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Abstract. Graph Neural Networks (GNNs) have emerged as the state-
of-the-art method for graph-based learning tasks. However, training GNNs
at scale remains challenging, limiting the exploration of more sophisti-
cated GNN architectures and their application to large real-world graphs.
In distributed GNN training, communication overhead and waiting times
have become major performance bottlenecks. To address these chal-
lenges, we propose PipeQS, an adaptive quantization and staleness-aware
pipeline distributed training system for GNNs. PipeQS dynamically ad-
justs the bit-width of message quantization and manages staleness to
reduce both communication overhead and communication waiting time.
By detecting pipeline bottlenecks caused by synchronization and utilizing
cached communication to bypass message delays, PipeQS significantly
improves training efficiency. Experimental results validate the effective-
ness of PipeQS, showing up to an 8.3× improvement in throughput while
maintaining full-graph accuracy. Furthermore, our theoretical analysis
demonstrates fast convergence at a rate of O(T− 1

2 ), where T is the to-
tal number of training epochs. PipeQS achieves a well-balanced trade-
off between training speed and accuracy, significantly reducing train-
ing time without compromising performance. The code is available at
https://github.com/suupahako/PipeQS-code.

Keywords: Distributed GNN Training · Quantization · Staleness-Aware
· Pipeline.

1 Introduction

Graph Neural Networks (GNNs) have become an advanced technique for han-
dling graph-structured data [10], demonstrating exceptional performance in tasks
such as node classification [23], link prediction [27], graph classification [10],
⋆ These authors contributed equally to this work.
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and recommendation systems [25]. However, training on large-scale graphs re-
mains complex and challenging [10], as the growth in the size of the graph can
quickly consume memory and computational resources due to the vast number of
node features and the enormous adjacency matrix. This limits the exploration of
more complex GNN architectures and practical applications on large real-world
graphs.

To address the challenges of training on large-scale graphs, researchers have
developed sampling-based methods such as GraphSAGE [5] and VR-GCN [1],
which reduce the full graph to mini-batches through neighbor sampling, or by ex-
tracting subgraphs as training samples, like Cluster-GCN [2] and GraphSAINT
[26]. Although these methods reduce computational resources, they introduce
approximation errors and suffer from gradient variance problems, where the ran-
domness in sampling leads to unstable gradient estimates, slowing convergence
and reducing model accuracy, especially as graph data scales.

In addition to sampling-based methods, distributed full-graph training has
emerged as a promising approach for handling large-scale graph training. This
method partitions a large graph into smaller subgraphs, each capable of fit-
ting into a single machine, and communication occurs between these machines
to train the partitioned subgraphs. Early works such as NeuGraph [12], ROC
[8], CAGNET [18], and Dorylus [17] have demonstrated the significant poten-
tial of distributed GNN training. Although distributed full-graph training can
retain complete full-graph structural information, it requires frequent informa-
tion exchange between partition nodes, which leads to a significant increase in
communication traffic and seriously affects training efficiency. Additionally, the
computation of the local nodes needs to asynchronously receive messages from
the remote nodes, which causes unnecessary waiting times during communica-
tion phases, further degrading overall throughput. Communication overhead and
latency have become the major bottlenecks of distributed full-graph training.

Some studies have explored ways to improve distributed full-graph training
to address the above bottlenecks, including message quantization and stale-based
methods. For the first bottleneck, BNS-GCN [20] reduces communication time
by sampling boundary nodes. AdaQP [19] and EC-Graph [16] apply quantiza-
tion techniques to compress node features, significantly reducing communication
volume. However, the compression error introduced is not conducive to the scal-
ability of these methods. Staleness-based methods have been used to solve the
second problem, such as SANCUS [15], which provides a strategy to improve
training efficiency by allowing stale updates to replace fresh communication.
PipeGCN [21] introduces a pipeline mechanism that uses feature staleness and
gradient staleness to reduce communication waiting times. Since stale features
are used, these methods require longer training time to ensure the convergence
rate of the model. The above methods cannot address both issues at once and of-
ten face a trade-off between communication efficiency and convergence stability.
Therefore, achieving a balance between minimizing communication overhead and
maintaining convergence in distributed full-graph training remains a challenge.
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In this work, we propose PipeQS, a novel distributed GNN training method
that, for the first time, integrates quantification and staleness within a pipeline
framework. To address the potential convergence degradation typically associ-
ated with these techniques, we introduce an adaptive adjustment mechanism
for bit-width and the number of staleness iterations. Our method effectively
reduces communication overhead and solves the communication waiting prob-
lem, striking an ideal balance between convergence stability and communication
time. PipeQS achieves excellent communication efficiency while maintaining a
basic convergence rate of O(T− 1

2 ), making it a robust solution for large-scale
distributed GNN training.

Our main contributions are summarized as follows:

– We propose PipeQS, a distributed GNN training method that innovatively
integrates quantification and staleness within a pipeline framework, address-
ing the challenges of communication overhead in large-scale GNN training.

– We introduce an adaptive mechanism for adjusting bit-width and the number
of staleness iterations, ensuring that the convergence rate is maintained at
O(T− 1

2 ). This allows the method to achieve strong communication efficiency
while preserving the basic convergence rate.

– Our theoretical analysis and empirical evaluations confirm the effectiveness
of PipeQS in achieving efficient GNN training while maintaining convergence
stability, even as graph size increases. PipeQS achieves significant speedups
across datasets, reaching up to 5.06x on Ogbn-products and 4.51x on Reddit.

2 Related Works

2.1 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) take graph-structured data as input and aim
to learn feature vectors (embeddings) for each node in the graph. At each layer,
GNNs perform two core operations: neighbor aggregation and node update,
which can be expressed as:

zℓv = ϕℓ(
{
h(ℓ−1)
u |u ∈ N(v)

}
), (1)

hv = ψℓ
(
zℓv, h

(ℓ−1)
v

)
, (2)

where N(v) represents the neighbor set of node v, hℓv is the learned embed-
ding of node v at layer ℓ, zℓv is an intermediate feature computed through an
aggregation function ϕℓ, and ψℓ is the function that updates the node’s feature.
In this work, our proposed method, PipeQS, builds upon GCN as the base-
line model. In the original GCN model [10], the aggregation function ϕℓ uses a
weighted average, and the update function ψℓ is defined as a single-layer percep-
tron, σ(W ℓ(zℓv)), where σ(·) denotes a non-linear activation function, and W ℓ is
the learnable weight matrix.
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2.2 Distributed GNN Training

GNNs excel in tasks like node classification and link prediction by aggregating
neighboring features to update node representations [10, 23]. However, scaling
GNNs to large graphs with millions of nodes poses challenges due to increasing
memory and computational demands [7]. Distributed GNN training mitigates
this by partitioning large graphs into subgraphs, training them in parallel while
exchanging boundary node features. Early works such as NeuGraph [12], Ali-
Graph [24], ROC [8], and Dorylus [17] pioneered this approach but face the
persistent challenges of communication overhead and communication waiting.
As partitions increase, the number of boundary nodes grows, inflating communi-
cation costs. BNS-GCN [20] reduces communication via boundary node sampling
but introduces gradient variance, destabilizing training.

2.3 Quantization-based Methods

Quantization is another effective strategy to reduce communication overhead,
especially in large-scale graphs. AdaQP [19] dynamically adjusts the bit-width of
messages, significantly lowering communication delays. Other techniques, such as
SGQuant [3], use hierarchical quantization to minimize memory and bandwidth
needs. However, these methods introduce update variance due to quantization
errors, impacting convergence stability, especially for large graphs with high-
dimensional features.

2.4 Asynchronous Distributed Training Methods

Asynchronous training methods aim to reduce communication waiting times by
using stale gradients or features. In deep learning, systems like Hogwild! [13],
SSP [6], and MXNet [11] have employed asynchronous updates to hide commu-
nication costs. For GNNs, PipeGCN [21] performs parallel communication and
computation, utilizing stale features to reduce synchronization delays. However,
it assumes a balance between communication and computation time, which may
not always hold, limiting its efficiency gains. SANCUS [15] and EC-Graph [16]
similarly reduces communication by allowing stale updates, caching embeddings,
and skipping communication when possible. While effective in reducing commu-
nication, balancing communication efficiency and convergence stability remains
a challenge in such staleness-based methods.

In contrast, PipeQS integrates quantization and staleness into a unified frame-
work. It dynamically adjusts bit-width and staleness to achieve a convergence
rate of O(T−1/2), significantly reducing communication overhead and maintain-
ing high training efficiency and model accuracy across various graph sizes and
complexities.

3 The Proposed Framework

Overview In this section, We propose a novel strategy, PipeQS. PipeQS uti-
lizes a pipeline approach that parallelizes communication and computation as
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much as possible. It applies quantization to features and gradients to reduce the
communication costs associated with boundary nodes. Furthermore, PipeQS in-
corporates features/gradients staleness, allowing the training process to use stale
external node features or gradients when communication is incomplete, allow-
ing that computation continues without waiting. This significantly reduces the
overall time required for convergence.

To the best of our knowledge, there has been limited research that inte-
grates quantization in pipeline training for distributed GNNs, and combining
both quantization and staleness in distributed GNN training remains relatively
unexplored. As a result, proving the convergence of such an approach presents a
unique challenge. This work aims to theoretically and empirically demonstrate
the convergence of this novel pipeline GNN training method that leverages both
quantization and staleness. Additionally, we show that the convergence speed is
comparable to GNN training methods that solely rely on staleness. We further
propose an adaptive bit-width and staleness adjustment mechanism, providing
convergence guarantees for PipeQS.

3.1 Challenges in Partitioned Parallel Training

Table 1. Vanilla method communication overhead
Dataset Partitions Comm. Ratio

Reddit 2 94.85%
4 79.47%

Yelp 2 49.42%
4 69.82%

Ogbn-products 4 68.53%
8 76.79%

Large Communication Overhead In partition-parallel training, each parti-
tion contains local inner nodes and boundary nodes from other partitions, which
are critical for neighbor aggregation in GNNs. Updating a node’s features re-
quires information from neighboring nodes across partitions. As the number of
partitions increases, boundary nodes are replicated, often surpassing the number
of inner nodes. This leads to significant communication overhead, with more time
spent exchanging boundary node data, ultimately reducing training efficiency.
As shown in the Table 1, the Vanilla method faces considerable communication
costs. As dataset size and partitions grow, communication overhead becomes the
primary bottleneck, significantly restricting training speed.

Long Communication Waiting Time Another significant challenge in par-
titioned parallel training is the long communication waiting time. As partitions
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increase, communication phases become more frequent and longer, leading to
substantial idle times for GPUs. During these phases, the GPUs are often left
waiting for boundary node information to be exchanged, resulting in poor uti-
lization of computational resources. This not only reduces the overall training
throughput but also exacerbates the latency between partitions, further slowing
down the entire training process. As illustrated in the Fig. 1, whether it is Vanilla
or PipeGCN, when communication time significantly exceeds computation time,
there is a long interval between the computations of two consecutive iterations,
resulting in substantial communication waiting time.

3.2 The Proposed PipeQS Method

Fig. 1. Comparison of communication and computation for Vanilla, PipeGCN,
PipeQS-Raw, and PipeQS-Adaptive on a single layer. The Vanilla method exe-
cutes communication and computation sequentially. PipeGCN parallelizes them
within a layer, but computation still waits for the previous iteration’s commu-
nication. PipeQS-Raw reduces communication time through quantization and
features/gradients staleness, skipping communication when it exceeds compu-
tation time. PipeQS-Adaptive dynamically adjusts bit-width and staleness for
further optimization. In PipeQS-Adaptive, S_CHECK determines whether com-
munication should be skipped and stale features/gradients should be used, while
B_CHECK determines whether communication precision needs to be adjusted.

Fig. 1 presents a iteration-level overview of the PipeQS method, which pipelines
the communication and computation phases. The figure also compares Vanilla
and PipeQS with PipeGCN. Fig. 2 illustrates the finer-grained operation of
PipeQS at the layer level.
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Fig. 2. Fine-grained layer-level operation of PipeQS. (a) shows the operation
of PipeQS when communication is hidden by computation. (b) illustrates how
PipeQS-Raw uses stale features/gradients for computation when communication
cannot be hidden.

PipeGCN breaks the synchronization between communication and computa-
tion, allowing each GNN layer’s computation to overlap with communication,
thereby reducing the heavy overhead seen in vanilla methods. However, for
large-scale graph training, communication time often far exceeds computation
time, leaving a significant portion of communication time uncovered. Therefore,
PipeGCN fails to address the two issues we mentioned earlier in distributed
training.

PipeQS addresses the two problems through two key strategies respectively.
First, it employs quantization to reduce communication time by decreasing the
size of transmitted data. Second, it leverages stale features or gradients while par-
allelizing communication and computation, allowing training to continue without
waiting for communication to finish by using features or gradients from the pre-
vious iteration. We refer to the method with fixed quantization bit-width and
unlimited staleness as PipeQS-Raw. The implementation is shown in Alg. 1, and
the complete process can be found in Alg. D.1 in Appendix D.

While effective, these techniques inevitably introduce certain challenges. Quan-
tization reduces the precision of the transmitted features and gradients, and skip-
ping communication introduces staleness, leading to a mix of up-to-date internal
features and gradients with stale boundary features and gradients. To alleviate
these effects and ensure convergence, PipeQS incorporates a bit-width and stale-
ness adjustment strategy that dynamically adjusts the bit-width for quantization
and determines when to apply staleness, allowing the training process to balance
communication efficiency and accuracy.
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Algorithm 1 PipeQS-Raw Forward Propagation (Per-Partition View)
Require: partition id i, partition count n, graph partition Gi, propagation matrix Pi,

boundary node set Bi, layer count L, initial model W0

Ensure: trained model WT after T iterations
1: Hprev ← 0 ▷ initialize previous communication result
2: for t := 1→ T do
3: for ℓ := 1→ L do
4: if t > 1 and thread

(ℓ)
f not completed then

5: Use Hprev ▷ skip communication
6: else
7: with thread

(ℓ)
f ▷ communicate features in parallel

8: Quantize H
(ℓ)
Si,:

to H
(ℓ),q
Si,:

with Q
(ℓ)
Si,:

9: Send H
(ℓ),q
Si,:

and Q
(ℓ)
Si,:

; Receive B
(ℓ),q
: and Q

(ℓ)
B:

10: Dequantize B
(ℓ),q
: with Q

(ℓ)
B:

; Update Hprev

11: end if
12: H

(ℓ)
Vi
← σ(PiH

(ℓ−1)W (ℓ−1)) ▷ update inner nodes
13: end for
14: Backward propagation and update model
15: end for
16: return WT

3.3 Stochastic Integer Quantization

We adopt a stochastic integer quantization method to reduce communication
overhead by converting high-precision floating-point data into lower bit-width
integers (e.g., 2-bit, 4-bit, or 8-bit) via scaling and stochastic rounding [4]. In
our adaptive approach, each tensor is quantized independently. For every tensor,
we first compute its minimum (min) and maximum (max) values to derive the
scaling factor:

scale =
2bits − 1

max−min
, (3)

which linearly maps the original floating-point data into the quantized integer
domain. The tensor-specific parameters min and scale are stored individually and
updated at every training batch to adapt to changes in the data distribution.

The quantization operation is defined as:

q(x) = round
(
x−min

scale
+ noise

)
, (4)

where x represents the floating-point input data. The noise term facilitates
stochastic rounding to reduce quantization bias. After quantization, the result-
ing integers are packed into compact bit-streams for efficient communication;
the process is highly parallelized using CUDA to ensure scalability with large
datasets.
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Upon transmission, dequantization is performed using the stored min and
scale values:

xrecovered = q(x)× scale +min . (5)

Leveraging AdaQP-inspired parallel processing [19], our approach minimizes the
overhead of quantization and dequantization while preserving model accuracy,
thereby enhancing the scalability and performance of distributed GNN training.

3.4 Stale Features and gradients Utilization

In our distributed GNN communication protocol, we incorporate a staleness
mechanism that allows the use of outdated neighbor node features and gradients
to reduce communication overhead.

This technique will be used when the current round of computation finishes
before the previous communication round completes. When staleness is permit-
ted, rather than waiting for the most up-to-date neighbor features and gradients
to arrive, the system proceeds with the outdated data from the previous commu-
nication. This enables uninterrupted computation, reducing the idle time spent
waiting for communication to complete. By doing so, we effectively skip sending
new communication messages for the current round, as the staleness mecha-
nism ensures that previously received data can still be utilized in the ongoing
computation.

This approach significantly improves overall efficiency in distributed environ-
ments, where communication latency often becomes a bottleneck.

3.5 Bit-width and Staleness Adjustment Strategy

To balance the trade-off between communication overhead and model accuracy,
we propose a bit-width and staleness adjustment strategy. This strategy dynam-
ically adjusts the bit-width for quantization and decides whether to use stale
features/gradients at each layer during training.

For each GNN layer ℓ, we measure the difference between the current fea-
tures/gradients nℓ and the previous features/gradients oℓ using inverted cosine
similarity:

dℓ = 1− oℓ · nℓ

∥oℓ∥∥nℓ∥
(6)

If the difference dℓ > E, staleness is disabled, meaning that stale data cannot
be reused (rℓ = 0), and fresh communication must occur. Additionally, to ensure
communication precision, we dynamically adjust the bit-width based on dℓ. This
adjustment is governed by a logistic function:

pℓ =
1

1 + exp
(
−K · dℓ

qℓ

) (7)
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Here, qℓ is a counter tracking the continuous quantization updates and the stal-
eness count, and K is a scaling factor that controls the sensitivity of the ad-
justment. If pℓ > 0.5, indicating a significant difference between iterations, the
bit-width is increased to enhance precision. Conversely, if pℓ ≤ 0.5, the bit-width
is reduced, thereby speeding up communication to avoid staleness or communi-
cation delays.

On the other hand, if the difference dℓ ≤ E, staleness is enabled (rℓ = 1), and
the previous features/gradients can be reused without adjusting the bit-width,
effectively bypassing communication and improving efficiency.

As shown in Fig. 1, the aforementioned strategy is applied during the B_CHECK
phase. Additionally, during each computation step, if communication has not yet
completed, an S_CHECK is performed. The result of the S_CHECK determines
whether to skip communication, based on the staleness flag rℓ obtained from the
previous B_CHECK.

This adaptive strategy effectively reduces communication time while limiting
the error within the threshold E, ensuring convergence and efficient training. The
specific code for the strategy can be found in Alg. D.2 in Appendix D. We refer
to the version of PipeQS that applies this strategy as PipeQS-Adaptive, with its
implementation provided in Alg. D.3 in Appendix D.

3.6 Convergence Guarantee for PipeQS

Due to the quantization and staleness of neighboring node features and gradients,
the convergence behavior of PipeQS-Adaptive requires theoretical justification.
Unlike traditional full-precision synchronous updates, the presence of quantiza-
tion noise and staleness error introduces additional challenges in the optimization
process.

We establish the following convergence bound for PipeQS-Adaptive:

1

T

T∑
t=1

E[∥∇L(Wt)∥2] ≤ O(T−1/2) +O(σ2
q + E2) (8)

where L(W ) represents the loss function, and σq, E denote the quantization
noise and staleness error, respectively. The final convergence rate is O(T−1/2),
but it may be affected by quantization and staleness effects. Hence, an adaptive
strategy for adjusting bit-width and staleness threshold is crucial to ensuring
efficient convergence while maintaining a reasonable error bound.

The detailed proof of this convergence result is provided in Appendix C.

4 Experiment

4.1 Implementation

We implement PipeQS on top of DGL 2.3.0 [22] and PyTorch 2.3.0 [14]. DGL
is utilized for graph-related data storage and operations, while PyTorch’s dis-
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tributed package is employed for initializing process groups and facilitating com-
munication between devices. Before training begins, the graph is partitioned us-
ing DGL’s built-in METIS algorithm [9]. Each training process is confined to
a single device (GPU), and remote node indices—derived from DGL’s partition
book—are broadcast to create sending and receiving node index sets, allowing
processes to fetch the required messages from other devices efficiently.

4.2 Experimental Settings

We evaluated PipeQS on three large benchmark datasets, namely Reddit, Ogbn-
products, and Yelp [5, 7, 26]. The transductive graph learning tasks on Reddit
and Ogbn-products involve single-label node classification, while multi-label clas-
sification tasks are performed on Yelp. We use accuracy and F1-score (micro)
as the performance metrics for these tasks, collectively referred to as accuracy.
All datasets follow the "fixed-partition" splits using the METIS algorithm. We
train the GCN model [10] for all experiments, ensuring consistency by unifying
all model-related and training-related hyperparameters. The model layer size is
set to 3, with hidden layers of 256 dimensions, and the learning rate is fixed
at 0.01. We employ the Adam optimizer and use the ReLU activation function
within the GCN model. For PipeQS using adaptive strategy, we fix the threshold
E to 0.1.

Experiments are conducted on a server running Ubuntu 20.04 LTS, equipped
with an Intel(R) Xeon(R) Platinum 8362 CPU, 360GB of RAM, 8 NVIDIA RTX
3090 (24GB) GPUs and PCIe4.0x16 connecting CPU-GPU and GPU-GPU.

4.3 Comparative Performance Evaluation

In this section, we evaluate the performance of PipeQS-Adaptive in comparison
with Vanilla GCN and three other state-of-the-art (SOTA) methods: PipeGCN [21],
SANCUS [15], and AdaQP [19]. The datasets used for this comparison include
Reddit, Yelp, and Ogbn-products, which provide diverse scenarios for testing
both communication efficiency and model convergence.

PipeGCN optimizes training by parallelizing communication and computa-
tion, relying on stale features/gradients from the previous iteration to reduce
idle communication time. AdaQP focuses on minimizing communication over-
head by quantizing the transmitted features/gradients, thereby lowering data
transfer costs. SANCUS adopts a staleness-aware strategy, caching and reusing
stale embeddings to skip unnecessary broadcasts, which reduces communica-
tion while maintaining convergence through bounded approximation errors. Our
approach, PipeQS-Adaptive, leverages adaptive methods to dynamically adjust
parameters for optimal performance under varying conditions. For a detailed
methodological comparison between PipeQS-Adaptive and PipeQS-Raw, as well
as an analysis of the impact of bit-width and staleness, please refer to Appendix
B.



12 Donghang Wu et al.

Table 2. Training time, throughput, and communication overhead comparison
on different datasets

Dataset Partitions Method Comm.(s) Time(s) Comm./Time (%) Throughput (epoch/s) Speedup (x)

Reddit

2

Vanilla 0.2486 0.2621 94.85% 3.8153 1.00x
PipeGCN 0.0948 0.1308 72.47% 7.6453 2.00x
SANCUS 0.0286 0.1887 15.15% 5.2994 1.39x
AdaQP 0.1488 0.3468 42.90% 2.8835 0.76x
PipeQS 0.0729 0.1036 70.37% 9.6525 2.53x

4

Vanilla 0.2243 0.2822 79.47% 3.5436 1.00x
PipeGCN 0.1682 0.2298 73.20% 4.3516 1.23x
SANCUS 0.3879 0.5246 73.94% 1.9062 0.54x
AdaQP 0.2157 0.3153 68.42% 3.1716 0.89x
PipeQS 0.0186 0.0625 29.76% 16.0000 4.51x

Yelp

2
Vanilla 0.1158 0.2343 49.42% 4.2680 1.00x

PipeGCN 0.0132 0.1281 10.30% 7.8064 1.83x
AdaQP 0.0658 0.2238 29.40% 4.4683 1.05x
PipeQS 0.0106 0.0707 14.99% 14.1443 3.31x

4
Vanilla 0.1422 0.2037 69.82% 4.9092 1.00x

PipeGCN 0.0723 0.1341 53.94% 7.4571 1.52x
AdaQP 0.0744 0.1543 48.22% 6.4809 1.32x
PipeQS 0.0032 0.0468 6.84% 21.3675 4.35x

Ogbn-products

4

Vanilla 0.5973 0.8717 68.53% 1.1472 1.00x
PipeGCN 0.2424 0.5791 41.85% 1.7268 1.51x
SANCUS 1.2423 1.6863 73.67% 0.5930 0.52x
AdaQP 0.2506 0.4632 54.12% 2.1589 1.88x
PipeQS 0.0469 0.2827 16.59% 3.5373 3.08x

8

Vanilla 0.5678 0.7394 76.79% 1.3524 1.00x
PipeGCN 0.3968 0.5743 69.07% 1.7413 1.29x
SANCUS 1.5913 1.8536 85.88% 0.5394 0.40x
AdaQP 0.2002 0.3666 54.61% 2.7278 2.02x
PipeQS 0.0381 0.1462 26.06% 6.8399 5.06x

Training Time and Throughput Comparison Table 2 compares the train-
ing time and throughput of PipeQS against Vanilla GCN, PipeGCN, SANCUS,
and AdaQP across three datasets.

As shown in Table 2, on Reddit, PipeQS is 2.53× to 4.51× faster than Vanilla
and up to 1.45× faster than PipeGCN. For Yelp, PipeQS achieves a 3.31× to
4.35× speedup over Vanilla and is up to 2.86× faster than PipeGCN. On Ogbn-
products, PipeQS shows the most significant improvement, with a 3.08× to 5.06×
speedup over Vanilla and up to 3.93× faster than PipeGCN. Overall, PipeQS
delivers the best throughput across all configurations.

Communication Overhead Comparison PipeQS’s reduction in training
time primarily stems from the decrease in both communication overhead and
communication waiting time. Table 2 and Fig. 3 analyze the communication over-
head across different methods and datasets. PipeQS consistently reduces com-
munication overhead, especially with increased partitions. For instance, on the
Ogbn-products dataset with 8 partitions, PipeQS lowers communication over-
head to 26.06% of total training time, compared to 76.79% for Vanilla GCN.

While methods such as PipeGCN, AdaQP, and SANCUS introduce differ-
ent techniques to address communication issues, they fall short in scalability on
larger datasets. PipeGCN hides communication within computation but can-
not sustain this as datasets or partition numbers grow, leading to a steep rise
in communication overhead. AdaQP reduces communication overhead through
quantization but fails to address communication waiting, resulting in a signif-
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(a) Ogbn-products (b) Reddit (c) Yelp

Fig. 3. Training time breakdown of Vanilla GCN, PipeGCN, AdaQP, and
PipeQS.

icant increase in communication time for larger datasets. Similarly, SANCUS
leverages staleness to reduce communication waiting time, but its performance
deteriorates in larger-scale datasets, as evidenced by the increasing communica-
tion time with more partitions.

In contrast, PipeQS not only reduces communication overhead through quan-
tization but also addresses communication waiting by leveraging a combination
of pipelining and staleness. This approach ensures consistently low communica-
tion time across all datasets and partition sizes, showcasing its superior scalabil-
ity and efficiency, particularly in large-scale distributed GNN training scenarios
where other methods struggle.

Accuracy Comparison PipeQS reduces training time while still maintaining
high accuracy. Table 3 summarizes the final test accuracy of different methods
across the datasets. As shown, PipeQS consistently achieves accuracy compara-
ble to that of Vanilla GCN and, in some cases, even surpasses other methods. For
example, in the 4-partition setup on the Yelp dataset, PipeQS reaches an accu-
racy of 47.34%, significantly outperforming Vanilla GCN’s 45.19%, which demon-
strates the effectiveness of the quantization and staleness adjustment strategies
in preserving model accuracy.

Other methods, such as AdaQP, perform well on smaller datasets like Reddit,
where communication overhead is lower and the variance introduced by quan-
tization is minimal. However, as the dataset size increases, the variance error
caused by quantization begins to hinder convergence, leading to a drop in accu-
racy. This is particularly evident in larger datasets like Ogbn-products, where
AdaQP’s performance starts to deteriorate.

In contrast, although PipeQS’s accuracy is slightly lower than AdaQP in
certain settings on the Ogbn-products dataset, its overall performance remains
near-optimal. This confirms that PipeQS effectively balances accuracy and train-
ing efficiency, showing resilience in larger datasets.

Convergence Speed Comparison To evaluate convergence speed, we analyze
the relationship between accuracy and the number of epochs for each method.
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Table 3. Accuracy comparison on different datasets
Dataset Partitions Vanilla PipeGCN SANCUS AdaQP PipeQS

Reddit 2 94.85 94.63 94.15 95.41 94.78
4 94.96 94.68 94.17 95.34 94.51

Yelp 2 46.15 44.88 - 43.43 47.11
4 45.19 44.63 - 43.38 47.34

Ogbn-products 4 76.04 76.36 71.52 75.59 77.04
8 75.47 76.71 71.99 75.24 76.75

The results indicate that PipeQS generally exhibits better convergence across
multiple datasets. As shown in Fig. 4, in the 8-partition setup on the Ogbn-
products dataset, PipeQS surpasses 76% validation accuracy within 200 epochs.
In comparison, Vanilla GCN and other methods either require more epochs to
reach a similar accuracy level or fail to reach it entirely.

In the time-accuracy relationship analysis (Fig. 5), PipeQS demonstrates out-
standing training efficiency. Across all datasets and partition settings, PipeQS’s
accuracy increases significantly faster than that of other methods. For instance,
in the 2-partition experiment on the Yelp dataset, PipeQS achieves close to 45%
validation accuracy in just under 50 seconds, whereas other methods requires
much more time to approach this level.

These results highlight that PipeQS not only improves training efficiency but
also effectively maintains model accuracy, while offering significant advantages
in terms of training time.

(a) Yelp - 2

(b) Yelp - 4

(c) Ogbn-products - 4

(d) Ogbn-products - 8

(e) Reddit - 2

(f) Reddit - 4

Fig. 4. Epoch-Accuracy curves for different datasets and partition settings.
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(a) Yelp - 2

(b) Yelp - 4

(c) Ogbn-products - 4

(d) Ogbn-products - 8

(e) Reddit - 2

(f) Reddit - 4

Fig. 5. Time-Accuracy curves for different datasets and partition settings.

5 Conclusion

Training GNNs on large-scale graphs in distributed environments presents a
significant challenge, primarily due to the substantial communication overhead
and prolonged communication waiting times. Existing distributed GNN training
methods, such as sampling and pipelining techniques, partially alleviate these
issues but still suffer from high communication costs, synchronization delays,
and unstable convergence, especially as the graph size increases and inter-node
boundary communication becomes more costly. While recent methods incor-
porating quantization and staleness have reduced communication volume, they
typically sacrifice convergence stability and accuracy, and there remains a lack
of effective solutions to fully eliminate communication waiting time.

In this work, we propose PipeQS, a novel distributed GNN training method
that integrates quantization and staleness within a pipeline framework. We in-
troduce an adaptive mechanism for adjusting bit-width and staleness iterations,
ensuring communication efficiency without compromising convergence stability,
maintaining a convergence rate of O(T− 1

2 ). Our theoretical analysis and em-
pirical evaluations demonstrate that PipeQS achieves significant improvements
in training efficiency across various large-scale graph datasets, while preserving
stable convergence. Looking ahead, we plan to extend PipeQS to heterogeneous
and temporal graphs, further exploring its adaptability and performance in more
complex graph structures.
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