-consuming part, with a time complexity of O((n+k)×r×
N̄t), where n and k are the number of items in different domains, r is the number
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of iterations, N̄t represents the average neighbor counts for each attributes (ID,
price and category). Experiments show that DHHGCN achieves higher recom-
mendation accuracy but takes slightly longer to compute than baseline models.
Specifically, the best baseline, II-HGCN, averages 20-25 seconds per epoch, while
DHHGCN takes 25-30 seconds. Although trading computational cost for accu-
racy is reasonable, we plan to improve efficiency in future work. For example,
focusing only on attributes of items more relevant to user preferences may reduce
computational overhead and enhance recommendation interpretability.

7 Conclusion and Future Work

In this paper, we propose a Dual-Channel Heterogeneous Hypergraph Convo-
lutional Network for CDR. It constructs hypergraph structures for users and
items in both intra-domain and cross-domain channels, leveraging diverse con-
volutional algorithms to capture their fine-grained high-order relationships. By
incorporating an element-wise gating mechanism, it effectively balances domain-
specific knowledge and cross-domain shared knowledge, improving recommen-
dation performance. Experiments show DHHGCN outperforms state-of-the-art
CDR methods, especially in sparse data scenarios.

In the future, we aim to extend DHHGCN to more recommendation tasks.
Its core lies in intra-domain and cross-domain hypergraph convolution, which
captures fine-grained high-order relationships between the subjects and targets of
recommendation. This domain-agnostic design adapts to various data types and
non-overlapping CDR scenarios. Additionally, we will optimize computational
efficiency and integrate techniques like graph prompt learning to improve model’s
interpretability.
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