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Abstract. Bayesian optimization (BO) is a powerful method for opti-
mizing expensive black-box functions and has been successfully applied
across various scenarios. While traditional BO algorithms optimize each
task in isolation, there has been recent interest in speeding up BO by
transferring knowledge across similar previous tasks. However, most re-
cent studies on this problem are based on two implicit assumptions that
(1) the search space of the test task (the ultimate task the model aims
to solve) needs to be defined suitably a priori and (2) the optimum of
the test task is very close to the evaluations of the previous tasks. These
restrictive assumptions limit BO’s applicability in real-world scenarios.
In this paper, we propose an approach that leverages transfer learning
to design promising search spaces for BO, thereby overcoming these lim-
itations. Our approach eliminates the need for prior knowledge of the
search spaces of both the test and previous tasks while also relaxing
the assumption that the test task’s optimum is close to evaluations of
previous tasks. We propose a novel BO algorithm to automatically de-
sign promising search spaces for BO, not only exploiting regions near
good evaluations of previous tasks but also exploring other promising
regions using strategy shifting and expanding the search space. Our al-
gorithm leverages both task similarity measurements and the best eval-
uation achieved so far for the test task. Further, theoretically, we prove
that our proposed algorithm is guaranteed to find a global optimum in
the worst-case scenario although the search spaces are unknown. Finally,
we empirically demonstrate that our algorithms considerably boost BO
and outperform the state-of-the-art on a wide range of benchmarks.

Keywords: Bayesian optimization - Transfer Learning - Gaussian Pro-
cess - Designing search space.
1 Introduction

Bayesian optimization (BO) is a powerful method for optimizing expensive black-
box functions. It works by iteratively fitting a surrogate model, usually a Gaus-

*These authors contributed equally to this work.
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Fig. 1. True contour plot of the Beale 2D-function and data distribution on 3 scenarios.
The red dots: the global optimum of the target task; the yellow dots: the optimum point
of training tasks. (Left) Target task optimum is close to most training tasks’ optima;
(Middle) Target task optimum is distant from most training tasks’ optima; (Right)
Target task optimum is distant from some training tasks’ optima.

sian process (GP), and maximizing an acquisition function to determine the
next evaluation point. Bayesian optimization algorithms have proven particu-
larly successful in a wide variety of domains including hyperparameter tuning
[2], reinforcement learning [14], neural architecture search [11], and Pareto front
learning [29, 30].

However, two issues hamper the efficiency of BO in real-world applications
are (1) slow convergence: given a very limited budget, BO methods often
fail to converge to a good solution quickly [1] and search space definition:
Traditional BO requires the user to define a suitable search space a priori. How-
ever, defining a default search space for a particular data mining problem is
difficult and left to human experts [17]. For example, in many machine learn-
ing algorithms, the hyperparameters or parameters can take values in an un-
bounded space e.g. Ly/Ls penalty hyperparameters in elastic-net can take any
non-negative value; To address the first issue, transfer learning is an efficient
solution to speed up BO by leveraging the information obtained from similar
previous tasks into optimization. In many practical applications, optimizations
are repeated in similar settings. Examples include hyperparameter optimiza-
tion, which is repeatedly done for the same machine learning model on varying
datasets, or the optimization of control parameters for a given system with vary-
ing physical configurations.

Most of the recent works for this transfer learning-based search space design
(e.g., [17,12]) are based on an implicit hypothesis that the optimums of an
objective function (test task) are close to the best evaluations of the previous
tasks (or training tasks). Figure 1 (Left) shows an example of this situation. As
a result, they search only regions close to those evaluations. [17] uses a quite
simple strategy. Instead of searching on the whole search space, they learn a
region in the form of a box or an ellipsoid bounding the best evaluations of
training tasks. However, if the distribution of these best evaluations is large
then the learned search space is not improved compared to the original search
space. This is illustrated in Figure 1 (Right). Another recent work [12] proposes
to use a similarity measurement to choose the good training tasks that are similar
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to the test task. Then, they use a Gaussian process classifier (GPC) to design
promising regions, where the classifier predicts whether a point from the search
space belongs to the promising region or not. However, this approach has two
limitations. First, it is designed for the search space which is discrete and known.
If the search space is continuous, classifying each point from the search space
into a class is expensive or even intractable in the unknown search space setting.
Second, the similarity measurement used in [12] is efficient only when the test
task has enough evaluations and the distribution of evaluations in the test task
is uniform. We will discuss this in detail in Section 5.1.1.

In practice, the optimums of the test task may not be close to the best
evaluations of previous tasks as illustrated in Figure 1 (Middle). Consequently,
both works [17, 12] may encounter limitations in such scenarios. Furthermore, all
these approaches rely on prior knowledge of the search space, and none address
the above second issue, which is challenging.

In this paper, we address designing promising search spaces with the merit of
transfer learning to speed up BO (reducing the number of evaluations) without
requiring prior knowledge of the search space. We propose a novel algorithm to
learn promising search spaces for BO, which not only exploits regions close to
good evaluation points of previous tasks, but also explores promising regions
surrounding the best evaluations of the test task. We propose using a strategy
of shifting and expanding the search space and a novel similarity measurement.
Furthermore, theoretically, we prove that our proposed algorithm is guaranteed
to find a global optimum in the worst-case scenario, even when the search spaces
are unknown. Finally, we demonstrate that our proposed algorithm considerably
boosts BO, and outperforms the state-of-the-art on a wide range of benchmarks.

2 Related works

Previous work has implemented transfer learning for BO in different ways to
leverage the auxiliary information from similar training tasks to achieve faster
optimization on the target task. One way is to learn surrogate models from
source tasks. For example, [27] and [7] train individual surrogate models on each
dataset and then combine them using a weighted sum-based approach. Another
approach, proposed by [13], uses a two-phase framework to extract and aggregate
knowledge from both source and target tasks. [20] employ neural networks to
learn basis functions for Bayesian linear regression. Furthermore, several works
consider the difference between training tasks and target tasks to compute the
kernel of the proposed surrogate [22, 28]. The other line of transfer learning works
focuses on designing acquisition functions. [27] introduce a TAF that utilizes a
variant of the EI acquisition function to leverage the improvement of new points.
[4] propose a method called RM-GP-UCB, where the acquisition function is a
weighted combination of individual GP-UCB acquisition functions for both the
target task and the training tasks. [26] employ reinforcement learning to meta-
train an acquisition function on a set of related tasks, allowing the incorporation
of implicit structural knowledge. From a few-shot learning perspective, [10] pro-
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pose FSFA | which effectively adapts to a wide range of black-box functions using
a small amount of meta-data. In contrast, our work focuses on the design of the
search spaces for transfer learning in BO, taking an orthogonal direction to the
aforementioned methods. It is worth noting that our method can be combined
with these transfer learning-based approaches to enhance the efficiency of BO.
[6] addressed BO using transfer learning where the search spaces of the task and
previous tasks are heterogeneous.

BO with unknown search spaces has been considered in previous works. [16]
consider the weakly specified search space for BO and propose the filtering expan-
sion strategy. This approach is reasonable when a training dataset is available,
as it allows for the initial region to be located near the best evaluation of the
training tasks. Nevertheless, maximizing the acquisition function within their
expanded search space is challenging since the invasion set needs to be specified.
[9] provide the search space expansion strategy to achieve the e— accuracy after
a finite number of iterations. [3] proposes an adaptive expansion strategy based
on the uncertainty of GP model. [23,19] increase the volume of the search space
to guarantee to contain the global optimum of an objective function. However,
none of these works consider transfer learning to leverage data from the previous
training tasks. To our knowledge, we are the first to consider transfer learning
for BO with unknown search spaces by novel expansion strategies.

[5] propose a trust-region method called TuRBO, which is an effective BO
method for high-dimensional problems. Their method is based on adjusting the
size of the trust region and moving towards the best solution so far. Our pro-
posed methods also use the adjustment and the movement of boxes but with
novel strategies by integrating transfer learning. In addition, their method is
nearly a local strategy without providing a convergence analysis. In contrast, we
demonstrate theoretically that our global method converges sub-linearly.

3 Preliminaries

Bayesian optimization (BO) finds the global optimum of an unknown, expensive,
possibly non-convex function f(x). It is assumed that we can interact with f only
by querying at some x € R? and obtain a noisy observation y = f(z) + € where
€ ~ N(0,02). The search space is required to be specified a priori and is assumed
to include the true global optimum. BO proceeds sequentially in an iterative
fashion. At each iteration, a surrogate model is used to probabilistically model
f(z). Gaussian process (GP) [18] is a popular choice for the surrogate model as
it offers a prior over a large class of functions and its posterior and predictive
distributions are tractable. Formally, we have f(z) ~ GP(m(x), k(z,z")) where
m(z) and k(z, x’) are the mean and the covariance (or kernel) functions. Popular
covariance functions include Squared Exponential (SE) kernels, Matérn kernels,
etc. Given a set of observations Dy.; = {z;, yi}le, the predictive distribution can
be derived as P(fi41]|D1.t, %) = N (per1(x), 071 (2)), where pip1(z) = k'K +
o?1] "'y +m(z) and 07, (z) = k(z, ) —k” [K+02I]~'k. In the above expression
we define k = [k‘($,$1), ceey k‘(.]?,.]?t)}, K = [k(xi, Z‘j)hgi,jgt and Yy = [yl, [SPN ;yt]-
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After the modeling step, an acquisition function is used to suggest the next
241 where the function should be evaluated. The acquisition step uses the pre-
dictive mean and the predictive variance from the surrogate model to balance
the exploration of the search space and exploitation of current promising regions.
Some examples of acquisition functions include Expected Improvement (EI) [15,
24], GP-UCB [21, 25]. In this paper, we use the UCB acquisition function which
is defined as follows:

ui(z) = s () + B %oy (x), (1)

where f; is the trade-off coefficient that balances exploration and exploitation.

To measure the performance of a BO algorithm, we use the regret, which is
the loss incurred by evaluating the function at x;, instead of at the unknown
optimal input, formally r; = f(z*) — f(«:). The cumulative regret is defined as
Ry =), ,<p ¢, the sum of regrets incurred over given a horizon of T iterations.

If we can show that limT_,oo% = 0, the cumulative regret is sub-linear, and
so the algorithm efficiently converges to the optimum.

4 Problem Setting

The goal of Bayesian optimization is to find a maximum of the objective func-
tion f(x): argmax,cpaf(x). We consider the function f that is black-box and
expensive to evaluate, possibly non-convex. Further, we only get access to noisy
evaluations of f without gradient information in the form y = f(z) + €, where
the noise € ~ N(0,02) is i.i.d. Gaussian distribution. Unlike traditional BO, we
assume that the search space X C R? of f is unknown a priori. As in [9], we
assume that x* is not at infinity to make the BO tractable.

Without the knowledge of the search space, BO is challenging. However, we
assume that we have knowledge of K previous related BO tasks {f(*) (z) M,
where f*) : R® — R has the same input dimension of f. More precisely, we
have access to noisy observations from these tasks, which are denoted by D*) =

{mz(-k),ygk) = (k) (:(:Z(-k)) + e}, where ny is the number of observations of the
task k. We create a compact search space X, given noisy observations from
previous BO tasks for the following problem:

argmaxxe/‘?f(x) (2)

The smaller the search space X is, the faster the optimization methods may find
the optimum of that space. Therefore, we aim to design a small X so that it
contains an optimum of the original space X.

5 Designing search spaces for BO

In this section, we propose a safety transfer learning search space strategy that
guarantees the containment of the global optimum of the target task after fi-
nite steps without needing to know the original search space. Previous transfer
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Algorithm 1 Designing search spaces for Bayesian optimization

1: Initial search space AXp; Set of initial points in Xy, denoted by Do; € > 0; m > 0.
2: fort=1,2,...do

3: Fit the Gaussian process using D;—1.

4: Define X; using (3).

5: Find z; = argmax, ¢ 3, u¢+(), where u;(z) defined as in Eq (1) to find x;.
6: Sample y: = f(z¢) + €.

7 Augment the data Dy = {Ds—1, (z¢, y¢) }-

8: end for

learning space works [12,17] have not addressed this safety concern (contain-
ment of global optimum), even within bounded settings. For our approach, the
intuition is that starting with the small good initial region, we will simultane-
ously move and expand the search space so that it can reach the more promising
region. The moving strategy will take advantage of transfer knowledge so that
it can exploit efficiency in the initial stages while the expanding strategy will
ensure the search space contains the global optimum, solving the above safety
issue. Specifically, starting from a good initial user-defined region, denoted by
Xy = [agl),b(()l)] X oo X [a(()d),b(()d)]7 the search space at iteration ¢, denoted by
X, = [ail),bgl)] X oo X [agd), bﬁd)] will be built from X,_; by a sequence of trans-
formations as follows:

)Et—l move )E,*, expand A?t (3)
Our algorithm is described in Algorithm 1. We will detail the expanding and
moving strategy below.

5.1 Moving Strategy

A promising region of a task is where we have a belief that it contains an optimum
of the task with a high probability. Our intuition is that when the target task is
similar to a training task by some measurement, promising regions are similar
in both tasks, so regions surrounding the best evaluations of the training task
are potentially promising regions of the test task to be exploited. Therefore, we
can effectively exploit these regions in the early stages.

Similarity Measurement To measure the task similarity between source tasks
and the target task, [8,12] use the Kendall tau rank correlation coefficient:

Yy a ep, I [(M(k) (zi) < M(k)(xj)) ® (i < yj)] (4)
t(t—1) ’

L(f®, f|Dy) =

where M (*)(.) denotes the mean of GP trained on training dataset {xz(-k), ygk)}?:’“l,
Dy = {x;,y; }i_, is the observations of target task at iteration ¢, and ® denotes
the exclusive NOR operator, e.g value is true if the two sub-statements return
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the same value. Intuitively, the numerator of Equation 4 counts the number of
true ranked pairs between GP trained on training dataset D*) and the observa-
tions of the target task. The ranking is more reasonable than other choices such
that squared error as the focus lies solely on identifying promising regions. How-
ever, there are two main drawbacks of this similarity metric. Firstly, the GP of
the training task may yield predictions with high uncertainty at observations of
the target task, which can be caused by the distribution of the training dataset.
Secondly, the fidelity of the similarity measure in Equation 4 is reduced when
there are few comparison data points, as exemplified by the scenario where the
size of Dy is small. This results in false similarity scores between two tasks during
the initial iterations of the BO method. To mitigate the above disadvantages,
we propose a novel ranking-based measurement. Specifically, at each iteration ¢
and training task k, we define:

E
D = {(z,9) € D¥ | ou(w) < ¢} (5)
where € > 0 is the pre-defined hyper-parameter and o(.) is the standard devia-
tion of target GP at iteration ¢. The proposed similarity score is defined as:

Exi_ﬁ] epgk)H[(Mt(wi)<ut(xj))®(yi<yj)]

e ()
s (£09, 1D = Rl Ry P =
0

(6)

else

where p4(.) is the mean of target GP at iteration ¢; | Dt(k) | denotes the number

of data points in ’Dt(k); and m > 2 is the pre-defined threshold. By limiting the

variance below the threshold ¢, the target GP will predict each point in ng)

with high certainty. Moreover, if € is set not too small, the size of Dék) can be
large even in the first few iterations, enhancing the reliability of the similarity

score. Note that S (f(k), I D]Ek)> will return zero if | Dt(k) | less than m. In this

case, most of the data points in the training task exhibit high variance under the
target GP. This circumstance may arise when the observations of the target task
deviate significantly from the distribution of the training task. Consequently, the
training task is considered unreliable, leading to a similarity score of zero.

Another advantage of Equation 6 compared to Equation 4 is the computa-
tional complexity. The computational complexity when using Equation 4 at iter-
ation ¢ for calculating the similarity score is O(t*? Kn?), where K is the number
of training tasks and n = maxjc|x) nx is the maximum number of observations
in training tasks. On the other hand, the computational complexity of Equation
6 at iteration ¢ is O(n?Kt3), which is much lower since n >> t.

Determining )E't’ Based on the similarity measurement, in each iteration ¢, we
calculate the similarity S ( f®f |D§k)> of the test task f and every training
task f*), where k € [K]. Denote the point with the highest evaluation of the
training task f*) by 2**. We define

1 k) x
et = S wP ek, (7)
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® _ S(E®.sp)

! N 25:1S(f(k)af‘pik))
characterizes the promising position balancing among all the training tasks. The
higher similarity of f and f(*) implies the higher weight wt(k), and hence cgl) is
closer to the best evaluation point z** of the training task f*),

When the target task is quite different from all source tasks, we have less
confidence that the optimum of the test task is close to the best evaluations of
the training tasks, so we need to explore other regions than the ones surrounding
the best evaluations of the training tasks. Such a promising region is potentially
surrounding the best solution found among the evaluation points {z1,...,x¢} of
the test task f because this region has a higher probability of finding a new
solution improving over the current solutions. We denote this solution by CEZ).
Next, we define

(1)

where the weight of 2** is defined as w . The point ¢;

¢ = avey!) + (1 —ar)e?, (8)
where cgl) is determined by Equation 7; c§2) is the best solution found of f(x)
up to iteration ¢; and 0 < a; < 1 is the trade-off coefficient at iteration ¢. The
point ¢} is the position balancing between cgl) which characterizes the promising
region generated by offline data of training tasks, and c§2) which characterizes
the promising region generated from online data of the test task.

The box /’\?{ is constructed from 2\?,5_1 by shifting the center of /’\?t_l, denoted
by c;_1 toward ¢, while retaining the size of X;_;. The region X/ is a balance
between the promising region generated by the best evaluation points of training
tasks which are most similar to the test task, and the promising region generated
by the best evaluation point of the test task. In our experiments, we choose

Srepr S (8, 1D . s
o = FEl (K - ) When ay is large, the region X/ has a tendency to

move to regions of training tasks where we have confidence that the optimum of
f belongs to with high probability. Otherwise, 2\?{ has a tendency to move to the
region surrounding the best solution so far of f. However, since the center ¢} of
22{ may translate fast, which could cause the divergence, we use a fixed domain,
denoted by X to restrict the translation of ¢;. This domain is the minimum
box bounding all the best evaluation points of previous tasks. We translate c|
toward a point ¢} such that ¢} € X and is the closest point to c}. In conclusion,

¢} is the final center of bounding box /’%t’ , which can balance between transfer
knowledge and target observations.

5.2 Expanding Strategy

At first glance, one might consider progressively widening the search space at a
substantial rate to guarantee the containment of the global optimum of the target
task. However, an aggressive expansion rate would result in rapid growth of the
search space volume, leading to an increased exploration phase. Consequently,
the BO method would fail to achieve sub-linear regret. To solve this issue, we
use a novel expanding strategy. Particularly, the size of bounding box X, is
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. () _ @
expanded from X/_; by the bf’% increment in each direction 1 < ¢ < d.

(6) _ (D) () _ g
More precisely, a!” = a,@ ko 20— and b\ = b(z bTaO

the lower and upper bound at dlmensmn i of Xt, respectively. The expansion
increment O (%) is small enough so that the search space is expanded slowly
as the iteration ¢t tends to oo but we still ensure that the optimum will be
found. Importantly, we will show that this expanding strategy combined with
the moving strategy in section 5.1 can achieve the sub-linear regret in the below
section.

where a(z b(z are

5.3 Regret Analysis
We have the following theorem.

Theorem 1. Let f ~ GP(0,k) with a stationary covariance function k. As-
sume that there exist constants s1,s2 > 0 such that P[supxex|0f/0x;| > L] <
sie= L/ for all L > 0 and for all i € {1,2,...,d}. Pick a § € (0,1). Set
Br = 2log(4m/0) + 4dlog(dT'so(1 + In(T)) log(4d81/5)). There is a constant
Ty > 0 which is independent of t such that for any horizon T > Ty, the cu-
mulative regret of the proposed global BO algorithm (Algorithm 1) is bounded

as
2

To
T
Rp < ZLHx* —&|lh + VC1TBryr(Cr) + 5
, with probability 1 — &, where the box Cr is the box covering Xy = H?Zl[a(i), b))
and X,. It is computed as

d (b(l) (i)y T 1 (b( i) 1

T
i — 4 1
cr=]] a<>_of“o)z,_,b<) Z;

i=1 =7 j=1

, and yr(Cr) is the mazimum information gain for any T observations in the
domain Cr (see [21]). This term is computed as follows:

— For SE kernels: y7(Cr) = O((In(T))*+1),
d(1+d
— For Matérn kernels with v > 1: yr(Cr) = O(T#Td*)”)

Compared to the regret bound of the traditional BO with a fixed search space
and without transfer learning, our regret bound has additional components:
ZtTil Li|z* — ¢/||1 and the yr(Cr). Since Ty is a constant; L is a constant and
[|z* — ¢//||1 is bounded by the diameter of boxes C; with t < Ty, this component
ZtTil Li|z* — ¢/||1 is a constant which is independent of ¢. In addition, although
the search space is expanded over iterations, the maximum information gain
of these expanded search spaces yr(Cr) is still bounded by O((In(7))%*!) for

d2(1+d
SE kernels and by C’)(TZV“%LU) with Matérn kernels. Interestingly, we remark
that these bounds of v (Cr) have the same order as the ones for BO with a
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fixed search space (see Theorem 5 of [21]). As a result, the regret bound of our
proposed algorithm is sub-linear in T for SE kernels and Matérn kernels (with
several conditions on d and v).

In our regret bound, the point ¢} reflects ¢, which is defined in Section 5.1.
It represents the center of promising regions where we have confidence that
the optimum 2* belongs to with high probability. Recall that ¢} is the position

El) which characterizes the promising region generated by

the best evaluations of training tasks, and c§2) which is the best solution up to
iteration ¢ of the test task. Therefore, if ¢} is closer to z* then ¢} is closer to
x* and, hence the regret bound is tighter. In our experiments, we see that c}
moves close to x* quite quickly (see Figure 5). Moreover, the constant Ty can be
reduced with the help of transfer knowledge as illustrated in section 6.4. A full

proof of Theorem 1 is provided in Appendix A.

balancing between ¢

6 Experiments

In this section, we demonstrate the effectiveness of our proposed methods across
a wide range of black-box functions. We compare our method with seven other
benchmark methods: GP-based BO; Box-BO [17], which designs a search
space using a box bounding the best evaluations of training tasks; Ellipsoid-
BO [17], which designs a search space using a low-volume ellipsoid bounding the
best evaluations of training tasks; US-BO (Uncertainty Search space Bayesian
Optimization) [12], which learns search spaces by using the similarity between
tasks and a GP classifier; UBO [9], which expands the search space whenever
the local e—accuracy condition is satisfied; FBO [16], which broadens the search
space using a filtering expansion strategy; and a method for high-dimensional
BO TuRBO [5], which uses a trust region centered at the best solution. Note
that both UBO and FBO are designed for an unbounded search space without
leveraging transfer knowledge. To underscore the effectiveness of the proposed
similarity score, we also compare our method with two variants: i) Old-sim,
employing the similarity in Equation 4; and ii) No-transfer, wherein the center
is moved solely to the best-observed point so far. The performance of the methods
is quantified using log regret, and each experiment is repeated 20 times. To ensure
fairness in our experiments, we adopt a uniform sampling approach, selecting
three initialization points within the low-volume bounding box recommended by
Box-BO. This initialization strategy aims to introduce additional information
from training tasks to non-transfer methods, such as TuRBO, FBO, UBO and

No-transfer. For our method, we set ¢ = @ and m = 2d, where k(.,.)
is the GP kernel and d is the input dimension. Moreover, we set the initial
region )30 as 20% of the restricted domain X, stated in section 5.1. Due to
space limitation, we also provide the empirical analysis of the proposed
method’s hyper-parameters, e.g ¢, m, proportion of initial region in

Appendix C to show the robustness of our method.

The code is available at https://github.com/Fsoft-AIC/BO-transfer-search-space
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6.1 Experiments on synthetic functions

We evaluate our method and the benchmark methods on several types of stan-
dard optimization benchmark functions. We design the synthetic experiments in
three scenarios with different input dimensions: Scenario 1 the global optimum
of the target task is in proximity to the best evaluations of all training tasks;
Scenario 2 the global optimum of the target task is distant from all the best
evaluations of training tasks; Scenario 3 the global optimum of the target task
is close to some of the best evaluations of training tasks and distant from others.
For the first scenario, we selected Ackley (d = 4), Powell (d = 4), Dixon-Price
(d =5), and Levy (d = 8) as the objective functions. To construct the training
datasets, we apply the random translations and rescalings of up to +/- 30%
to the x and y values, respectively. For the second scenario, we test the algo-
rithms on four benchmark functions: Styblinski-Tang (d = 4), Ackley (d = 5),
Rosenbrock (d = 6) and Griewank (d = 30). Different from the first scenario, we
applied translation for x as well as scalings for y up to +/- 50% to create the
training datasets, thereby decreasing the similarity between the training tasks
and the target task. Additionally, to make the experiments more challenging,
we shifted the search space of each training dataset so that it does not contain
the true optimum of the target function. Consequently, the optimum point of
the target task becomes far from the optimum of the training tasks. Lastly, the
third scenario is a mixture of the first scenario and the second scenario. We select
Hyper-Ellipsoid (d = 5), Ackley (d = 6), Rastrigin (d = 10) and Perm (d = 20)
as the target tasks. To generate the training tasks, we follow a similar procedure
as described in the first scenario to create m; tasks. Additionally, we employ the
mechanism outlined in the second scenario to construct ms training tasks. For
each objective function, we created 15 training datasets, each consisting of 1500
data points. For scenario 3, we choose m; = 10 and mo = 5. The experimental
results are reported in Figure 2, 3, 4.

Ackley 4D Powell 4D Dixon 5D Levy 8D

‘Loq ;egret
Log Regret

N . . Log &Regrit . .
Log Regret

15 =
20 ,\ 00
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 4 10 20 30 40 50
Iterations Iterations Iterations Iterations
—— Proposed No-transfer —— Ellipsoid-BO Us-BO — FBO
— Old-sim —— Box-BO —— GP-based BO —— UBO —— TuRBO

Fig. 2. Performances on four standard functions in Scenario 1. The y—axis presents
the log regret (a smaller value is better).

We consider the first scenario where the global optimum of the target task
is close to the best evaluation of the training tasks. Although other transfer
learning-based methods like Box-BO, Ellipsoid-BO, and US-BO are also designed
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Stybliski-Tang 4D Ackley 5D Rosenbrock 6D Griewank 30D

Log Regret
Log Regret

Log Regret

0 10 2 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 0 50
Iterations Iterations. Iterations Iterations

—— Proposed No-transfer —— Ellipsoid-BO Us-BO — FBO
—— Old-sim —— Box-BO —— GP-based BO —— UBO —— TuRBO

Fig. 3. Performances on four standard functions in Scenario 2. The y—axis presents
the log regret (a smaller value is better).

for this scenario, our method outperforms the other benchmark methods in all
test functions. This superiority stems from its ability to dynamically adapt and
shift towards promising regions as illustrated in Figure 5 (Left). US-BO performs
poorly in experiments due to the challenges in locating the optimal point of the
acquisition in their extracted region. Turbo uses an adaptive shifting strategy
but does not leverage the knowledge of training tasks, and hence performs poorly
compared to our methods. Notably, the Old-sim method yields competitive out-
comes with our proposed approach. This can be attributed to the high similarity
between the training tasks and the target task, indicating that even with limited
comparison points, the similarity metric defined in Equation 4 remains reliable
for each training task.

Hyper 5D Ackley 6D Rastrigin 10D Perm 20D
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Fig. 4. Performances on four standard functions in Scenario 3. The y—axis presents
the log regret (a smaller value is better).

For the second scenario where the global optimum of the target task is fur-
ther to the best evaluations of the training tasks, our proposed method shows
the best results compared to the baselines (Figure 3). In this setting, the resem-
blance between the training tasks and the test tasks diminishes. However, our
methods are adaptive in the sense that they can move to regions surrounding the
best solution so far of the test task rather than regions containing evaluations of
the training tasks if the similarity score is low. We illustrate this movement in
Figures 5 (Right) as an example. As can be seen in Figure 3, the other transfer
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learning-based search space designing methods struggle, as they primarily con-
centrate on the local region around the best evaluation points of the training
tasks. Turbo shows a good performance due to the movement of the trust re-
gion. In contrast with scenario 1, the performance of Old-sim is reduced since the
similarity in Equation 4 is unreliable with few comparison points for dissimilar
training tasks, which can lead to a falsely high similarity score. Conversely, the
No-transfer method exhibits competitive performance by disregarding informa-
tion from dissimilar training tasks. Similar to Scenario 1, our method consis-
tently outperforms the compared counterparts, underscoring the effectiveness of
the proposed similarity score. Moreover, even for the high-dimensional Griewank
function, our method performs more efficiently than TurBO.

A comparable trend is observed in Scenario 3, as depicted in Figure 4. Our
proposed method demonstrates the most favorable outcome, maintaining its ef-
fectiveness even as the input dimension is increased for the Perm test function.
This outcome underscores the capability of the proposed similarity metric to
identify a substantial portion of the training dataset that exhibits strong simi-
larity to the target function, even within a mixed setting.
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Fig.5. (Left) Progress of proposed method on Ackley 4D function. In this scenario,
the optimum point of the target task is close to the best evaluation of training tasks;
(Right) Progress of proposed global method on Rosenbrock 6D function. In this sce-
nario, the optimum point of the target task is far away from the best evaluation of
training tasks. A full progress in given in Appendix B.

6.2 Experiments on hyperparameter tuning

In this part, we assess the effectiveness of our method in deep learning algo-
rithm tuning problems. Specifically, we utilize the ResNet Tuning Benchmark
introduced by [12], which involves optimizing five hyperparameters of ResNet
on datasets such as CIFAR-10, SVHN, and Tiny-Imagenet. Due to space limita-
tion, we added an experiment about tuning hyper-parameters of SGD for ridge
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regression in Appendix D. Differing from [12], we focus on datasets where the
hyperparameter nesterov is set to False, while optimizing the remaining four hy-
perparameters. Our evaluation is based on the Normalized Classification Error
(NCE) [12] as depicted in Figure 6. It is important to note that the experiments
are conducted with discrete input domains, and the search space configuration is
predefined. Since the input domains are discrete, we set initial region X larger
with the rate of 80% of the restricted domain X . Overall, our proposed method
consistently outperforms the compared baseline methods. Additionally, we ob-
served that moving-based strategies, such as TuRBO, No-transfer, and Old-sim,
demonstrate commendable performance even within the predefined search space.
Conversely, UBO and FBO methods exhibit poor performance in the context of
discrete input domains.

Cifar-10 Svhn Tiny-imagenet
0.010 008 .
0.009
0.008
0.007
L1, 0.006 w
o
< |2 0.005 Z 0.04
0.004

0.003
< 0.02

0.002

0.002 0.001
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Iterations Iterations Iterations
—— Proposed No-transfer —— Ellipsoid-BO Us-BO — FBO
—— Old-sim — Box-BO —— GP-based BO — UBO —— TuRBO

Fig. 6. Performances on tuning ResNet for three vision problems. The y—axis presents
the NCE (a smaller value is better).

6.3 Experiments on more real-world applications

To further demonstrate the performance of our methods in real-world applica-
tions, we consider three real-world tasks including location selection for oil wells
(d = 4) [10]; robot pushing problem (d = 14) [5], and rover trajectory planning
problem (d = 20) [5]. We assume that the search space of all three real-world
applications is unknown.

Oil Well problem. The objective of this task is to determine the deepest drilled
depth among oil wells based on the longitude and latitude coordinates of both
the surface and bottom of the well. Following a methodology similar to [10],
we utilize 30 datasets, each comprising over 1000 parameter configurations. We
evaluate the transfer learning capabilities using a leave-one-task-out approach,
wherein one dataset is reserved for testing while the remaining datasets serve as
training tasks. It is worth noting that the input domains for this experiment are
discrete. For evaluation, we employ the Normalized Classification Error metric
[12]. The experimental results are depicted in Figure 7 (Left), indicating that our
methods outperform the baseline approaches. The relatively lower performance
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of TuRBO can be attributed to the following reasons: given the discrete input
dimension of this benchmark, the size of the trust region becomes too small,
resulting in a limited number of candidates available for evaluation within that
region. In contrast, our methods progressively expand the search space, thereby
circumventing this issue.
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Fig. 7. Performances on three real-world applications. The y—axis presents the regret
and the function value (a smaller value is better).

Robot pushing problem. The goal of this task is to control 14 parameters of
robot hands to push two objects toward the designated goal location [5]. To
create the training task, we uniformly sample the first dimension and the second
dimension of initial positions in a range (—0.5,0.5) and (-2, 2), respectively. We
use the default initial location stated in [5], which is (0,2) and (0, —2) for the
target task. The goal location for all datasets is the same. We created 15 train-
ing datasets with different initial locations, each consisting of 2000 data points.
The function values are reported in Figure 7 (Middle). Our method outperforms
all other methods after a few iterations, consistently demonstrating the best
performance. In contrast, US-BO and Ellipsoid-BO exhibit the poorest results,
partially attributed to challenges in optimizing the acquisition within their des-
ignated spaces. The No-transfer and Old-sim methods yield competitive results,
underscoring the effectiveness of the moving and scaling approach. On the other
hand, FBO, UBO, and TuRBO display similar performances.

Rowver trajectory planning problem. The goal of this task is to optimize the
locations of 10 points in the 2D plane that determine the trajectory of a rover
via BSpline method [5]. Like the robot pushing problem, we uniformly sample
the start position in a box [0,1]?, while the start position of the target task
is (0.05,0.05). The goal position for all tasks is the same. Overall, we had 15
training datasets each consisting of 2000 data points. The outcome is illustrated
in Figure 7 (Right), where our method exhibits superior performance compared
to the alternatives. US-BO and Ellipsoid-BO encounter scalability issues as the
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input dimension increases. TuRBO performs well in high-dimensional inputs,
while Box-BO appears to be constrained within its extracted region.

6.4 Experiments on the search space design

Scenario 1 Scenario 2 Scenario 3

14 — Proposed
No-transfer
— TuRBO
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Distance to optimum point
Distance to optimum point
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2 &

Distance to optimum point

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
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Fig. 8. Distance to the optimum point on three scenarios. The y—axis presents value
in Equation 9 (a smaller value is better).

In this subsection, we study the ability to contain the global optimum of the
target task of our methods on the three scenarios stated in 6.1. For each method,
we report the distance from the global optimum point of the target task to their
search spaces at every iteration:

au(M) = |

2 — avgmin, e 5, a2 — all ||, (9)

where d; (M) is the distance from the global optimum point of the target task to
the extracted search space of method M in iteration ¢, * is the global optimum
of the target task, By(M) is the extracted region of method M in iteration ¢
and ||.]|2 is the lo norm. From Equation 9, the search space contains the global
optimum of the target task if d;(M) = 0. We conduct a comparison of our
methods with TuRBO and the No-transfer methods across different scenarios:
Powell 4D in Scenario 1, Rosenbrock 6D in Scenario 2, and Hyper-Ellipsoid 5D
in Scenario 3. The results are presented in Figure 8. In Scenario 1 (Figure 8
Left), our method rapidly converges towards the global optimum of the target
task, outperforming the No-transfer method, which attains containment of z* at
a later stage. This highlights the effectiveness of transferring knowledge. TuRBO
faces challenges as its trust region fails to contain z* due to fluctuations in d;(.)
during the process. In Scenario 2 (Figure 8 Middle), where xx is distant from
the global optimum of the training tasks, our proposed method significantly
reduces the gap to the optimum point at a faster rate than the No-transfer
method. TuRBO exhibits a similar performance as in Scenario 1. In Scenario 3
(Figure 8 Right), the proposed method successfully reaches the optimum point
within 20 iterations, while TuRBO diverges away from z*. In summary, when the
training tasks exhibit strong similarity, our method’s bounding box can rapidly
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encapsulate * within the initial iterations, resulting in a small value for the term
Ty in Theorem 1. Further experiments to show the balancing between distance
to the global optimum and search space area can be found in Appendix E.
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