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Abstract. Knowledge Tracing (KT) is a fundamental component of In-
telligent Tutoring Systems (ITS), enabling the modeling of students’
knowledge states to predict future performance. The introduction of
Deep Knowledge Tracing (DKT), the first deep learning-based KT
(DLKT) model, has brought significant advantages in terms of appli-
cability and comprehensiveness. However, recent DLKT models, such as
Attentive Knowledge Tracing (AKT), have often prioritized predictive
performance at the expense of these benefits. While deep sequential mod-
els like DKT have shown potential, they face challenges related to parallel
computing, storage decision modification, and limited storage capacity.
To address these limitations, we propose DKT2, a novel KT model that
leverages the recently developed xLSTM architecture. DKT2 enhances
applicable input representation using the Rasch model and incorporates
Item Response Theory (IRT) for output interpretability, allowing for the
decomposition of learned knowledge into familiar and unfamiliar knowl-
edge. By integrating this knowledge with predicted questions, DKT2
generates comprehensive knowledge states. Extensive experiments con-
ducted across three large-scale datasets demonstrate that DKT2 consis-
tently outperforms 18 baseline models in various prediction tasks, under-
scoring its potential for real-world educational applications. This work
bridges the gap between theoretical advancements and practical imple-
mentation in KT. Our code, datasets and Appendix are fully available
at https://github.com/zyy-2001/DKT2.
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1 Introduction

The rapid expansion of educational data within Intelligent Tutoring Systems
(ITS) [26] (e.g., AutoTutor [29]) has exposed significant limitations in traditional
machine learning approaches [4]. In contrast, the advent of deep learning has
introduced novel opportunities for addressing these challenges [18,36]. A critical
component of ITS is Knowledge Tracing (KT), which models students’ knowledge
states and predicts future performance by analyzing their interaction data. Deep
learning, with its advanced feature learning paradigm, offers enhanced modeling
power and predictive accuracy in this context.

Deep Knowledge Tracing (DKT) [31] represents the first significant appli-
cation of deep learning to KT, employing Long Short-Term Memory (LSTM)
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networks [13] to capture the complexity of students’ learning processes. As a
pioneering deep learning-based KT (DLKT) model, DKT has demonstrated su-
perior predictive performance compared to traditional machine learning-based
KT models (e.g., Bayesian Knowledge Tracing (BKT) [7]), offering notable ad-
vantages in applicability and comprehensiveness.

DKT encodes students’ historical interactions to generate a comprehensive
representation of their knowledge states (i.e., proficiency scores! for each con-
cept at each time step) and predicts future performance. However, recent
DLKT models, such as the Attentive Knowledge Tracing (AKT) [10],
while excelling in predictive accuracy [23,16, 15,40, 42], present limi-
tations in applicability and comprehensiveness (the related details are
in Sec. 3.2). Specifically, AKT requires both historical and future interactions
as input, complicating its practical application since future responses are typ-
ically unavailable. Additionally, unlike DKT, AKT directly predicts scores on
future questions without generating a comprehensive knowledge state, poten-
tially weakening the correlations between different concepts and narrowing the
definition of knowledge states in KT. Our review of 60 KT-model-related papers
published in top AI/ML conferences and journals over the past decade (see Ap-
pendix A.1) reveals a trend where evaluation performance has been prioritized
at the expense of practical applicability, risking a disconnect between theoretical
advancements and real-world implementation.

Deep sequential models like DKT have intrinsic limitations that may pre-
vent them from achieving optimal performance. LSTM networks, for instance,
face challenges in dynamically updating stored information and exhibit limited
storage capacity due to their scalar cell state design. Moreover, their inher-
ent sequential processing nature hinders parallelization, limiting their scalability
to large datasets. The recently proposed xLSTM [3], however, addresses these
challenges by introducing two new variants: sSLSTM, which improves LSTM’s
storage decision by incorporating an exponential activation function, and mL-
STM, which replaces scalar cell states with matrix memory for increased storage
capacity and improved retrieval efficiency, while achieving full parallelization by
abandoning memory mixing. Building on the strengths of xLSTM, we intro-
duce DKT2, an enhanced DLKT model designed for greater applicability and
comprehensiveness. DKT2 integrates the Rasch model [32] from educational psy-
chology to process historical interactions, using xLLSTM for knowledge learning.
DKT?2 then incorporates Item Response Theory (IRT) [25,37] to interpret the
learned knowledge, differentiating between familiar and unfamiliar knowledge,
and ultimately integrates this knowledge with predicted questions to generate
comprehensive knowledge states.

Our primary contributions are as follows:

— We provide a systematic analysis of input and output settings in KT, propos-
ing DLKT models optimized for real-world applicability and comprehensive-
ness.

! Proficiency scores range from 0 to 1, with higher values indicating greater knowledge
and skill level.
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— We introduce DKT2, a model built on xLSTM, adhering to rigorous applicable
input and comprehensive output settings, and incorporating both the Rasch
model for input and an interpretable IRT-based output module.

— We conduct extensive experiments, including one-step prediction, multi-step
prediction, and predictions with varying history lengths, across three large-
scale datasets. Our findings demonstrate that DKT2 consistently outperforms
18 baseline models, with additional analysis on the impact of input settings
and multi-concept output predictions on KT performance.

2 Related Work

Since DKT [31] first applied deep learning methods to the KT task a decade
ago, deep learning techniques have flourished in KT. Current DLKT models can
be categorized into the following 8 types:

— Deep sequential models use recurrent structures to encode students’
chronologically ordered interactions, e.g., DKT uses LSTM to model complex
student cognitive processes. Two variants of DKT have emerged in subsequent
research. DKT+ [39] introduces two regularization terms to improve the con-
sistency of KT predictions, while DKT-F [27] enhances KT by considering
forgetting behavior.

— Attention-based models capture long-term dependencies between interac-
tions through attention mechanisms, e.g., SAKT [30] is the first to use atten-
tion mechanisms to capture correlations between concepts and interactions.
AKT [10] employs a novel monotonic attention to represent the time dis-
tance between questions and students’ historical interactions. Due to AKT’s
outstanding predictive performance, numerous powerful KT models are sub-
sequently derived, such as simpleKT [23], FoLiBiKT [16], sparseKT [15],
DTransformer [40], and stableKT [20].

— Mamba-based models are strong competitors to Transformer models. The
recently proposed MambadKT [5] is the first KT model to explore evaluation
efficiency and resource utilization.

— Graph-based models use graph structures to characterize the relationships
between questions, concepts, or interactions, e.g., GKT [28] uses a graph to
model the intrinsic relationships between concepts.

— Memory-augmented models capture latent relationships between concepts
through memory networks, e.g., DKVMN [41] uses a static key matrix to store
relationships between different concepts and updates students’ knowledge
states through a dynamic value matrix. SKVMN [1], a variant of DKVMN,
also integrates the advantages of LSTM in recurrent modeling.

— Adversarial-based models use adversarial techniques to enhance the
model’s generalization ability, e.g., ATKT [11] mitigates overfitting and im-
proves generalization by adding perturbations to student interactions during
training.

— Contrastive learning-based models use contrastive learning to learn rich
representations of student interactions, e.g., CLAKT leverages contrastive
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Fig. 1. Architecture of xLSTM.

learning to strengthen representation learning by distinguishing between sim-
ilar and dissimilar learning histories.

— Other representative models include interpretable models and models
with auxiliary tasks, e.g., Deep-IRT [38] introduces item response theory [25]
based on DKVMN to make deep learning-based KT explainable. AT-DKT [22]
enhances KT by introducing two auxiliary learning tasks: question tagging
prediction and individualized prior knowledge prediction.

Our proposed DKT2, by breaking the parallelization limitations of deep se-
quential models, can be classified as a new type of deep sequential models (Deep
sequential models*).

3 Methodology

3.1 Problem Statement

In the KT task, formally, let S, Q, and C represent the sets of students, questions,
and concepts respectively. For each student s € S, there exists a sequence of k
time steps X = {(q1,¢1,71,t1), (q2, 2,72, t2), - ., (¢k, Cks Ty t) }, Where ¢; €
Q,¢; C C,r; € {0,1}, and ¢; represent the question attempted by the student,
the concepts related to question ¢;, whether the student responded correctly (0
for incorrect, 1 for correct), and the timestamp of the response, respectively. At
time step k+ 1, DKT?2 predicts 7,11 based on the student’s interaction sequence
Xk:

P41 = DKT2(Xy, qrt1, Chr1s Lt | 0), (1)

where 0 represents the parameters learned during training.

3.2 Preliminaries

LSTM and the Extended LSTM LSTM? is one of the earliest popular deep
learning methods applied to NLP, but it has been overshadowed for a period by

2 Refer to Appendix A.2 for details on LSTM.
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Fig. 2. Structural sketch of AKT.

the success of Transformers [34, 43]. However, the architecture is recently regain-
ing attention and undergoing significant improvements. The improved LSTM is
called extended Long Short-Term Memory (xLSTM) [3], which mainly addresses
three limitations in traditional LSTM: (1) inability to revise storage decisions,
(2) limited storage capacities, and (3) lack of parallelizability. xLSTM introduces
two new members to the LSTM family to overcome these limitations: sLSTM
and mLSTM, as described in Fig. 1. Since our work does not focus on the
architecture of xLSTM, we have placed the detailed introduction of
xLSTM in A.3.

Weakly Applicable Input and Comprehensive Output Settings in
DLKT Models We use AKT [10] as an example to describe the common
weakly applicable input and comprehensive output settings in DLKT models.
Fig. 2 shows a structural sketch of AKT. Clearly, AKT takes both historical in-
teractions and future interactions as input during training and inference, ignor-
ing future information through attention masking while representing knowledge
learned up to the current time step through offset (right-shifting values in atten-
tion), and directly predicts questions at each time step. From this, we can see
that although AKT’s setup is reasonable and does not lead to future informa-
tion leakage, this input setting, while convenient, also causes complications in
engineering implementation (engineering often requires cumbersome repre-
sentation of future information as a padding value, and this common processing
method does not seem suitable for KT, as KT tasks typically involve predicting
future questions 2 ~ t+1 based on historical interactions 1 ~ t). Moreover, AKT
only outputs the response for the current time step’s question, without consid-
ering the student’s proficiency in different dimensions, which contradicts the
multidimensional nature of real-world student knowledge and narrows
the definition of KT.

3.3 DKT2

Fig. 3 illustrates the architecture of our proposed DKT2, as described below.
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Fig. 3. Architecture of DKT2.

Rasch Embedding We use the classic Rasch model [32] from educational psy-
chology to construct embeddings of questions and student skills. This model
explicitly uses scalars to represent the degree of deviation between questions
and the concepts they cover. Additionally, we choose to use question-specific dif-
ficulty vectors to capture differences among various questions within the same
concept. DKT?2 takes applicable interactions (i.e., inputs not involving
the future response r;;, distinguishing it from models like AKT) as
input, denoted as {g;, c;,r; }t_;, and at time step ¢, the embeddings of questions
and student skills, @); and S; respectively, are represented as:

Qt = €c, +dg, - fie,, St = €(ci,re) T dg, * Gres €(ci,r) = €¢y T+ Erys (2)
where e., € R¢ and er, € R? are the embeddings of concept ¢; and response r;,
respectively. dg, € R is a difliculty scalar and y., € R? summarizes the variation
of questions containing concept c;. e(., ) € R? is the interaction representation

of the concept and student response, g,, € R is the variant embedding of the
response. d is the dimension of the embeddings.

xLSTM Blocks DKT?2 further learns the student’s ability representation A;.;
at time step t through two xLSTM blocks (sLSTM and mLSTM) based on the
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original representation of student ability S7.::
A1+ = Res (LN (mLSTM (Res (LN (sLSTM(S1.4)))))) , (3)

where LN and Res refer to layer normalization [2] and residual connection [12],
respectively.

IRT Prediction & Decompose The core idea of IRT (Item Response The-
ory) lies in the interactive relationship between student ability and question
difficulty [37]. Specifically, if a student’s ability is far above the question’s
difficulty, the probability of the student responding to the question
correctly is very high, and vice versa. This is also why IRT is often used
for interpretable predictions in KT [38,33] (our work focuses not on the
interpretability of KT models but on evaluating their applicability
and comprehensive setup). Therefore, the knowledge acquired by a student,
denoted as Kj.;, can be represented as:

Kl:t = Al:t - dqlztv (4)

where dg,,, is the sequence representation of dg, from Eq. 2 up to time step t.
Further, DKT2 roughly distinguishes between the familiar and unfamiliar
knowledge K, and K, based on correct and incorrect responses:

Ki':_t = exp(leh d) © Kl:t7 Kl_t = eXp(One — T1:t, d) © Kl:t7 (5)

where exp(-, d) denotes expanding the last dimension of the tensor to d dimen-
sions. o denotes element-wise multiplication. one € R? is a vector of all ones.

Integrated Knowledge Fusion DKT2 estimates the student’s knowledge
Xo.411 based on the knowledge K., and the questions (o411 that need to be
predicted:

Xoii1 = Qo1 ® K1 @ K, © Ky, (6)

where @ denotes the concatenation operation. In addition to integrating the
questions and the student’s current knowledge, DKT2 also includes the student’s
familiar and unfamiliar knowledge K fjt and K7,. This is because, intuitively, if
the knowledge required to respond to a question is familiar to the
student, the predicted score tends to be higher, and conversely, lower
if unfamiliar.

Finally, DKT2 predicts the student’s comprehensive knowledge states
KSa:441:

KSo:i+1 = 0(ReLU(X o441 W1 + b1)Wa + ba), (7)

where Wi € R*x2d 17, € R?¥*" p; € R?*? by € R™ are learnable parameters in
the MLP. o(:) is the Sigmoid function and ReLU(-) is the activation function. n
is the number of concepts (due to data sparsity, KT often predicts the concepts
corresponding to questions).

Eq. 7 can be further represented as:

KS; = (#},77,...,7"),2<i<t+1, (8)

RE
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where ff represents the prediction score of DKT2 for concept j at time step 1.
The comprehensive output of DKT2 enables the prediction of mul-
tiple concepts at the same time step, whereas models like AKT can
only predict 7 at time step i. We will analyze the multi-concept predic-
tion scenario in detail in Sec. 4.3, where some unexpected results have been

discovered.

Model Training The loss of DKT?2 is defined as the binary cross-entropy loss
between the prediction #; and the actual response r;, calculated as follows:
t+1
Lokre = — Y _ rilog() + (1 — ri)log(1 — 7). (9)
i=2

Conversion of Input and Output Settings We attempt to convert the
weakly applicable input and comprehensive output settings in DLKT models into
strongly applicable input and comprehensive output settings. Similarly, using
AKT as an example, like DKT2, as shown in Fig. 3, the transformed AKT
only takes the historical interactions {(g;, c;,7;)}i_; as input, with everything
else remaining unchanged (note that the right-shift operation still needs to be
retained because the attention does not mask the knowledge of the current time
step). Before outputting the predicted score 7%, it first concretizes knowledge
into the knowledge of each concept (by converting the original dimensions into
the number of concepts through an MLP) and then the comprehensive knowledge
state is obtained through a Sigmoid function.

4 Experiments

Our goal is to answer the following research questions:

— RQ1: How does DKT2 perform compared to 18 baselines from 8 different
categories under applicable input and comprehensive output settings?

— RQ2: How do different input settings for KT models with weak applicability
and comprehensiveness and multi-concept prediction of various KT models
affect their performance?

— RQ3: What are the impacts of the components (e.g., the Rasch embedding
and IRT prediction) on DKT2?

4.1 Experimental Setup

Datasets We conduct extensive experiments on three of the latest large-
scale benchmark datasets from different platforms: Assist17 [9], EdNet [6], and
Comp [14]. Details of the datasets are provided in Appendix A.4.
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Baselines To comprehensively and systematically evaluate the performance
of DKT2 and analyze the impact of input-output settings on KT models, we
compare DKT2 with 18 DLKT baselines from 8 categories, as mentioned in
Sec. 2. Detailed descriptions of the aforementioned DLKT baselines can be found
in Appendix A.5.

Implementation Similar to CL4KT [19], we employ five-fold cross-validation,
with folds divided by students. 10% of the training set is used for model eval-
uation and also for the early stopping strategy: if the AUC does not improve
within 10 epochs during the 300 epochs, the training will be stopped. The av-
erages across five test folds are reported. We focus on the most recent 100 in-
teractions (history length) for each student, as this latest information is crucial
for future predictions. During training, all models are trained using the Adam
optimizer [17] with the following settings: batch size is fixed at 512, learning
rate is 0.001, dropout rate is 0.05, and embedding dimension is 64. The seed is
set to 12405 to reproduce experimental results. Similar to existing DLKT re-
search, our evaluation metrics include two classification metrics, Area Under the
ROC Curve (AUC) and Accuracy (ACC), and one regression metric, Root Mean
Square Error (RMSE). Note that our experimental parameter configuration is
consistent with CL4KT.

4.2 Applicable and Comprehensive Performance Comparison (RQ1)

Under applicable input and comprehensive output settings, we evaluate three
common prediction tasks in KT [24]: 1) one-step prediction, 2) multi-step pre-
diction, and 3) prediction with varying history lengths.

One-step Prediction KT’s one-step prediction can provide immediate feed-
back for ITS and be used for short-term adjustments of personalized learning
paths [7]. Table 1 shows the one-step prediction performance of DKT2 and 18
baselines from 8 different categories in three large-scale datasets. Overall, in this
fair large-scale data competition, our DK'T2 has emerged as the final winner by
a narrow margin. We observe:

— Compared to previous research [10], under the input-output settings,
attention-based models like AKT still generally outperform deep sequential
models like DKT, suggesting that attention-based models like AKT
may be less affected by these settings.

— The recently proposed MambadKT performs well on Assist17, but underper-
forms compared to DKT on larger-scale datasets like EdNet and Comp. This
may be due to mamba’s poorer performance in context learning in large-scale
experiments, which is consistent with previous research findings [35].

— DLKT models based on graph, memory augmentation, adversarial, or con-
trastive learning do not show significant performance improvements. We be-
lieve this is because large-scale data contains more noise and diversity, making
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Category ‘ Model ‘ Assist17 ‘ EdNet ‘ Comp
l ‘AUCT ACCt RMSEH AUCT ACCt RMSEH AUCT ACCtT RMSE|

DKTv 0.6621 0.6370 0.4731 | 0.6834 0.6451 0.4687 | 0.7585 0.8129 0.3681
Deep sequential DKT+v 0.6668 0.6415 0.4711 | 0.6884 0.6483 0.4673 | 0.7593 0.8129 0.3679
DKT-Fv 0.6633 0.6429 0.4724 | 0.6917 0.6503 0.4668 | 0.7615 0.8138 0.3672

SAKTt 0.6211 0.6108 0.4828 | 0.6773 0.6415 0.4708 | 0.7560 0.8123 0.3690
AKTX 0.6789 0.6464 0.4723 | 0.6855 0.6440 0.4686 | 0.7601 0.8119 0.3686
simpleKTX | 0.6709 0.6441 0.4746 | 0.6865 0.6444 0.4686 | 0.7633 0.8135 0.3672
Attention-based FoLiBiKTX |0.6771 0.6444 0.4750 | 0.6849 0.6432 0.4687 |0.7599 0.8120 0.3685
sparseKTX | 0.6674 0.6424 0.4740 | 0.6856 0.6430 0.4701 |0.7690 0.8178 0.3604
DTransformerX| 0.6480 0.6305 0.4770 | 0.6727 0.6355 0.4722 | 0.7551 0.8106 0.3699
stableKTX | 0.6781 0.6455 0.4751 |0.6841 0.6411 0.4695 | 0.7591 0.8126 0.3683
Mamba-based ‘ Mamba4KTv ‘047001 0.6555 0.4701 ‘()46()'67 0.6351 0.4764 ‘(J.7575 0.8121 0.3687

Graph-based | GKTv/  ]0.6408 0.6185 0.4802 |0.6841 0.6361 0.4724 |0.7390 0.8055 0.3766
‘ DKVMNX ‘06505 0.6308 044774‘046778 0.6410 0.4705 | 0.7534 0.8113 0.3697

Memory-augmented

SKVMNX  |0.6350 0.6184 0.4809 | 0.6800 0.6427 0.4696 | 0.7220 0.8040 0.3790
Adversarial-based | ATKTV | 0.6453 0.6313 0.4821 | 0.6780 0.6403 0.4714 | 0.7560 0.8123 0.3688
Contrastive learning-based| ~ CL4KTX  [0.6540 0.6319 0.4783 | - - - |0.7645 0.8146 0.3669

Deep-IRTX | 0.6448 0.6268 0.4814 | 0.6661 0.6317 0.4769 | 0.7517 0.8108 0.3703
AT-DKTv |0.6720 0.6433 0.4708 | 0.6888 0.6494 0.4673 | 0.7655 0.8141 0.3663

Deep sequential® | DKT2/  0.7042 0.6594 0.4630(0.6929 0.6504 0.4660|0.7679 0.8165 0.3652
Table 1. One-step prediction performance of DKT2 and 18 baselines from different cat-
egories. The best result is in bold, the second best is underlined. v indicates strong
applicability and comprehensiveness, X indicates weak applicability and comprehen-
siveness, T indicates strong applicability but weak comprehensiveness. - indicates the
model fails to be applied to such a large-scale dataset, resulting in a program crash.

Other representative ‘

it challenging for complex models (e.g., graph-based and memory-augmented
models) to effectively extract useful information during training. Moreover,
large-scale data usually covers various student learning behaviors and knowl-
edge states, meaning that basic models might already be sufficient for effective
knowledge tracing, thus the advantages of adversarial-based and contrastive
learning-based models are not pronounced.

— Our proposed DKT2 performs almost the best on all metrics across all
datasets. This performance improvement can be attributed to the superiority
of DKT2, which includes the exponential activation function in sLSTM that
helps improve memory and forgetting processes, and the matrix memory in-
troduced in mLSTM that gives DKT2 advantages in large-scale applications
and long sequence processing.

Multi-step Prediction KT’s accurate multi-step prediction not only provides
valuable feedback for selecting and constructing personalized learning materials,
but also assists ITS in flexibly adjusting future curriculum based on student
needs [23]. Table 2 and Table 7 in Appendix A.6 show the multi-step (step=5,
10, 15, 20) prediction performance of DKT2 and several representative baselines
from different categories. The main observations are as follows: (1) As the pre-
diction steps increase, the performance of all models consistently decreases. This
is due to error accumulation, meaning that small errors in one-step prediction
can accumulate over multiple steps, leading to a decrease in multi-step predic-
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Step | 5 | 10 | 15 | 20
Metric | AUCT ACCt RMSE({| AUCt ACCt RMSE(| AUCt ACCt RMSE|| AUCt ACCt RMSE]
DKT  ]0.6244 0.6104 0.4831]0.6048 0.5978 0.4868 |0.5962 0.5960 0.4874 |0.5902 0.5918 0.4890

SAKT 0.6103 0.6010 0.4860 | 0.6013 0.5966 0.4860 | 0.5989 0.5983 0.4860 | 0.5961 0.5960 0.4869
AKT 0.6486 0.6285 0.4763|0.6321 0.6213 0.4798|0.6231 0.6140 0.4819|0.6189 0.6134 0.4827

Mamba4KT‘ 0.6222 0.6077 0.4869 ‘ 0.5909 0.5938 0.4876 ‘ 0.5875 0.5911 0.4880 ‘ 0.5858 0.5907 0.4884
DKVMN ‘ 0.6205 0.6096 0.4851 ‘ 0.6008 0.5958 0.4880 ‘ 0.5905 0.5923 0.4879 ‘ 0.5830 0.5856 0.4893
ATKT ‘ 0.6246 0.6186 0.4831 ‘ 0.6176 0.6139 0.4847 ‘0.6125 0.6118 0.4855 ‘ 0.6094 0.6090 0.4865
CL4KT ‘ 0.6347 0.6186 0.4832 ‘ 0.6128 0.6037 0.4882 ‘0.6043 0.5987 0.4896 ‘ 0.5991 0.5971 0.4890

Deep-IRT | 0.6100 0.6020 0.4959 | 0.5867 0.5834 0.5022 |0.5737 0.5713 0.5072 | 0.5652 0.5666 0.5049
AT-DKT |0.6424 0.6260 0.4782 | 0.6271 0.6154 0.4820 |0.6206 0.6115 0.4832|0.6170 0.6082 0.4849

DKT2 [0.6496 0.6313 0.4763|0.6335 0.6221 0.4802 0.6246 0.6160 0.4822 |0.6199 0.6148 0.4828
Table 2. Multi-step prediction performance of DKT2 and several representative base-
lines on Assist17. The results for EdNet and Comp can be found in Appendix A.6.

—+— DKT AKT MambadKT DKVMN ATKT CL4KT  —p— AT-DKT —8— DKT2
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Fig. 4. The prediction performance of DKT2 and several representative baselines on
Assistl7 with different history lengths. The results for EdNet and Comp are in Ap-
pendix A.6.

tion performance. (2) Compared to one-step prediction, attention-based models
perform well in multi-step prediction. This is because the attention mechanism
can capture long-distance dependencies, making its advantages more apparent.
In contrast, MambadKT performs poorly, as mamba-based models are highly de-
pendent on context [21] and are more susceptible to error accumulation. (3) Our
DKT2 generally outperforms all models in multi-step prediction. We can simi-
larly attribute this to the exponential activation function introduced in sLSTM
of DKT2, which can mitigate error accumulation by modifying storage decisions,
as it allows the model to update its internal state at each step, while the ma-
trix memory introduced in mLSTM provides support for large-capacity storage
space.

Varying-history-length Prediction Analyzing the impact of different his-
tory lengths can help ITS better understand students’ knowledge acquisition
and forgetting processes, thereby improving teaching strategies. Fig. 4, Fig. 7
and Fig. 8 in Appendix A.6 show the prediction performance of DKT2 and sev-
eral representative baselines with different history lengths. From these, we can
observe: 1) As the history length increases, the prediction performance of almost
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Setting| Metric | AKT |simpleKT|FoLiBiKT|sparseK T |DTransformer|stableKT|DKVMN|CL4KT|Deep-IRT

AUCT |0.6554| 0.6507 0.6545 0.6405 0.5995 0.6490 | 0.6228 | 0.5941 | 0.6234
a ACCt |0.6154| 0.6129 0.6117 0.6120 0.5755 0.6159 | 0.5899 | 0.5696 | 0.5915
RMSE]|0.4822| 0.4840 0.4835 0.4865 0.5040 0.4837 | 0.4890 | 0.5090 | 0.4892

AUCT [0.6505| 0.6675 0.6471 0.6574 0.5989 0.6329 | 0.6203 | 0.6293 | 0.6182
o ACCt |0.6202| 0.6240 0.6226 0.6210 0.5625 0.6045 | 0.5862 | 0.6016 | 0.5884
RMSE]|0.4853| 0.4866 0.4842 0.4836 0.5206 0.4908 | 0.5010 | 0.5037 | 0.5015

AUCT |0.6320] 0.6508 0.6192 0.6474 0.5994 0.6533 | 0.6087 | 0.6195 | 0.6001
° ACC?T |0.6066| 0.6153 0.5980 0.6060 0.5770 0.6223 | 0.5787 | 0.5933 | 0.5728
RMSE]|0.4881| 0.4999 0.4944 0.4944 0.4981 0.4833 | 0.5074 | 0.5083 | 0.5012
Table 3. The prediction performance of KT models with weak applicability and com-
prehensiveness in the last 5 steps on Assist17 under three different input settings. The
» setting represents masking all interaction information (including questions, concepts
and responses) for the last 5 steps, the o setting represents masking the responses for
the last 5 steps, without masking questions and concepts, and the e setting represents
no masking, i.e., predicting the responses under the regular setting. The results for
EdNet and Comp can be found in Appendix A.6.

all models generally improves, as longer sequences provide more historical infor-
mation. Surprisingly, MambadKT’s performance consistently decreases. A pos-
sible reason is that mamba-based models are better at capturing local temporal
dependencies but may struggle to effectively capture long-distance dependencies
within longer sequences. 2) Notably, DKT, using only one LSTM, can maintain a
strong ranking position across different history lengths, further encouraging KT
researchers to design simple yet effective models [23]. 3) Our DKT2 maintains
optimal performance across different history lengths, with more significant per-
formance improvements as the history length increases. This is not only due to
the increased storage capacity of mLSTM but also related to sSLSTM providing
a broader output range as the sequence length increases.

4.3 In-Depth Analysis (RQ2 & RQ3)

Analysis of Different Input Settings We analyze three different input set-
tings for the KT models with weak applicability and comprehensiveness. In Ta-
ble 3 and Table 8 in Appendix A.6, we present the prediction performance of
these models in the last 5 steps. From these, we have the following findings: (i)
The performance differences among these three settings are more pronounced
on EdNet and Comp, as larger-scale data can provide richer information for
more accurate prediction. (ii) The models under guessing » setting seems to
perform well on Assist17, which may be because the models remember the an-
swer bias [8] and make predictions directly, while the models under the o and
e settings achieve comparable performance, indicating that the applicable o
setting does not significantly reduce the model’s performance. This
confirms the hypothesis proposed in the Sec. 4.2 (One-step Prediction).

Multi-concept Prediction Comprehensive KT can be used for multi-concept
prediction. Multi-concept prediction can provide a more comprehensive learning
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Dataset ‘ Assist17 ‘ EdNet ‘ Comp

Metric ‘AUCT ACC?T RMSEH AUCtT ACCt RMSEH AUCt ACCT RMSE]
DKT ‘ 0.5841 0.5787 0.4913 ‘ 0.6600 0.6225 0.4775 ‘ 0.7091 0.8045 0.3806
SAKT [0.5596 0.5534 0.5048 | 0.6546 0.6198 0.4788 | 0.6994 0.8037 0.3824
AKT 0.6185 0.6040 0.4862 | 0.6649 0.6241 0.4765|0.7054 0.8039 0.3815
Mamba4KT‘ 0.5660 0.5660 0.4956 ‘ 0.6531 0.6192 0.4796 ‘ 0.7054 0.8043 0.3813
DKVMN ‘ 0.5730 0.5701 0.4964 ‘ 0.6572 0.6205 0.4781 ‘ 0.7050 0.8034 0.3817
ATKT ‘ 0.6205 0.6077 0.4836 ‘ 0.6639 0.6229 0.4768 ‘ 0.7111 0.8049 0.3802
CL4KT ‘ 0.5892 0.5911 0.4890 ‘ - - - ‘ 0.7044 0.8032 0.3820

Deep-IRT
AT-DKT

0.6087

0.5962

0.6445 0.6263 0.4808|0.6664 0.6321

0.4882 | 0.6644 0.6245

0.4767
0.4766 | 0.7093 0.8046

0.7515 0.8107 0.3704

0.3805

0.3810

DKT2 [0.6174 0.6041 0.4872 |0.6646 0.6243 0.4768 | 0.7064 0.8047

Table 4. Multi-concept prediction performance of DKT2 and several representative
baselines.
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Fig. 5. Ablation study on AUC.

assessment, explore relationships between concepts, and create precise person-
alized learning plans for students. Due to the lack of datasets for multi-concept
prediction (to our knowledge, existing datasets do not include students’ profi-
ciency scores for all concepts at different learning stages), our experiments are
conducted under a weak assumption: the change in a student’s knowledge state
is a gradual process and is unlikely to experience sudden shifts over the long
term. In our experiments, we use the knowledge state at the intermediate time
step to predict subsequent questions. Table 4 shows the multi-concept predic-
tion performance of DKT2 and several representative baselines. From this, we
discover an unexpected phenomenon: Deep-IRT and ATKT, which are generally
not advantageous in previous performance comparisons, achieve impressive re-
sults, while our DKT2 can only rank in the top four. These results might make
us question the validity of the weak assumption, but the empirical evidence of
the almost consistent performance rankings of Deep-IRT and ATKT across the
three datasets dispels our doubts. This interesting phenomenon makes us pon-
der: is it necessary to excessively pursue prediction accuracy while neglecting
the assessment of multiple concepts in practice? We will explore this important
topic in depth in future KT research.
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Ablation Study Fig. 5 and Fig. 9 in Appendix A.6 illustrate the impact of
different components on DKT2. “w/o. Rasch" indicates the removal of Rasch
embedding from DKT2 (setting d4, to 0 in Eq. 2), “w/o. IRT" represents the
removal of the IRT module, “w/o. IKF" means DKT?2 ignores the integrated
knowledge fusion, while “w/o. sSLSTM" and “w/o. mLSTM" denote the removal
of sLSTM block and mLSTM block, respectively. The results show that DKT2
achieves the highest AUC scores across all datasets compared to other variants,
demonstrating the importance of each component on DKT2. Notably, “w/o.
mLSTM" generally outperforms DKT2 on ACC and RMSE scores on Assist17,
which is due to mLSTM’s inability to demonstrate significant advantages in
small-scale data, as evidenced by its poorer performance on larger datasets,
EdNet and Comp.

5 Conclusion

This paper introduces DKT2, an applicable and comprehensive DLKT model
that addresses key limitations of deep sequential models like DKT. By leveraging
xLSTM, the Rasch model, and Item Response Theory (IRT), DKT2 effectively
balances predictive performance with practical applicability. Our extensive ex-
periments across three large-scale datasets demonstrate DKT2’s superiority over
18 baseline models in various prediction tasks, highlighting its robustness and
potential for real-world educational applications.

6 Limitations

Our work represents an attempt to apply xLSTM in the KT domain on large-
scale data with fair input and output settings. In our experiments, we observe
that as the number of students increases, DKT2 gradually demonstrates a perfor-
mance advantage that widens the gap with other DLKT models. Additionally,
in our multi-concept prediction experiments, we find that Deep-IRT exhibits
a leading, dataset-independent advantage, the reasons for which give us pause
for reflection. Therefore, our future research directions include: 1) further ex-
ploration of deeper knowledge tracing methodologies based on xLSTM, partic-
ularly in the context of ultra-large-scale data, and 2) enhancing multi-concept
predictive analysis by collecting and analyzing students’ proficiency scores across
different concepts at various learning stages.
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