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Abstract. Existing recommender systems tend to prioritize items closely
aligned with users’ historical interactions, inevitably trapping users in the
dilemma of “filter bubble”. Recent efforts are dedicated to improving the
diversity of recommendations. However, they mainly suffer from two ma-
jor issues: 1) a lack of explainability, making it difficult for the system
designers to understand how diverse recommendations are generated,
and 2) limitations to specific metrics, with difficulty in enhancing non-
differentiable diversity metrics. To this end, we propose a Counterfactual
Multi-player Bandits (CMB) method to deliver explainable recommen-
dation diversification across a wide range of diversity metrics. Leveraging
a counterfactual framework, our method identifies the factors influenc-
ing diversity outcomes. Meanwhile, we adopt the multi-player bandits to
optimize the counterfactual optimization objective, making it adaptable
to both differentiable and non-differentiable diversity metrics. Extensive
experiments conducted on three real-world datasets demonstrate the ap-
plicability, effectiveness, and explainability of the proposed CMB.

Keywords: Diversified recommendation - Counterfactual framework -
Multi-armed bandits.

1 Introduction

Recommendation systems (RS) are widely deployed on various online platforms,
such as Google, Facebook, and Yahoo!, to mitigate information overload. How-
ever, existing recommendation methods [I3J2TI35] only prioritize recommending
the most relevant items to users, which can have negative consequences for both
users and service providers. Users may experience the “filter bubble” [20] prob-
lem, leading to limited content diversity, while content providers may face the
“Matthew Effect” [I8] where new content lacks exposure. Therefore, improving
recommendation diversity is essential to enhance the overall user experience and
maintain a healthy ecosystem for content providers.
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Various approaches have been proposed to diversify the recommended items.
Existing methods for diversification can be generally classified into three cat-
egories [31]: pre-processing, in-processing, and post-processing methods. Pre-
processing methods involve modifying or selecting interaction data before model
training [7J40]. In-processing methods, such as treating the need for diversity as
a kind of regularization [5J29] or a ranking score [I7], integrate diversification
strategies into the training process directly. Post-processing methods, like MMR
[2227] and DPP [4J1430], re-rank the recommended items based on relevance
and diversity metrics after the model training.

Unfortunately, current methods still suffer from two main limitations. Firstly,
current methods, such as [ABI729/30/40], do not provide adequate explainability
regarding how factors affect the diversity of recommendations at the (latent) fea-
ture level. This limitation makes it difficult for system designers to understand
the underlying drivers of diversity, hindering efforts to enhance model diversity
and potentially reducing user satisfaction. Secondly, most diversification meth-
ods, like [ABIT7I30140], rely on diversity metrics to evaluate recommendation
results, but they often fail to optimize these metrics directly because these met-
rics are mostly non-differentiable, as highlighted in a recent survey [31]. While
several methods, such as those described in [33], strive to optimize some diversity
metrics directly, they are only suitable for very few specific non-differentiable di-
versity metrics, like a-nDCG [8], and cannot handle more commonly used metrics
like Prediction Coverage or Subtopic Coverage [10].

To address the aforementioned challenges, we propose a counterfactual frame-
work for explainable recommendation diversification. In response to the first
limitation, we propose to identify the factors influencing diversity outcomes un-
der the counterfactual framework. In this framework, perturbations are applied
to the representation of items to adjust the diversity level of the ranking lists.
Our goal is to identify the “minimal” changes to a specific factor in the factor
space that can effectively switch the recommendation results to a desired level
of diversity. Then in response to the second limitation, we design a gradient-free
Counterfactual Multi-player Bandits (CMB) method to learn these perturba-
tions by optimizing the diversity of recommended items, which is no longer
constrained by diversity metrics and recommendation models. The bandit-based
approach searches for the best perturbations applied to different factors, which
also provides insights for explaining the recommendation diversification: the fac-
tors with more perturbations have more potential to influence both the accuracy
and diversity. Finally, as there is a growing need to achieve a better trade-off be-
tween accuracy and diversity, we redesign the optimization objective considering
accuracy and diversity metrics simultaneously. Overall, our proposed approach
offers a more flexible and adaptable framework that can optimize various di-
versity metrics directly, and provides a promising solution to the explanation of
recommendation diversification.

To summarize, the contributions of this work are as follows:
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— To explain recommendation diversification, we employ the counterfactual frame-
work to discover the meaningful factors that affect recommendation accuracy
and diversity trade-off.

— To optimize a range of differentiable and non-differentiable diversity metrics,
we propose a bandit-based diversity optimization approach that is agnostic to
diversity metrics and recommendation models.

— To validate the applicability, effectiveness, and explainability of our method,
we conducted extensive experiments on multiple real-world datasets and di-
versity metrics.

2 Related Work

2.1 Recommendation Diversification

To address the “filter bubble” and reduced provider engagement issues, it is
crucial to recommend accurate and diverse items for a healthier online market-
place. Existing diversification methods are typically offline and categorized as
pre-processing, in-processing, and post-processing methods [31]. Pre-processing
methods [7[40] involve preparing interaction data before the model training. In-
processing integrates diversity into the training process, using it as regulariza-
tion [5l29] or a ranking score [I7U33]. Post-processing, the most scalable, includes
greedy-based methods like MMR [322/27] and DPP [4T430], which adjust item
selection and rankings to balance relevance and diversity, and refinement-based
methods [26], which modify positions or replace items based on diversity metrics.
Other online methods, such as bandit strategies [9], treat diversity as part of the
score on each arm (item or topic) in the bandit recommendation algorithms and
reinforcement learning [23J39], continuously update based on user feedback for
long-term optimization.

Although these methods enhance recommendation diversity, they do not pro-
vide explanations of the monopoly phenomenon of recommended items or the
mechanisms behind their diversity improvements. Our work seeks to optimize
recommendation diversity and offer explanations for these issues.

2.2 Explainable Recommendation

Explainable recommendations have attracted significant attention in academia

and industry, aiming to enhance transparency, user satisfaction, and trust [28/3637I38].
Early methods focused on generating individualized explanations, often cus-
tomizing models and using auxiliary information [32J38]. For example, the Ex-
plicit Factor Model (EFM) [38] recommends products based on features ex-
tracted from user reviews. Other approaches decouple explanations from the
recommendation model, making them post-hoc and model-agnostic [624]. Re-
cently, counterfactual reasoning has been widely used to improve explainabil-

ity. For instance, CEF [II] uses counterfactual reasoning to explain fairness in
feature-aware recommendation systems.
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This work focuses on explaining recommendation diversification. While exist-
ing approaches help interpret recommendation models, they overlook diversity,
which is the main focus of our work.

3 Methodology

3.1 Preliminaries

Problem Formulation Given a user set I, an item set V, and the correspond-
ing user-item interactions set 7T, the purpose of explainable diversification is to
recommend accurate and also diverse items that meet user interests, while offer-
ing explainability to the diversification. Formally, we need to provide the diverse
top-K recommendation list R* C V(|R"| = K) to each user u, and analyze what
leads to the diversified results.

Base Recommendation Models Given the user latent feature matrix P €
R¥>IHUI and item latent feature matrix Q € R¥*IVl, where d is the dimension
of the latent feature matrices. We define a base recommendation model g that
predicts the user-item ranking score g, , for user v and item v by:

gu,v = Q(Pm(h | Z>®)u (]-)

where p, € R? and q, € R? are the latent feature vector of user v and item
v, respectively. The symbol ® denotes the model parameters, and Z represents
all other auxiliary information. Since collaborative filtering (CF) methods are
still mainstream in current recommendation systems, we mostly work on the
factors with latent features of CF methods. Without loss of generality, we can
also target the raw features (e.g., age, gender, etc.), which will be discussed in
Sec. We explore two popular and effective instances of g: BPRMF [2]]
and Light GCN [13]. The loss function for the base model adopts the Bayesian
Personalized Ranking loss function.

Diversity Metrics Among all diversity metrics, we discuss the following four
most popular metrics [7J3I]. Novelty-biased Normalized Discounted Cu-
mulative Gain (a-nDCG) [8], which is a subtopic-level metric derived from
NDCG, accounting for subtopics and item redundancy, where « applies geo-
metric penalization for redundancy. Subtopic Coverage (SC) [10], which is
a subtopic-level coverage of a recommended item list R* in the whole item set.
Prediction Coverage (PC) [10], which is an item-level coverage of all rec-
ommendation lists R" in the whole item set. Intra-List Average Distance
(ILAD) [34], which is an item-level metric that measures diversity by averag-
ing the dissimilarity between item pairs in the recommendation list R*. We use
cosine similarity for dissimilarity calculation.
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Fig. 1. The architecture of CMB. CMB consists of three major stages: the first stage of
base model training, the second stage of counterfactual framework within multi-player
bandits optimization, and the third stage of explanation. The Q is the learned item
latent feature matrix from the base model g. The ¥ in the green part is alterable, which
can be diversity or the trade-off between diversity and accuracy.

3.2 Counterfactual Framework for Explainable Diversification

Current diversification approaches generate diverse lists that are hard to ex-
plain and control. However, understanding the underlying diversity mechanism
is crucial for making intelligent decisions in real-world applications. Inspired by
counterfactual reasoning [I1], we develop a perturbation-based framework for
explaining the diversification of the recommendation lists.

The essential idea behind the proposed explanation model is to discover a
perturbation matrix A on items’ factors by solving a counterfactual optimiza-
tion problem that maximizes diversity, as well as identify which factors are the
underlying drive of diversified recommendations. After identifying these factors,
it is easy to generate feature-based explanations for the given recommendation
model g and guide the system to make appropriate decisions that increase the
recommendation diversity. Generally, given a recommendation model g, we have
a certain recommendation result R, = {R"*,R"?,--- ,R% ...  R"M }(|R%
K,i=1,2,--- ,|U]|) containing all users’ top-K recommendation lists, where R"i
represents the top-K items list recommended to user u; by the base model g.
We denote the recommendation diversity of g as,

VU = Diversity(Ry), (2)

where Diversity(-) can be any of the previously introduced diversity measure-
ments in Sec. 3.1
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Specifically, for the learned item latent feature matrix Q € R¥IVI from g,
we slightly intervene with an equal-size matrix A € RVl In detail, a small
perturbation A; ; will be added to feature ¢ of item j (Q; ;) to obtained the

perturbed input Q That is,

Q=Q+A. (3)
With this perturbed item latent feature matrix Q, the base model g will change
the recommendation from R, to a new counterfactual result R, with a new

diversity measure lf/, _ N
¥ = Diversity(Ry). (4)

Here, our goal is to find the minimum intervention on item factors that will
result in the maximum improvement in terms of diversity. Thus, the objective
function would be:
T2
max [|#][z = A Al (5)

where A is a hyperparameter that controls the balance between two terms: the
first maximizes the predefined diversity, and the second constrains the perturba-
tion by reflecting the distance between the original input and the counterfactuals.
To minimize changes in item factors, we apply L; norm constraint on A and scale
its absolute values between [0, 1], encouraging more A as 0 and highlighting the
factors that most influence diversity.

3.3 Multi-player Bandits for Diversity Optimization

According to certain needs of the diversity, various metrics can be used to opti-
mize Eq. [f| for learning the perturbation A. For example, a-nDCG or SC metric
can be employed to ensure broader coverage of subtopics in the recommendation
list, while ILAD or PC metric can be used to enhance item-level diversity.

However, a significant challenge is that most diversity metrics are non-differentiable,
making it difficult to define a proxy for their optimization [3II33]. For instance,
among the four metrics discussed in Sec. [31] only ILAD is differentiable, com-
plicating the integration of non-differentiable metrics into gradient-based coun-
terfactual frameworks. To overcome this, we propose a bandit-based method to
learn the perturbation matrix A, enabling the optimization of diverse objectives
without relying on gradient computation.

The multi-armed bandit problem [2] models decision-making under uncertain
rewards, where a player chooses among various options (“arms”) to maximize
cumulative payoff by balancing exploration and exploitation. This approach is
well-suited for optimizing non-differentiable objectives within a counterfactual
framework. Therefore, in our specific problem, each item feature is treated as a
player, selecting an appropriate arm to construct the final perturbation matrix.
Moreover, our problem can be further conceptualized as a multi-player bandit
scenario [I], where players collaborate to optimize a shared reward, which serves
as the objective in the counterfactual framework.

Specifically, we treat each variable A; ; in A as a player; for simplicity, we
denote it as p(|p| = d x |V]), and then select a suitable arm A, from arms a for
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every p iteratively to maximize the objective in the counterfactual framework.
Assume the total number of iterations for one player p to select an arm is T
our problem can be formulated by maximizing the following T-step cumulative
reward for each player:

T
VT = max Z T, (6)
t=1

where r; is the reward at the iteration step ¢ obtained from all players by se-
lecting arms, as calculated by Eq. |5} In each iteration, every player selects a
particular arm and gets A from all players to calculate the reward. This process
continues as players select arms in subsequent iterations based on the obtained
rewards. The iterative process repeats until the final iteration, where each player
selects the optimal arm to achieve diversification. At this point, the value of the
perturbation A can be justified.

More specifically, before commencing the algorithm, it is necessary to define
the arm values from which the players can make their selections. To achieve this,
we utilize the following method to initialize the arms a for each player p:

a=INIT(A4,na), (7)

where A and n 4 represent the perturbation threshold and the number of arms, re-
spectively. The INIT(-) method samples n 4 values evenly from [—A, A]. For sim-
plicity, this initialization is applied to each player, and the item latent feature ma-
trix Q is scaled to [—1, 1] using maximum absolute scaling (Q = Q/|maz(Q)|).
At each iteration ¢, players independently choose an arm A, from a based on
arm selection strategies like e-greedy or UCB [16l25], with experiments showing
that e-greedy is more efficient and effective. The selection strategy of e-greedy
strategy is as follows:

Vi ith probability 1 —
Al {argmaxApea( YY) with probability €, (8)

a random arm with probability e,

where A! and V, are the arm value selected by the player and the cumulative
reward vector containing all arms for the player in the ¢ iteration, respectively.

When all players have selected the arm A; based on the arm selection strat-
egy, we can get the A and further the reward r, (Eq. based on the coun-
terfactual result Ry. To reduce the computational complexity, we update the

cumulative reward value Vi‘:l of the corresponding arm A, selected by each
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player p in iteration ¢ + 1 by an incremental average method:
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where n is the times that arm A, has been selected by player p till iteration ¢.
Thus, the model iteratively learns and adjusts the A until convergence.

The challenge in diversified recommendation is to enhance diversity while
preserving accuracy, i.e., maximizing diversity without significantly compromis-
ing accuracy. To better balance these two aspects, we propose a redesign of the
optimization objective (Eq. , particularly the counterfactual diversity mea-
surement . As previously discussed, while a suitable diversity metric for ¥ can
be chosen, it often leads to some loss in accuracy. To achieve an optimal bal-
ance, inspired by [3l4], we redesign ¥ to balance both accuracy and diversity
simultaneously. Specifically,

U= Ay % Accuracy(ﬁg) + (1= X9) x Diversity(ﬁg)7 (10)

where Ao is a hyperparameter to control the trade-off between accuracy and
diversity, and Accuracy(-) and Diversity(-) represent accuracy metrics (e.g.,
Recall@K, NDCGQK, etc.) and diversity metrics (Sec. [3.1]), respectively.

Time Complexity Analysis In the e-greedy strategy for multi-armed bandits,
arm selection and incremental reward updates both have O(1) time complexity
in each step. However, if the reward update uses a complex equation (e.g., Eq. ,
the overall time complexity in each step will depend on that equation.

Discussion 1) We mainly work on the latent features of items to explain the
recommendation diversification. The key consideration is that current main-
stream recommendation models still originate from collaborative filtering meth-
ods, which are based on latent features. These motivate us to work on the latent
features for controlling the diversity level of recommendation results. It is worth
noting that our model can both work raw and latent features. 2) The main rea-
son why we decided to apply the perturbation A to the features of items is that
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perturbing at the items’ feature level enables us to identify specific features that
impact the diversity of the model at a more fine-grained feature level. 3) The
multi-armed bandits method, unlike previous approaches, is primarily utilized in
online recommendation scenarios. In our study, we employ this method to opti-
mize the learning objective in the counterfactual framework, especially targeting
and optimizing the non-differentiable diversity metrics directly.

3.4 Meaningful Factors Identification as Explanation

Once finishing optimization, we get the “minimal” changes A and the corre-
sponding recommendation results under such changes. The values of A indicate
the influence of item factors on the accuracy-diversity trade-off of the recom-
mendation lists generated by the base model g. Specifically, compared with the
initial item latent feature matrix Q, after adding the values of A, the model g is
supposed to generate more diverse lists. Therefore, the perturbation A provides
insights for our explanation. In particular, larger absolute values of A correspond
to a greater need for the corresponding factors to promote greater diversity.

Based on the above analysis, after we identify each factor’s “ability” to incur
the diversity of the recommendation list, we further select the most meaningful
factors of the items affecting diversity and give insights into recommendation
systems. We provide two perspectives on detecting the most meaningful factors
here, namely CMB-Individual and CMB-Shared.

CMB-Individual, feature-level
CMB-Shared, item-level

Specifically, the strategy of CMB-Individual is to directly select the factors cor-
responding to the higher absolute values of A on the factors as an explanation
for each user. The CMB-Shared strategy is that we take the absolute values of
A, compute the mean value by rows, and compress the A into a vector A, € R?,

A, = MEAN(|A|, dim = 0), (11)

and then choose the factors corresponding to the higher values of A, as an
explanation. After discovering the most meaningful factors, we can adjust the
values of these factors to meet the corresponding needs of diversity.

3.5 Overall Procedure

The entire procedure contains three stages, as shown in Fig. [I} In the first stage,
the base model g introduced above will be trained. In the second stage, the coun-
terfactual framework is first constructed. Based on this, the bandit algorithm is
used to learn the perturbations by optimizing the diversity of the recommended
top-K lists. Our framework is model-agnostic and applicable to any recommen-
dation model g. Meanwhile, our model is metric-agnostic since the optimization
objective can be any diversity metric. In the final stage, two strategies are utilized
to discover the most meaningful factors for recommendation diversification.
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Table 1. The statistics of datasets.

Dataset #User #Item #Subtopic #Interaction Density

MLIM 5,950 3,125 18 573,726 0.0309
ML10M 51,692 7,135 19 4,752,578 0.0129
CDs 13,364 29,294 30 371,204 0.0009

4 Experiments

In this section, we mainly focus on the following questions:

— RQ1: Does our method get better recommendation diversification effects than
the state-of-art methods? Especially the trade-off between recommendation
accuracy and diversity.

— RQ2: Do the selected top features play a significant role in diversification
performance?

— RQ3: Are our generated feature-level diversification explanations reasonable
and intuitive in real cases?

Given the limited space, for a more detailed experiment setup and the results,
we invite the reader to check out the Appendix for the supplementary material.

4.1 Experiment Setup

Datasets We performed experiments on three widely used real-world datasets,
MovwieLens 1M [12] (ML1M), MovieLens 10M [12] (ML10M), and Amazon CDs
and Vinyl [19] (CDs) to evaluate the models under different data scales and
application scenarios. The statistics of the datasets are shown in Table

For all datasets, we convert ratings to implicit feedback, treating ratings no
less than four (out of five) as positive and all other ratings as missing entries. To
optimize base models, we randomly sample 3 negative instances for each user’s
positive interaction. For the CDs dataset, we use the top 30 categories with
the highest frequency as subtopic information according to the metadata. Each
dataset is split 8:1:1 for training, test, and validation. We independently run all
models five times and report the average results.

Baselines To verify the effectiveness of our proposed CMB method, we com-
pare it with the following representative baselines. Two vanilla recommendation
models BPRMF [2I] and LightGCN [13], which are introduced in Sec.
Two recommendation diversification methods MMR [3] and DPP [4]. In addi-
tion, we also explore the method CMBSr2dient which represents our method is
directly optimized for differentiable metrics (e.g., ILAD) by using the gradient
method instead of the proposed bandit method.



Counterfactual Multi-player Bandits for Recommendation Diversification 11

Evaluation Metrics In all experiments, we evaluate the recommendation per-
formance using accuracy and diversity metrics on Top-K (K = 10, 20) lists,
where K represents the list length as discussed earlier during training. For all
metrics, the higher the value is, the better the performance is. Accuracy: we
evaluate the accuracy of the ranking list using Recall@K and NDCGQK. Di-
versity: we evaluate the recommendation diversity by the a-nDCGQK, SCQK,
PCQK, and ILAD@K introduced previously.

Implementation Details In our experiments, we employ BPRMF and Light-
GCN as the base model g, with Light GCN set to three layers of the graph neural
network. For baselines, BPRMF calculates the relevance scores for MMR and
constructs the kernel matrix for DPP. The trade-off parameter for MMR and
DPP is empirically set to 0.9 after testing values from {0.1, 0.3, 0.5, 0.7, 0.9},
prioritizing guaranteeing the optimal accuracy performance as much as possible.
All models have a latent feature dimension of 50, with K set to 20 for coun-
terfactual learning. The « in a-nDCG is set to 0.5 same as [I72202733], and
model parameters are optimized by Adam [I5] with a learning rate of 0.005. In
the bandit algorithm, we set the threshold of arm values A to 0.3, the number
of arms n 4 to 61, and € to 0.1. The hyperparameters A1, A2, and the total num-
ber of iterations T are set to 5, 0.9, and 200, respectively. The source code is
available at https://github.com/Forrest-Stone/CMB.

4.2 Performance Comparison (RQ1)

Tables and [] compare the performance of different methods under two
base models. Our model is denoted as CMBgpryr when using BPRMF, and
CMByightcen when using LightGCN. The * in CMB-* represents the specific
objective v optimized in Eq. For instance, CMB-a-nDCG means that we
adopt the a-nDCG metric for ¥, while CMB-a-nDCG-NDCG means that we
use the trade-off optimization objective (Eq. of a-nDCG and NDCG. When
optimizing a single diversity metric, A\ is set to 0 for optimal results. BPRMF
is the default base model g unless otherwise specified. The observations from
Tables [2] B} and [ are as follows.

Trade-off observations. First, as shown in Table 2] CMB achieves a better
balance between accuracy and diversity than other methods. While diversifica-
tion methods like DPP improve diversity performance, they often significantly
compromise accuracy performance. For example, DPP increases ILAD@10 on
MLIM by 83.73% but causes a 75.43% drop in Recall@10, which is counter-
productive to the primary goal of recommendation systems. In contrast, our
method achieves an acceptable balance between accuracy and diversity. For in-
stance, CMBgprMp-SC-Recall increases ILAD@10 by 11.74% on MLIM and
8.48% on ML10M, with only a 5.05% and 3.81% reduction in Recall@10, re-
spectively. Similar trends are observed in other CMB variants, as evidenced in
Tables [2] and [3] demonstrating the effectiveness of our trade-off objective.
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Table 2. Comparisons of the accuracy and diversity performance. The base model g
here adopts BPRMF. The bold scores are the best in each column, and the underlined
scores are the second best. The symbols 1 and |, along with their preceding values,
represent the percentage (% is omitted) improvement and decrease of a given method
in the corresponding metric, in comparison to the base model g.

Metric Recall@10 NDCG@10 a-nDCG@10  SC@10 PCa@l10 ILAD@10
MLI1M

BPRMF 0.1465 0.2742 0.7035 0.4993 0.3206 0.2010

MMR 0.0441 (69.90]) 0.0741 (72.98}) 0.6980 (0.78}) 0.4692 (6.03}) 0.0970 (69.74}) 0.1709 (14.98})

DPP 0.0360 (75.43)) 0.0689 (74.87)) 0.7186 (2.151) 0.5558 (11.321) 0.4554 (42.051) 0.3693 (83.731)

CMBgprur-a-nDCG-Recall 0.1388 (5.26)) 0.2588 (5.62]) 0.7094 (0.841) 0.5097 (2.081) 0.3291 (2.651) 0.2253 (12.091)

CMBgprup-SC-Recall 0.1391 (5.05)) 0.2594 (5.40}) 0.7078 (0.611) 0.5102 (2.181) 0.3307 (3.151) 0.2246 (11.741)

CMBgprup-PC-NDCG 0.1388 (5.26]) 0.2584 (5.76)) 0.7093 (0.821) 0.5107 (2.281) 0.3286 (2.501) 0.2247 (11.797)

CMBgprur-ILAD-NDCG  0.1387 (5.32]) 0.2587 (5.65)) 0.7109 (1.051) 0.5127 (2.681) 0.3313 (3.341) 0.2246 (11.747)
ML10M

BPRMF 0.1549 0.2648 0.7043 0.5483 0.2453 0.1886

MMR 0.0402 (74.05]) 0.0602 (77.27)) 0.7095 (0.741) 0.5155 (5.98]) 0.0416 (83.04) 0.1623 (13.94])

DPP 0.0253 (83.67) 0.0541 (79.57)) 0.6977 (0.94}) 0.6072 (10.741) 0.3735 (52.261) 0.3764 (99.581)

CMBgpruvr-a-nDCG-Recall 0.1488 (3.94]) 0.2531 (4.42]) 0.7126 (1.181) 0.5544 (1.111)  0.2475 (0.901) 0.2045 (8.431)

CMBgprMr-SC-Recall 0.1490 (3.81)) 0.2535 (4.27)) 0.7123 (1.141) 0.5544 (1.111) 0.2477 (0.981) 0.2046 (8.481)

CMBgprur-PC-NDCG 0.1487 (4.00)) 0.2532 (4.38)) 0.7123 (1.141) 0.5546 (1.151) 0.2471 (0.731) 0.2051 (8.751)

CMBgprup-ILAD-NDCG  0.1486 (4.07)) 0.2527 (4.57)) 0.7110 (0.951) 0.5541 (1.061) 0.2460 (0.291) 0.2050 (8.707)

CDs

BPRMF 0.0515 0.0457 0.7206 0.1700 0.1665 0.2332

MMR 0.0033 (93.59]) 0.0032 (93.00)) 0.7240 (0.471) 0.1705 (0.291) 0.0247 (85.17)) 0.2372 (1.721)

DPP 0.0115 (77.67]) 0.0128 (71.99)) 0.7116 (1.25)) 0.2409 (41.711) 0.3261 (95.861) 0 4013 (72.081)

CMBgprur-a-nDCG-NDCG 0.0477 (7.38)) 0.0422 (7.66}) 0.7183 (0.32)) 0.1739 (2.291) 0.1825 (9.611) 1 (7.687)

CMBgprMr-SC-NDCG 0.0475 (7.77)) 0.0421 (7.88])) 0.7192 (0.19)) 0.1736 (2.121) 0.1824 (9.551) O 2510 (7.631)

CMBgprmr-PC-Recall 0.0476 (7.57)) 0.0421 (7.88)) 0.7180 (0.36)) 0.1737 (2.18%) 0.1816 (9.071) 0.2509 (7.591)

CMBgpprur-ILAD-Recall  0.0477 (7.38)) 0.0422 (7.66)) 0.7189 (0.24)) 0.1736 (2.121) 0.1823 (9.491) 0.2513 (7.761)

Second, not only does the combined optimization objective help achieve a
reasonable balance between accuracy and diversity, but also the single diversity
objective does. For instance, as shown in Table @, when compared to BPRMF,
CMBgprMrE-ILAD shows a decrease of 18.79% in Recall@10 and an increase
of 40.62% in ILAD@10 on ML10M, while showing a decrease of 31.29% in
NDCG®@10 and an increase of 59.58% in PC@10 on CDs. These results demon-
strate that the proposed single diversity objective can improve diversity perfor-
mance while maintaining accuracy performance, and outperforming other diver-
sity methods like MMR and DPP.

Finally, compared with the single diversity objective optimized by CMB, the
combined optimization objective also achieves a better balance between accu-
racy and diversity. For example, according to Table 2] and [} on ML10M and
CDs, the Recall@10 of CMBgprMpr-SC-NDCG is 19.04% and 35.71% higher than
CMBgprMr-SC, while the SCQ10 only decreases by 5.06% and 10.33%, respec-
tively. Similar findings can also be found in other cases. These results demon-
strate the superiority of our proposed trade-off target in achieving a balance
between accuracy and diversity.

Diversification observations. First, the CMB model can effectively optimize
various diversity metrics while yielding satisfactory results. For instance, as
shown in Table [2] and ] CMBgprMmr-a-nDCG outperforms the best baseline
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Table 3. Comparisons of the accuracy and diversity performance. The base model g
here adopts Light GCN. The bold scores are the best in each column, and the underlined
scores are the second best. The symbols 1 and |, along with their preceding values,
represent the percentage (% is omitted) improvement and decrease of a given method
in the corresponding metric, in comparison to the base model g.

Metric Recall@10 NDCG@10 «a-nDCG@Q@10 SC@10 PCa@l0 ILAD@10
ML10M
LightGCN 0.1724 0.2912 0.7056 0.5680 0.1979 0.1480
CMBLightcen-a-nDCG-NDCG 0.1706 (1.04]) 0.2866 (1.58]) 0.7061 (0.071) 0.5655 (0.44)) 0.2131 (7.681) 0.1562 (5.541)
CMBurignigon-SC-NDCG 0.1706 (1.04}) 0.2865 (1.611) 0.7060 (0.067) 0.5650 (0.53}) 0.2142 (8.241) 0.1565 (5.741)
CMBghcox-PC-Recall 0.1704 (1.16}) 0.2866 (1.58)) 0.7062 (0.091) 0.5664 (0.28)) 0.2122 (7.231) 0.1562 (5.541)
OMBpignicon-ILAD-Recall 01705 (1.10)) 0.2866 (1.58)) 0.7072 (0.231) 0.5661 (0.33)) 0.2130 (7.631) 0.1561 (5.471)
CDs

Light GCN 0.0567 0.0500 0.7260 0.1616 0.0931 0.1659
CMBypignicon-a-nDCG-Recall 0.0554 (2.201) 0.0490 (2.004) 0.7240 (0.28)) 0.1643 (1.671) 0.0938 (0.757) 0.1751 (5.551)
CMBghtcon-SC-Recall 0.0554 (2.29]) 0.0489 (2.20}) 0.7238 (0.30]) 0.1642 (1.611) 0.0935 (0.437) 0.1751 (5.551)
OMBignicen-PC-NDCG 0.0553 (2.47]) 0.0489 (2.20)) 0.7238 (0.30)) 0.1644 (1.731) 0.0934 (0.321) 0.1748 (5.361)
CMBuigncon-ILAD-NDCG  0.0552 (2.651) 0.0488 (2.401) 0.7237 (0.32)) 0.1642 (1.611) 0.0936 (0.541) 0.1750 (5.491)

by 2.26% in a-nDCG@10 on ML10M. Additionally, from these two tables, we
also observe that CMBgprMr significantly improves all diversity metrics com-
pared to the base model BPRMF when optimized individually.

Second, as illustrated in Tables[2]and [d] CMBgpryr-SC achieves the second-

best SCQ10 on ML10M, only 0.12% decrease compared to the best baseline.
Similarly, CMBgprMmr-PC also achieves the second-best performance in the PC
metric on ML10M and CDs. These results demonstrate that CMB can achieve
a satisfactory diversification. Moreover, while CMB sometimes trails DPP in
diversity metrics, this is because DPP prioritizes diversity over accuracy. In con-
trast, our method balances both, leading to improved accuracy even if diversity
scores are slightly lower when compared to the DPP.
Application observations. First, from Table 4] by comparing CMBSadiont_
ILAD and CMBgprMmr-ILAD, we observe that the gradient descent optimization
method outperforms the bandit optimization method in terms of accuracy on
CDs, while exhibiting better diversity results on MLI10M for PC and ILAD
metrics. Thus, the choice of which optimization method should be based on the
specific application scenario (e.g., dataset, diversity level, etc.).

Second, as shown in Table 2] and ] compared to CMBRrandom, CMB that
only optimizes a single diversity metric also achieves good results on that met-
ric, which shows that our bandit method is effective for optimizing different
diversity metrics. Moreover, optimizing the combination of trade-off objectives
simultaneously also achieves a good balance in accuracy and diversity, further
highlighting the effectiveness of our combined optimization objectives. For exam-
ple, NDCG@10 of CMBgprMmr-SC-NDCG on ML10M and CDs is 18.88% and
34.08% higher than CMBgprMr-Random, respectively, while the SCQ10 only
decreases by 1.35% and 6.16%.

Other observations. First, the accuracy and diversity trade-off exists widely.
No method can achieve the best results in both accuracy and diversity since



14 Y. Zhang et al.

Table 4. Comparisons among the accuracy and diversity performance of CMB opti-
mizes the single diversity metrics. The base model g here adopts BPRMF. CMB{ agient
represents CMB that directly optimizes the differentiable metric ILAD by using the
gradient method. CMBgprMmr-Random represents CMB that chooses the arm randomly
for each player. The bold scores are the best in each column.

Metric Recall@K NDCG@K a-nDCGAK SCaK PCaK ILAD@QK
K=10 K=20 K=10 K=20 K=10 K=20 K=10 K=20 K=10 K=20 K=10 K=20
ML10M

CMBgeryvr-Random 0.1266 0.2032 [0.2129 0.2217 |0.7108 0.8045 |0.5630 0.6930 0.2625 0.3514 [0.2584 0.2787
CMBgeruMr-a-nDCG 0.1267 0.2033|0.2138 0.2223|0.7467 0.8336|0.5794 0.7002 0.2620 0.3500 |0.2554 0.2757
CMBgprur-SC 0.1250 0.2024 [0.2106 0.2201 [0.7436 0.8295 |0.6065 0.7253|0.2607 0.3496 |0.2542 0.2751
CMBgprur-PC 0.1259 0.2018 [0.2135 0.2216 [0.7104 0.8036 |0.5726 0.7012 |0.2714 0.3598 |0.2582 0.2784
CMBgerumr-ILAD  0.1258 0.2021 |0.2121 0.2209 |0.7147 0.8073 |0.5650 0.6928 |0.2651 0.3556 0.2652 0.2843
CMBSEGSCILAD  0.1174 0.1914 |0.1982 0.2086 |0.6992 0.7948 |0.5003 0.6279 |0.3089 0.3780(0.2900 0.3034

CDs

CMBgpruvr-Random 0.0353 0.0582 [0.0314 0.0397 [0.7053 0.8087 |0.1850 0.2593 [0.2659 0.3909 [0.3081 0.3220
CMBgprvr-a-nDCG 0.0358 0.0583 |0.0319 0.0400 [0.7150 0.8155|0.1866 0.2593 [0.2621 0.3859 |0.3071 0.3209
CMBgprar-SC 0.0350 0.0579 0.0310 0.0393 [0.7043 0.8074 |0.1936 0.2684/0.2649 0.3884 |0.3064 0.3205
CMBgpryr-PC 0.0347 0.0572 |0.0310 0.0391 |0.7050 0.8086 [0.1862 0.2610 |0.2755 0.4050|0.3117 0.3255
CMBgprvr-ILAD  0.0354 0.0585 |0.0314 0.0397 [0.7046 0.8083 |0.1855 0.2598 [0.2657 0.3885 [0.3102 0.3233
CMBSHEH-ILAD  0.0524 0.0846|0.0458 0.0574(0.7164 0.8154 [0.1717 0.2353 [0.1768 0.2438 |0.2788 0.2866

an increase in accuracy generally corresponds to a decrease in diversity. From
the results in Table 2, DPP achieves the best results in SCQ10, PCQ10, and
ILAD@10 on MLIM and ML10M, but it achieves the worst performance in
Recall@10 and NDCG@10 on these datasets.

Second, generally, no single method demonstrates superior performance across
all diversity metrics. For example, as shown in Table 2] DPP has the highest
SCa@10, PC@10, and ILAD@10 performance on ML10M and CDs, but has the
lowest a-nDCG@K performance. This indicates the inherent gap between dif-
ferent diversity evaluation metrics, proving the necessity of optimizing different
metrics in a general framework, which is just the focus of our work.

4.3 Validity Analysis of Explanations (RQ2)

As discussed in Sec[3:4] the values of A affect the diversity of recommendation
lists generated by the base model g. To evaluate whether A can discover the
meaningful factors that improve diversity or balance accuracy and diversity, we
follow the widely deployed erasure-based evaluation criterion [IT] from Explain-
able Al. Specifically, we erase the “most meaningful factors” from A (setting
them to 0) and input this modified A into the pre-trained model g to generate
new recommendations. We then assess our model’s effectiveness regarding the
diversity and accuracy of these new results. We explore two erasure strategies,
CMB-Individual (CMB-I) and CMB-Shared (CMB-S) — by erasing the top, least,
or random F' factors, where F' is the number of erasing factors. For CMB-I, we
erase the top/least/random-F factors of each column of the absolute values of
A. For CMB-S, we average each row of the absolute values of A, then erase the
top/least /random-F factors by row. Compared with the least/random manners
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Fig. 2. Factor validity analysis on ML10M dataset when utilizing different erasure
methods (CMB-I and CMB-S) with top/least/random manners.
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Fig. 3. Factor validity analysis on ML10M dataset when utilizing different erasure
methods (CMB-I and CMB-S) with different F.

in Fig. 2] we observe that omitting these meaningful factors by the top manner
reduces the diversity scores much while increasing the accuracy measures a lot.
And the least manner does little to alter the performance of diversity or accu-
racy. Therefore, it verifies that the meaningful factors we discover can benefit
the trade-off between diversity and accuracy of recommendation results. Further-
more, as shown in Fig. |3 the results of the CMB-Shared approach with top-F
(F = 5/10) are highly equivalent, indicating that the CMB-Shared approach
can identify only a few factors that significantly impact the model’s diversity or
accuracy. Observations from other approaches are similar.

4.4 Case Study of Explanations (RQ3)

The purpose of the case study is to demonstrate the applicability of our method
to both latent and raw features. As described in Sec. we illustrate how to
generate explanations using raw features in this section. Following [11138], we
adopt the same method to extract the features and obtain the raw user and item
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Fig. 4. The feature explanations of CMB-Individual-a-nDCG-Recall. Only the results
of partial items are shown.

Table 5. Top-5 feature-based explanations on Phones dataset.

Method Feature-based Explanations

CMB-Shared-SC-Recall sound, volume, connector, headphone, protection
CMB-Shared-SC-NDCG  charger, button, flashlight, cable, protection
CMB-Shared-ILAD-Recall connector, volume, pocket, charger, sound
CMB-Shared-ILAD-NDCG port, headset, plug, volume, package

feature matrices. Then, we apply two different feature-based explanations intro-
duced in Sec. 34 on Phones dataset from Amazon. The explanation results are
presented in Fig. [ and Table[5] These findings support our idea that it is chal-
lenging to manually discover feature explanations for diversity in recommender
systems. For example, as shown in Table[5] it is difficult to know how input fea-
tures (such as sound, charger, and connector) would determine the diversity of
phone recommendations. As a result, explainable diversity approaches like ours
are necessary to discover such features in the recommendation.

5 Conclusion and Future Work

In this work, we propose CMB, a general bandit-based method, which opti-
mizes the recommendation diversity while providing corresponding explanations.
The method exhibits wide applicability and is agnostic to both recommendation
models and diversity metrics. The proposed combination optimization target
helps reach a more reasonable trade-off between recommendation accuracy and
diversity performance. Besides, the explanations regarding diversification can
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be provided with the meaningfulness of the factors obtained from counterfac-
tual optimization. Extensive experiments on real-world datasets demonstrate
our method’s applicability, effectiveness, and explainability. In the future, we
plan to design more efficient methods for generating explanations.
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