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Abstract. This work introduces THGD, a Topology-Aware Hierarchical
Graph Diffusion Model designed to address the challenges of generating
large, structurally complex molecules. THGD employs a coarse-to-fine
framework that decouples global topology preservation from local atomic
refinement, enabling precise generative control and efficient exploration
of broader chemical spaces without relying on restrictive, predefined
motif vocabularies. Extensive experiments underscore THGD’s superior
performance. It robustly preserves complex structural constraints, achiev-
ing up to 2× higher scaffold validity than the previous state-of-the-art
model in scaffold-constrained generation task. Furthermore, in molecular
generation task, THGD excels in generating large molecules with high
distribution fidelity, attaining an FCD score of 80.26 on the challenging
GuacaMol dataset, effectively matching the diversity of real-world molec-
ular distributions. These results highlight THGD’s potential to advance
molecular design for drug discovery and beyond. Our code is available at
https://github.com/hers22/THGD.
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1 Introduction

Modern drug discovery requires the development of advanced machine learning
models capable of effectively capturing and sampling from the vast chemical
space. This task is both highly challenging and urgent, given the astronomical
scale of drug-like compounds, estimated to exceed 1060 [18]. Recently, deep graph
generative models, which model the underlying probability distributions of molec-
ular graph structures, enabling the generation of high-quality candidate molecules
while avoiding the prohibitive costs associated with exhaustive chemical space
searches [6, 27], have achieved significant success in this domain, demonstrating
their potential to revolutionize molecular design.

Although existing graph generative models have shown promising results, sig-
nificant challenges remain in generating large and structurally complex molecules.

https://github.com/hers22/THGD
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Fig. 1: Visualization results of unreasonable structure generated by atom-based
generative methods.

These models can be broadly categorized into two main paradigms: atom-based
generative models [21] and motif-based generative models [9]. Atom-based gener-
ative models construct molecules at the atom level, treating each atom as a node
and each bond as an edge in a graph. While this fine-grained approach allows
for precise control over molecular structures, it suffers from scalability issues. As
the size of the molecular graph grows, the computational complexity increases
drastically due to the quadratic scaling of edges with respect to nodes. This
leads to substantial computational overhead, escalating memory requirements,
and difficulties in accurately predicting sparse chemical bonds, often resulting in
disconnected substructures, implausible ring systems, and invalid valency states,
as illustrated in Figure 1.

On the other hand, motif-based generative models construct molecules by
assembling predefined structural motifs, such as functional groups or subgraphs.
By leveraging larger building blocks, this approach reduces combinatorial com-
plexity and improves scalability compared to atom-based models. However, these
models are constrained by their heavy reliance on predefined motif libraries,
which inherently limits the exploration of the chemical space and the ability to
generate truly innovative molecules that deviate from predefined patterns. While
enlarging the motif library might alleviate this issue, it complicates the modeling
of diverse motif graphs due to their permutation-unequivariant nature [24].

To address these challenges, we introduce THGD, a novel topology-aware
hierarchical graph diffusion model designed for large molecular graph generation.
THGD employs a coarse-to-fine hierarchical diffusion process that decouples
global topology preservation from local atomic refinement, enabling precise con-
trol over molecular generation while maintaining scalability. The model first
generates a coarse graph representation through spectral-preserved graph coars-
ening, dynamically identifying and partitioning ring structures without relying
on predefined motif libraries.

The coarse graph is then refined into detailed atom level structures using a
conditioned diffusion process guided by structural type priors, ensuring chemi-
cally realistic substructure generation. Extensive experiments conducted on the
GuacaMol [2] and MOSES [20] benchmarks demonstrate THGD’s superior perfor-
mance in capturing true dataset distributions and excelling in scaffold-constrained
generation tasks. The contributions of this work are as follows:

1. Novel Hierarchical Framework: We propose a coarse-to-fine diffusion
model that decouples global topology preservation from local atomic refine-
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ment, addressing scalability and chemical validity challenges faced by existing
methods.

2. Elimination of Predefined Motif Libraries: By leveraging spectral-
preserved graph coarsening and type-specific marginal priors, THGD elimi-
nates reliance on predefined motif libraries, enhancing flexibility and general-
ization.

3. State-of-the-Art Performance: THGD achieves state-of-the-art results
on both generation and scaffold-constrained generation tasks, with an FCD
score of 80.26 on GuacaMol and up to 2× higher scaffold validity compared
to previous state-of-the-art model.

2 Related Work

Molecule generation remains a cornerstone challenge in drug discovery. Early
approaches relied on SMILES-based sequence generation models [3, 5, 12], which
pioneered automated molecular design but struggled to explicitly model chem-
ical topology and valency rules, resulting in limited validity rates for complex
molecules. Subsequent research shifted to molecular graph representations, achiev-
ing significant progress through GANs [4], VAEs [15], and normalizing flows [27].

Recent breakthroughs in diffusion and score-based models have revolutionized
the field. For instance, EDM [7] introduced permutation-equivariant diffusion
for 3D molecular conformations, GDSS [11] leveraged stochastic differential
equations to model node and edge features, and DiGress [24] advanced discrete
diffusion techniques. Building on these foundations, Cometh [22] and DisCo [25]
reformulated discrete diffusion modeling using continuous-time Markov chains [1].
While existing methods achieve strong performance in generating small molecules,
they exhibit significant limitations in fitting the distribution of large molecules
due to combinatorial explosion and strict chemical valence rules, particularly as
molecular complexity escalates exponentially.

To address scalability, hierarchical frameworks decompose molecular genera-
tion into coarse-to-fine stages. Existing methods such as tree decompositions [9]
and atom-motif hierarchies [10] reduce complexity by leveraging predefined
structural motifs. However, their reliance on fixed motif libraries restricts the
exploration of novel chemical spaces. This limitation is commonly observed in
structured data generation tasks, where static prior knowledge hinders adapt-
ability to dynamic patterns [26]. In contrast, our proposed method employs a
hierarchical framework that eliminates dependence on predefined vocabularies
through spectral-preserved graph coarsening and dynamic structural typing,
enabling broader exploration of the chemical space while maintaining scalability
and validity.

3 Background

Graph Diffusion Models Diffusion models [6, 23] are probabilistic generative
models defined by a forward diffusion process that gradually adds noise to
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graphs and a reverse denoising process that learns to remove it, enabling sample
generation. Formally, the model is expressed as a latent variable model:

pθ(G0) :=

∫
pθ(G0:T ) dG1:T . (1)

Recent advancements extend denoising diffusion probabilistic models to discrete
domains, with DiGress [24] applying this framework to graph G with its nodes V
and edges E. Noise is added to graphs using transition matrices Qt, where [Qt]ij
defines transitions from state i to j. The noisy graph Gt in the forward process
is computed as:

q(Gt|G0) = G0Q̄
t, with Q̄t = ᾱtI + (1− ᾱt)1m

⊤, (2)

where ᾱt controls noise levels, and m approximates the true data distribution
qV × qE . Transition matrices satisfy:

lim
T→∞

Q̄⊤
T 1 = m, (3)

ensuring transitions align with training set marginal probabilities.
The reverse process reconstructs the clean graph iteratively using Bayes’

theorem:

q(Gt−1|Gt, G0) ∝ Gt(Qt)⊤ ⊙G0Q̄
t−1, (4)

where (Qt)⊤ is the transpose of Qt, and ⊙ denotes element-wise multiplication.
A denoising neural network ϕθ predicts clean graphs from noisy inputs Gt =

(V t, Et). It is trained by minimizing the cross-entropy loss between predicted
probabilities p̂G = (p̂V , p̂E) and ground truth G:

l(p̂G, G) =
∑
i

CE(vi, p̂
V
i ) + λ

∑
i,j

CE(eij , p̂
E
ij), (5)

where λ ∈ R+ balances node and edge importance, and CE denotes cross-entropy.

4 Methodology

We propose THGD, a novel hierarchical molecular generation framework that
employs a two-stage diffusion process to synthesize molecules at both coarse
topological and fine atomic levels. As illustrated in Figure 2, the first stage trains
a discrete diffusion model to generate coarse graphs representing cluster level
molecular topologies. The second stage refines these coarse graphs into detailed
atom level structures using a conditioned diffusion model. This decomposition
enables efficient generation while preserving critical chemical constraints.
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Fig. 2: Architecture of THGD : (I) Coarse graph generation via discrete diffu-
sion learns cluster-level topologies; (II) Refined graph generation uses topology-
conditioned diffusion to reconstruct atom-level details. Both stages employ graph
transformers trained with cross-entropy loss.

4.1 Notation and Definitions

A molecular graph Ĝ = (V̂ , Ê) containing n̂ atoms also noted as refined graph,
represents the original molecular structure. The node features V̂ ∈ {0, 1}n̂×a are
one-hot encodings of atom types, where a is the total number of distinct atom
types. Similarly, edge features Ê ∈ {0, 1}n̂×n̂×b are one-hot encodings of bond
types between pairs of atoms, where b is the total number of distinct bond types.

A coarse graph G = (V ,R,E) is an abstracted representation of the molecular
topology, consisting of n clusters (where n ≤ n̂). The cluster node features
V ∈ {0, 1}n×c are one-hot encodings representing the number of atoms in each
cluster, where c is the maximum number of atoms a single cluster can contain.
The cluster ring features R ∈ {0, 1}n×r are one-hot encodings that represents
the number of fused rings within each cluster, where r is the maximum number
of fused rings a single cluster can represent. The adjacency matrix E ∈ {0, 1}n×n

encodes inter-cluster connectivity. This abstraction simplifies the molecular graph
while preserving its high-level topological structure.

An expanded graph G̃ = (Mexpand,SV ,SE) serves as an intermediate repre-
sentation during the refinement process, bridging the coarse graph G and the
molecular graph Ĝ. It has ñ nodes, where ñ = n̂ to align with the atom count of
the original molecular graph. It employs a connectivity mask Mexpand ∈ {0, 1}ñ×ñ,
which encodes permissible atom-atom connections derived from the expanded
clusters, enforcing topological constraints from the coarse graph. Furthermore,
it integrates structural matrices SV ∈ {0, 1}ñ×s and SE ∈ {0, 1}ñ×ñ×s, which
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are hot encodings that represent the structural types of the nodes and edges
derived from the coarse graph, where s denotes the possible structural types and
is consistent for both nodes and edges.

4.2 Coarsening and Refinement

Traditional motif-based coarsening methods rely on predefined motif vocabularies,
which constrain the exploration of chemical space and impede the generation of
innovative molecules. To overcome this limitation, we introduce a novel molecular
graph coarsening method that eliminates dependence on fixed motif libraries.

Coarsening: The coarsening stage transforms the original molecular graph Ĝ
into a compact coarse graph G, reducing complexity while retaining key chemical
and topological information. The quality of the coarse graph is pivotal, we employ
a two-stage strategy (illustrated in Fig. 3):

Fig. 3: Illustration of structure preserved coarsening. A large molecule
from Guacamol dataset was taken as an example. (a) All nodes in rings are
clustered together (highlighted in red), and connected rings were partitioned
by splitting rings (split nodes in purple); (b) Remaining nodes (highlighted in
yellow) are partitioned by spectrum reduction.

1. Ring Identification and Partitioning: We begin by identifying the rings
in the molecular graph, as they contribute significantly to the structure and
properties of the molecule. Fundamental ring structures are identified and
merged into clusters. Small rings with fewer than 6 atoms or those sharing
atoms with neighboring rings are grouped. To manage complexity from very
large ring systems (e.g., up to 14 fused rings, details in Appendix A), we
partition them by splitting shared atoms, ensuring manageable cluster sizes.
(see Fig. 3, "(a)Ring Clustering").
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2. Graph Coarsening: The remaining non-ring nodes are partitioned into
clusters using spectral-preserved techniques [14], leveraging the Laplacian
spectrum to maintain the original graph’s topology (Fig. 3b). This ensures
the coarse graph accurately reflects the molecular structure, and this dynamic,
vocabulary-free approach allows for flexible abstraction of diverse chemical
entities. (see Fig. 3, "(b)Node Partition").

Refinement: The refinement stage focuses on reconstructing the original
molecular graph from the coarse graph G. However, the coarse graph (with n
clusters) and the molecular graph Ĝ (with n̂ atoms) exhibit size misalignment,
necessitating joint modeling of distributions across different scales. To address
this, we introduce an intermediate expanded graph G̃ = (Mexpand, SV , SE) as
a bridge between the abstracted coarse topology and fine-grained molecular
details, ensuring size consistency and preserving chemical information via three
interconnected mechanisms: (1) cluster expansion to align node counts, (2)
edge masking (Mexpand) to regulate connectivity, and (3) structural typing
(SV , SE) to enforce chemical constraints.

1. Cluster Expansion: The process begins by expanding each cluster cp ∈ G
into a set of atomic nodes. Specifically, a cluster containing V [p] atoms is
mapped to V [p] atomic nodes through the operator Expand(cp), defined as:

V ′ =

n⋃
p=1

Expand(cp), where |Expand(cp)| = V [p] and
n∑

p=1

V [p] = ñ.

Here, Expand(cp) represents the operator mapping cluster cp to V [p] atomic
nodes, and V ′ is the expanded node set with size ñ = n̂, matching the
molecular graph. This expansion ensures |V ′| = n̂, aligning G̃ with the
molecular graph size while preserving cluster-level information.

2. Edge Masking: To regulate connectivity during refinement, we define a
binary mask Mexpand ∈ {0, 1}ñ×ñ. This mask encodes permissible edges as:

M
(i,j)
expand =


1, if vi, vj belong to the same cluster (intra-cluster)
1, if vi ∈ cp, vj ∈ cq and Ep,q = 1 (inter-cluster)
0, otherwise.

The mask acts as a structural scaffold: intra-cluster edges preserve local
substructures (e.g., aromatic rings), inter-cluster edges enforce connectivity
defined in G, and masked regions (M (i,j)

expand = 0) prohibit chemically invalid
bonds during refinement.

3. Structural Typing: To enforce chemical validity, we introduce structural
type matrices SV (nodes) and SE (edges). The node structural matrix SV ∈
Nñ×s assigns each expanded node a type inherited from its parent cluster as:

SV [i] =


NORMAL, if V [p] = 1 (singleton cluster)
CONDENSED, if V [p] > 1 and R[p] = 0 (chain/functional group)
RINGk, if R[p] = k ≥ 1 (fused ring system).
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And the edge structural matrix SE ∈ Nñ×ñ×s labels edges based on connec-
tivity as:

SE [i, j] =

{
CONNECTION, if M (i,j)

expand = 1 and inter-cluster
Inherited from SV [i] or SV [j], if intra-cluster.

Here, s is the number of structural types (NORMAL, CONDENSED, RINGk,
CONNECTION). These matrices enforce domain-specific constraints. For
example, RINGk clusters enforce aromaticity, CONDENSED clusters bias
atom types toward chain-appropriate elements, and CONNECTION edges
restrict bonds to single/double/triple types.

The expanded graph G̃ guides molecular generation through a conditioned
diffusion model that iteratively denoises the noisy molecular graph. This process
is guided by structural type priors (SV , SE) and the connectivity mask (Mexpand)
derived from the coarse graph. Specifically, SV /SE biases atom/bond predictions,
while masked regions (Mexpand = 0) prohibit invalid bonds and enforce valid
atom valency during denoising. By decoupling topology preservation from atomic
refinement, this hierarchical design ensures alignment with both global molecular
topology and local chemical rules, enabling scalable synthesis of complex molecules
with chemical validity, as shown in Fig. 4.

Fig. 4: Illustration of Coarse Graph Expansion.

4.3 Hierarchical Diffusion

Our hierarchical generation process decomposes molecular synthesis into two
coupled diffusion stages governed by the joint distribution:

q(Ĝ,G) = q(Ĝ|G)︸ ︷︷ ︸
Atomic Refinement

q(G)︸︷︷︸
Coarse Topology

(6)
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We employ two graph diffusion models to learn both the distribution q(G) of the
coarse graph and the conditioned distribution q(Ĝ | G) of the molecular graph.

Coarse Graph Diffusion: Our coarse graph diffusion process is conceptually
similar to the approach used in DiGress [24]. Specifically, we model the distri-
bution q(G) of the coarse graph G = (V,R,E) through discrete diffusion over
its components. This similarity allows us to directly leverage the established
framework of DiGress for learning and sampling coarse graphs, ensuring a solid
foundation for our hierarchical generation process.

The training objective for the coarse graph diffusion model is formulated as:

Lcoarse =

n∑
i=1

CE(vi, p̂iV ) + ζ · CE(ri, p̂iR) + γ ·
∑
ij

CE(eij , p̂
ij
E ), (7)

where: vi, ri, and eij represent the node features, ring counts, and edge
connectivity of the coarse graph, respectively. p̂Vi , p̂Ri , and p̂Eij are the predicted
probabilities for the corresponding attributes. ζ ∈ R+ and γ ∈ R+ are hyper-
parameters that balance the importance of ring count prediction, node count
prediction, and edge connectivity relative to node attributes.

This formulation ensures that the coarse graph diffusion model effectively
captures both the structural and topological characteristics of the molecular graph
at the cluster level. By building on the success of DiGress, we achieve robust
performance in generating coarse graphs that accurately reflect the underlying
molecular topology.

Optimal Marginal Prior Probability: The choice of initial distributions
significantly impacts model performance, as demonstrated in DiGress [24], where
better priors lead to markedly improved results. We observe a similar phenomenon
in our framework: atom and bond types exhibit distinct distributions across differ-
ent topological structures. For instance, aromatic bonds occur more frequently in
ring systems compared to chain structures (see Appendix B for detailed statistics).
We compute optimal prior distributions tailored to each structural condition to
enhance the discrete diffusion process.

Formally, let M denote the optimal prior distribution for molecular graph
generation q(V̂ , Ê | S), constrained by structural typologies that best approximate
the true data distribution. The accumulated node attribute transition matrices
Q̄V

T satisfy:
lim

T→∞
Q̄V

T 1a = (SV
k MV )⊤, (8)

where the structural type matrix SV ∈ Nn̂×s contains node-wise structural types
with SV

k specifying the k-th node’s structural type (k ∈ [0, n̂)). Here 1a represents
an a-dimensional vector of ones, and MV ∈ Rs×a constitutes the core marginal
probability matrix where s enumerates structural categories and a denotes node
label cardinality. The probability of transitioning from state i to state j for the
k-th refined node is proportional to the marginal probability of MV selected by
the structural type at that node (i.e. SV

k MV ), with a similar formulation applied
to edges.
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This ensures that the forward process begins closer to the true data distri-
bution, maintaining both unbiased sampling and chemical fidelity throughout
the generation process. By incorporating these structure-specific priors, we align
the diffusion process with realistic molecular configurations, improving both the
quality and efficiency of the generated outputs.

Forward Process: We define a conditional diffusion process in which the
coarse graph guides noise injection into the molecular graph. The forward process
is formulated as

q(Ĝ1, . . . , ĜT | G) =

T∏
t=1

q(Ĝt | Ĝt−1, G), (9)

where the coarse graph G is then expanded to the expanded graph represented
by structural type matrix S that contains topological information and constraints.
Consequently, the transition probability can be equivalently written as q(Ĝt |
Ĝt−1, G) = q(Ĝt | Ĝt−1,S).

For each node of the molecular graph, the forward transition matrix for the
k-th entry (k ∈ [0, n̂)) is defined as

Qt
k = (1− βt)I + βt1a(SkM), (10)

where I denotes the identity matrix, 1a is an a-dimensional vector of ones and
βt is a time-dependent parameter controlling the noise level. The cumulative
transition matrix over t time steps is given by Q̄t = Q1Q2 · · ·Qt. A similar
formulation is applied to the edge features.

Reverse Process: The reverse diffusion process reconstructs the original
molecular graph Ĝ0 from its noisy counterpart ĜT . By applying Bayes’ rule, the
conditional probability for the reverse step can be expressed as:

q(Ĝt−1 | Ĝt, S) = q(Ĝt−1 | Ĝt, Ĝ0, S) ∝ q(Ĝt | Ĝt−1, S) q(Ĝt−1 | Ĝ0, S), (11)

where S is the structural type matrix. In this framework, the only modification
compared to the standard reverse process is the explicit conditioning on S, which
is integrated into the forward transition matrix Q and the input feature. As a
result, the reverse process formulation remains consistent with Equation 4. The
model thus denoises the noisy molecular graph based on the structural types
derived from the coarse graph, ensuring the generation of chemically plausible
molecules.

Training refinement denoising network: The refinement denoising neural
network ϕθr parametrized by θr take taking a noisy molecular graph Ĝt = (V̂ , Ê)
at t-th step conditioned on the coarse graph and the structural types matrices
(SV , SE) as input and aims to predict the clean refined graph Ĝ0 = (V̂ , Ê).
It was trained by optimizing the cross-entropy loss l between the predicted
probabilities p̂Ĝ = (p̂V̂ , p̂Ê) for each node and edge and the true refined graph
following [24]. Notably, the refinement is restricted to chemically plausible regions
using an expansion mask Mexpand attained from expanding the coarse graph, the



4. METHODOLOGY 11

refinement loss then focuses only on mask-valid edges:

Lrefine =
∑
i∈V̂

CE(vi, p̂V̂ ) + λ
∑

(i,j)∈Mexpand

CE(eij , p̂Ê), (12)

where λ ∈ R+ is a hyperparameter balancing the importance of node attributes
relative to edge attributes.

4.4 Model review

The overall structure of our proposed model is as shown in Figure 2, which
uses a two-stage process: coarse graph generation for high-level structure and
expansion for detailed atom-level refinement. Two diffusion models drive these
stages, enabling fine-grained control and preserving global structure. Detailed
architectures are in Appendix C.
Stage I: Coarse graph generation via discrete diffusion learns cluster-level
topologies.

1. Coarsening: Abstracts the molecular graph into a coarse graph G0, where
nodes are atom clusters and edges are cluster connections.

2. Coarse Diffusion Model Training: Progressively adds noise to G0 over
timesteps, resulting in noisy Gt. A graph transformer then learns to reverse
the noise, denoising Gt to predict G0. Training minimizes cross-entropy loss.

3. Coarse Diffusion Model Sampling: Sample a noisy representation Gt

from the prior distribution, then progressively remove the noise to G0 using
the learned coarse graph transformer.

Stage II: Refined graph generation uses topology-conditioned diffusion to recon-
struct atom-level details.

1. Expansion and Refinement: Expand coarse graph nodes into atom clusters
with structural types and expand mask.

2. Refinement Diffusion Model Training: Progressively adds noise to Ĝ
over timesteps, conditioned by structural types retrieved from expanding
G0. A refinement graph transformer then denoises the expanded graph using
structural type information to predict the refined molecular graph. Training
minimizes cross-entropy loss under the constrain of expand mask.

3. Refinement Diffusion Model Sampling: Sample a noisy representation
from the prior distribution conditioned by structural types retrieved from
expanding G0. A refinement graph transformer then progressively removes
the noise to Ĝ0.

This hierarchical approach decomposes molecular generation, allowing THGD
to generate complex, valid, and diverse molecules using diffusion models at coarse
and fine levels.
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4.5 Scaffold Constrained Generation

In drug discovery, generating molecules with specific scaffolds—subgraphs possess-
ing desired chemical properties—is essential. Given a subgraph S = (VS , ES) with
ns nodes, the generation process conditioned on S can be achieved by masking
the first ns-th node and edge feature tensors at each reverse iteration step using
a permutation-equivariant model [24]. After sampling Gt−1, the node and edge
features are updated as follows:

V t−1 = MV ⊙Vs+(1−MV )⊙V t−1, Et−1 = ME⊙Es+(1−ME)⊙Et−1, (13)

where MV ∈ {0, 1}n and ME ∈ {0, 1}n×n are binary masks that identify the first
ns nodes and their associated edges, ensuring the preservation of the scaffold
structure during the generation process. For our case, scaffold masking was
applied separately to both the coarse and refined graphs during their respective
generation stages.

5 Experiments

This section provides a thorough evaluation of THGD on both molecular graph
generation and scaffold-constrained generation.

We evaluate our model on two large-scale molecular datasets: MOSES [20]
and GuacaMol [2]. MOSES is a refined subset of the ZINC database, containing
1.9 million molecules, with 1.6 million designated for training, and graph size
averaging 21.7 nodes. GuacaMol is a large molecular dataset derived from the
ChEMBL database with an average molecular graph size of 27.8 nodes, includes
1.6 million molecules, of which 1.3 million are used for training. For the two
datasets, we apply a preprocessing step similar to that of DiGress [24] and
FreeGress [19]. Further preprocessing details and dataset statistics can be found
in Appendix D.

5.1 Molecular Generation

Setup We evaluate generation quality using several metrics: Validity measures the
percentage of molecules that satisfy basic valency rules. Uniqueness quantifies the
proportion of molecules with distinct SMILES strings, indicating non-isomorphic
structures. Novelty assesses the fraction of generated molecules absent from
the training set. The filter score evaluates the proportion of molecules passing
the same filters used to construct the test set. The Fréchet ChemNet Distance
(FCD) compares the similarity between training and test set molecules using
embeddings learned by a neural network. SNN represents the similarity to the
nearest neighbor, measured via Tanimoto distance. Scaffold similarity analyzes the
frequency distribution of Bemis-Murcko scaffolds, while KL divergence compares
the distributions of various physicochemical descriptors.
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Baselines We compare our THGD with several state-of-the-art molecular graph
generative models, including JT-VAE [9] which decomposes molecules into tree-
structured motifs for generation, GraphINVENT [17] which constructs molecular
graphs through canonical breadth-first search ordering, NAGVAE [13] which
encods substructural patterns of molecular graphs into edge features for scalable
generation, MCTS [8] which is enhanced by Monte Carlo tree search for efficient
chemical space exploration, as well as DiGress [24], DisCo [25] and Cometh [22]
are discrete molecular graph diffusion models, operating in discrete-time, discrete-
state, and continuous-time settings, respectively.

Table 1: Molecular Generation on MOSES. JT-VAE and GraphINVENT
have hard-coded rules to ensure high validity, others do not.
Model Validity(%) ↑ Unique(%) ↑ Novelty(%) ↑ Filter(%) ↑ FCD ↓ SNN ↑
JT-VAE [9] 100.0 100.0 100.0 97.8 1.00 0.53
GraphINVENT [17] 96.4 92.7 – 95.0 1.22 0.54
DisCo [25] 88.3 100.0 97.7 95.6 1.44 0.50
Cometh [22] 90.5 100.0 92.6 99.1 1.27 0.54
DiGress [24]3 96.5 100.0 95 95.0 1.20 0.51
THGD 96.8 100.0 94.2 98.3 1.17 0.54

Table 2: Molecular Generation on GuacaMol. We report scores, higher is
better for all metrics. NAGVAE and MCTS are tailored for molecule datasets,
which incorporate more in-depth domain knowledge into the model. Others are
general graph generation models.

Model Validity (%) ↑ Unique (%) ↑ Novelty (%) ↑ KLdiv ↑ FCD ↑

NAGVAE [13] 92.9 95.5 100 38.4 0.90
MCTS [8] 100 100 95.4 82.2 1.50
DiGress [24] 85.2 100 100 92.9 68.00
DisCo [25] 86.6 86.6 86.5 92.6 59.7
Cometh [22] 98.9 98.9 97.6 96.7 72.7
THGD 94.2 100 99.2 94.4 80.26

Results Analysis THGD demonstrates strong performance in generating di-
verse and realistic molecules, particularly excelling in distribution fidelity, which
measures how closely the generated molecules resemble real-world chemical com-
pounds. On the GuacaMol dataset, THGD achieves a leading Fréchet ChemNet
Distance (FCD) score of 80.26 among diffusion-based methods, and similarly
obtains the best FCD of 1.17 on MOSES. Lower FCD scores signify a better
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match to true molecular distributions, indicating THGD’s superior ability to learn
and replicate these complex patterns. This is further supported by a high KL
divergence score of 94.4 (on GuacaMol), showing good agreement with various
physicochemical properties of known molecules.

Beyond distributional alignment, THGD consistently generates high-quality
structures. It achieves near-perfect chemical validity (the ability to produce
chemically correct molecules) with scores of 96.8% on MOSES and 94.2% on
GuacaMol. Notably, this is achieved without relying on hard-coded chemical
rules or domain-specific knowledge, unlike specialized models such as JT-VAE,
GraphINVENT, NAGVAE, and MCTS, showcasing its robust learning capabilities.
Furthermore, THGD excels in generating entirely distinct and new molecules (up
to 99.2% novelty on GuacaMol), highlighting its potential for discovering novel
chemical entities.

These results validate the effectiveness of our topology-aware hierarchical
framework. By integrating spectral-preserved coarsening (to capture global struc-
ture) with type-specific marginal priors (to guide local atomic details), THGD
ensures chemically realistic substructure generation while mitigating common
distributional biases, leading to a better overall generation quality.

5.2 Scaffold-Constrained Generation

Setup In this section, we evaluate THGD’s scaffold-constrained generation
capabilities using four diverse scaffold templates, including three medium-sized
scaffolds and one large scaffold consisting of 25 atoms, as described by Maziarz
et al. [16]. The model is constrained to generate molecules that are at least as
large as the given scaffold. Each scaffold was sampled four times with a batch
size of 512.

Results Analysis Table 3 clearly demonstrates THGD’s superiority in scaffold-
constrained generation. Our model is the first graph diffusion model capable
of handling large scaffolds while maintaining high validity. THGD consistently
achieves impressive performance with high validity over 88% across all samples,
while DiGress struggles with increasingly large scaffolds and fails with the Silde-
nafil case, underscoring the limitations of atomic-level diffusion in managing
long-range dependencies. We further show more examples in Fig.5.

The key to THGD’s success lies in its hierarchical approach, which encodes
complex scaffolds into compact coarse graphs with drastically fewer nodes. For
example, the modified Sildenafil scaffold, which consists of 25 atoms, is efficiently
represented by only 5 coarse nodes, as shown in Fig. 6. This reduction in com-
plexity enables more manageable refinement while preserving scaffold integrity.
THGD compactly encodes scaffolds and confines refinement to peripheral regions
by adopting a vocabulary-free hierarchical paradigm, ensuring precise structural
control and enabling flexible molecular modifications. These capabilities are
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Table 3: Scaffold-Constrained Generation. DiGress serves as a baseline,
evaluated on the three smaller scaffolds using its publicly available source code
and provided checkpoint.

Scaffold DiGress THGD Improvement(%)

1,4-Dihydroquinoline4 46.8 93.0 98.7
1,3-Dimethylquinolin-4(1H)-one5 35.9 88.7 147.0
3-(Trifluoromethyl) aniline6 32.3 94.7 193.2
Modified-Sildenafil7 \ 88.6 -

Fig. 5: Scaffold constrained generation result of 1,3-Dimethylquinolin-4(1H)-one.

particularly critical in drug discovery, where maintaining scaffold integrity while
exploring chemical diversity is essential for optimizing therapeutic candidates.

Fig. 6: Modified-Sildenafil and its coarse graph. The scaffold containing 25 atoms,
is efficiently represented by only 5 coarse nodes after coarsening.

3 DiGress is re-run here using the same settings as in the original paper after dataset
preprocessing.

4 https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Dihydroquinoline
5 https://pubchem.ncbi.nlm.nih.gov/compound/3-_Trifluoromethyl_aniline
6 https://pubchem.ncbi.nlm.nih.gov/compound/1_3-Dimethylquinolin-4_1H_
-one

7 https://pubchem.ncbi.nlm.nih.gov/compound/Sildenafil

https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Dihydroquinoline
https://pubchem.ncbi.nlm.nih.gov/compound/3-_Trifluoromethyl_aniline
https://pubchem.ncbi.nlm.nih.gov/compound/1_3-Dimethylquinolin-4_1H_-one
https://pubchem.ncbi.nlm.nih.gov/compound/1_3-Dimethylquinolin-4_1H_-one
https://pubchem.ncbi.nlm.nih.gov/compound/Sildenafil
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6 Conclusion

In this work, we introduced THGD, a Topology-Aware Hierarchical Graph Diffu-
sion Model designed to address the challenges of generating large, structurally
complex molecules. Our model innovatively decouples global topology preserva-
tion and local atomic refinement through a coarse-to-fine framework, enabling
scalable and fine-grained control over molecular graph generation. By leveraging
spectral-preserved graph coarsening and type-specific marginal priors, THGD
eliminates reliance on predefined motif vocabularies. Experimental results on
MOSES and GuacaMol benchmarks demonstrate SOTA performance, achieving
an FCD score of 80.26 on GuacaMol and up to 2× higher scaffold validity than
previous SOTA model in scaffold-constrained generation tasks. THGD’s success
highlights the potential of hierarchical diffusion models to revolutionize de novo
molecular design, paving the way for more efficient drug discovery pipelines.
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