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Abstract. Prompt tuning is a parameter-efficient method for adapting large lan-
guage models (LLMs), where only a small continuous soft prompt is finetuned.
In recent works, soft prompts have usually been trained in a task-specific way,
leaving their multi-task capabilities underexplored. Our work aims to make soft
prompts more fask modular based on recent research on task vectors, where
arithmetic operations are applied on full model weights to achieve the desired
multi-task performance. To this end, we introduce Task Prompt Vectors, created
by the element-wise difference between weights of tuned soft prompts and their
random initialization. Experimental results on an extensive set of 19 datasets show
that task prompt vectors can be used in low-resource settings to initialize prompt
tuning on similar tasks effectively. In addition, we show that task prompt vec-
tors are independent of the random initialization of prompt tuning on 3 different
language model architectures. This key property of random initialization inde-
pendence allows prompt arithmetics with the pre-trained vectors from different
tasks. In this way, the arithmetic addition of task prompt vectors from multiple
tasks represents a competitive and computationally more effective alternative to
state-of-the-art solutions.

1 Introduction

Standard fine-tuning methods change the weights of a pre-trained language model (PLM)
to increase its performance on a downstream task. There is a strong trend of improving
model performance by increasing the number of parameters, which leads to a steep
increase in computational resources required for training (e.g., GPT-3 [3]] having 175
billion parameters). Besides this, large language models also require significant amounts
of training data, which especially benefits high-resource languages [8]].

To address the problem of the increasing number of parameters, Parameter-Efficient
Fine-Tuning (PEFT) methods [24417)19]] were introduced, capable of solving multiple
problems even with small amounts of labeled data while training only a fraction of the
model parameters (e.g., for ROBERTa base [29]], prompt tuning [24] is training only 0.5%
parameters, and LoRA [19] is training only 0.7% of parameters [51]]). The key concept
that makes many PEFT methods effective is their task modularity — single modules can
be trained for diverse tasks and then just be swapped out inside of the same model.
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Fig. 1: An illustration of task prompt vector creation and the combination via addition
that we include in our work. (a) A task prompt vector is created by subtracting the soft
prompt initialization weights 6p,, . from the soft prompt weights after prompt tuning
Hﬁpft (Section , eq. . (b) A combination via the addition of two task prompt vectors 7p,
and 7p, resulting in 7p,,, (Section[3} eq.[d). (c) Different task prompt vectors point into
the same subspace in the embedding space of PLM (Section[4.2)). The circles represent
different random initializations.

Some of the recent PEFT methods [51124//1]] are based on fine-tuning soft prompts.
Soft prompts are trainable (parametrized) weights that are prepended to the input embed-
dings while training the model. Prompt tuning is one of the most widely used variants of
soft prompt-based tuning of large language models (LLMs).

In contrast to other PEFT methods, most soft prompt-based methods lack sufficient
multi-task modularity, requiring the training process to be fully or partially repeated for
each newly added task [45/47]. Other PEFT methods, while keeping their relatively high
modularity, usually lack robustness, and their performance depends on the quality and
the number of pre-trained soft prompts [1]. Moreover, creating a soft prompt for multiple
tasks often decreases the overall multi-task performance and requires further fine-tuning.

We build on findings of research on task vector arithmetics [20], a suite of methods
for efficiently modifying the behavior of pre-trained LLMs through task vectors. A
task vector represents a direction in the LLM’s activation space, which is obtained by
subtracting the weights of a base model from its fine-tuned version. Moving along in
this direction enhances performance on the corresponding task. Task vector arithmetic
has mostly been applied to the full weights of computer vision models and older NLP
models like TS [37] and GPT-2 [36]] trained from the same initialization, with only a
limited set of machine unlearning experiments.

In our work, we fully extend this idea to the NLP domain, concretely to the efficient
and modular techniques of prompt tuning [24], and propose the novel concept of task
prompt vectors. Task prompt vectors are created by subtracting soft prompt initial-
izations from their fine-tuned versions, enabling prompt arithmetics on top of the task
prompt vectors (see Figure[T)). We thoroughly investigate the properties of task prompt
vectors and demonstrate their functionality in combining pairs of task prompt vectors
while evaluating their in-distribution and out-of-distribution performance in full and
limited data scenarios.
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Our main contributions and findings ard'}

— We introduce the novel concept of task prompt vectors created from fine-tuned
soft prompts as a method of weight interpolation that leverages findings from task
vectors. In addition, we investigate vector arithmetics on such task prompt vectors
based on simple arithmetic operations as a method to reinforce PLMs to solve
multi-task problems.

— We provide a comprehensive investigation of task prompt vector properties on 17
natural language understanding (NLU) and 2 natural language generation (NLG)
datasets separated into 8 task types and demonstrate important properties of task
prompt vectors. We show that their random initialization independence makes them
robust and universally applicable, while their similarity across related problems
provides a necessary base for efficient cross-task transfer.

— We show that task prompt vectors allow efficient prompt tuning initializations by
leveraging multi-task combinations of the pre-trained task prompt vectors using the
task prompt vector arithmetics. Experimental results show that, especially in zero-
or few-shot settings, task-prompt-vector-based initializations perform better or at
par with closely related techniques like SPoT (Soft Prompt Transfer learning [45]])
for specific tasks while achieving high multi-task modularity.

2 Related Work

Soft prompt-based fine-tuning. After the introduction of prompt tuning [24]] and prefix
tuning [26] many new soft prompt-based methods [15/28/40] were introduced. Some of
these methods focus on task knowledge transfer (e.g., SPoT [45] or cross-model transfer
[44]]) and task combinations (e.g., ATTEMPT [[1], MPT [47], or BMTPT [23]]). These
can be classified as works on PEFT weight interpolations to increase the performance of
prompt tuning in single or multi-task settings. However, they do not represent the tasks
as vectors in the embedding space and require further training of the added parameters.

Model weights interpolation. Model weight interpolation [[14/50] is a widely discussed
topic in the literature since it enables combining knowledge of different fine-tuned
models without or with a small amount of training. Authors of tasks vectors [20] show
that it is possible to combine multiple task vectors created from fine-tuned models and
still maintain the overall multi-task performance. Work [32] focuses mostly on improving
task vectors by showing that training models in their tangent space contributes to the
weight disentanglement and increases the performance of full model task arithmetic.
Another subcategory for weight interpolation can be model merging [42/311259]. In
the work [39], the authors propose a strategy of merging multiple model weights from
pre-trained sets of auxiliary tasks as initialization to multiple parallel fine-tunings to
enhance out-of-distribution generalization. Most of these works on model weights
interpolation usually focus only on the weights of the whole model or particular weights
(e.g., classification heads, activation layers) of the pre-trained model.

* To support the replicability of our work, we provide a repository to store all of our implementa-
tion, results, and supplementary material: https://github.com/kinit-sk/task-prompt-vectors
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There are also works on weight interpolation of PEFT methods [52/7/3435], but not
many of them focus on interpolation using task vectors. In the work [22]], the authors
present a way of combining pre-trained adapters using task vector arithmetics, but
the method lacks the investigation of the dependency of their method on the random
initialization of adapters. Therefore, it may require training of specific adapters from the
same random initialization, which significantly limits their re-use potential.

To the best of our knowledge, there is no research on task vectors in the context of
soft prompt-based fine-tuning. In this work, we address this drawback by building on the
existing knowledge on prompt tuning and task vectors.

3 Task Prompt Vectors

Background. Prompt tuning, as introduced in [24], casts tasks as text generation, model-
ing a probability Pr(Y|X), where X is a sequence of input tokens and Y is a sequence of
output tokens (for classifications tasks, e.g., representing the class label). The generation
Pry(Y|X) is parametrized by the model weights 6. Prompting adds extra information
to the generation process by prepending a series of tokens (prompt) P to the input X,
such that the model maximizes the probability of getting current Y in Pry(Y|[P; X]),
while keeping the parameters 6 frozen. Prompt tuning adds another parameter 6p to
the equation, which parametrizes the prompt. During the training, only 0p is typically
updated as a negative log-likelihood loss is optimized as:

Lpr = —ZlogPrg,gp(YiHP;Xi]) M

(2

As a method of adapting model weights without training, task vectors [20] were
proposed. A task vector is defined as the element-wise difference between the pre-trained
weights and the weights after fine-tuning a complete model. Task vectors can then be
applied to any model weights 6 of the same dimensionality (architecture) by element-
wise addition. The representation of task vectors in the weight space of the model has
the same properties as standard vectors. Therefore, it is possible to include them in
arithmetic expressions like addition, negation, or combinations via the addition of two or
more vectors. We build on findings from [20] and [24] in the following sections.

Task prompt vector definition. Let T1, ..., T} be a set of source tasks and 0p, , ..., 0p,be a
set of random soft prompt weights initializations. Intuitively, the random soft prompt
weights initializations are random points in the embedding space of the PLM. During
prompt tuning, we move each of these points into a task sub-space, such that the objective
function in equation|l|is minimized. This is repeated for each task ¢ € T'. These points
are further denoted as task prompts — soft prompts fine-tuned by prompt tuning to a set
of downstream tasks. We define the straight trajectory from the initial random point to
the task prompt as our task prompt vector (see part a) of Figure|T).

Let 0p,,. € R? be the weights of the soft prompt randomly initialized from the
embedding vocabulary of a PLM, and 9}” € R% be the weights of the soft prompt P
fine-tuned on a specific task ¢, using the standard prompt tuning formula. We formulate
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the task prompt vector 7p, for soft prompt P and task as an element-wise difference:
TP, = HtPft - eppre (2)
Applying a task prompt vector to the soft prompt weights of equal size would follow:

0

new

=0p + A7p,, 3)

where the rescaling term A is a number from the interval 0 < A < 1 and when A = 1,
— _pt

then GPMM =0p + TP, = Hpﬁ

Vector arithmetics with task prompt vectors. Task prompt vectors for different tasks

can be combined by simple vector addition, combining knowledge from different tasks.

When we experiment with combinations, we refer to the arithmetic addition of two task

prompt vectors (see part b) of Figure|[T):

TPpew = TP, T TP, “4)

This approach clearly results in efficient task adaptation as we perform no further
training but only use vector addition. Task prompt vector combinations can also be
used to initialize a new task that is sufficiently similar to an already trained task. We
investigate and discuss these use cases for task prompt vectors in the upcoming sections.

4 Experiments

4.1 Experimental Setup and Implementation Details

We investigate the properties of task prompt vectors using a T5-base [37] model for
all of our experiments since it is a widely used model in many PEFT related works,
and it has a reasonable size to exdend experiments to a larger scale. To support the
generalizability of our results, for origin dependency experiments in Section [#.2] we
also include LLaMa-3.1-8B-Instruct [[11]] and DeepSeek-LL.M-7b-chat [3] models,
representing two additional LLM families. Our work covers 6 types of classification
problems, as well as 2 types of generation problems covered by 19 corresponding
datasets, namely natural language inference (NLI) — MNLI [49], ONLI [46], SciTail
[21]], SNLI [4], RTE [46]; topic classification — DBPedia [2]], TREC [27118], AG News,
Yahoo Answers [53]]; sentiment classification — SST2 [41]], Yelp Polarity, SST5, IMDB
[30]; paraphrase classification — QQ}ﬂ MRPC [10]; grammatical correctness — CoLA
[48]]; semantic textual similarity — STS-B [6]; question answering — SQuADv?2 [38]],
and math problems solving — MATH [13].

For all datasets, we report macro F1 scores, with the exception of STS-B (evaluated
by Pearson Correlation) and MATH (evaluated by RougeL score). The cosine similarity
between vectors (task prompts or task prompt vectors) is measured using the average
pooled weights of each vector. We average all of our results across 3 different runs (i.e.,
different random initializations of soft prompts). To determine the statistical significance

3 https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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of our results, we perform a two-sample Student’s t-test [43]] with Bonferroni correction
[[12]]. We denote the statistical significance by marking the corresponding result with an
asterisk **’. The subscript in our tables represents the standard deviation.

For the few-shot experiments (simulating limited labeled data scenarios), we ran-
domly sub-sample from the data for the respective number of shots while keeping the
class distribution. We consider shot and sample to be equivalent (i.e., for a 5-shot setting,
we choose 5 samples overall, not 5 samples per class). When combining task prompt
vectors, we evaluate their performance on the individual source tasks that formed the
task combination and find the best rescaling factor A via held-out validation sets (i.e.,
we randomly sample a validation subset from the evaluation dataset and select the best
performing A € {0.1,0.2,...,0.9,1}).

We provide information about ethical considerations and an impact statement in
Supplementary Material A. In addition, a more detailed description of our experimental
setup can be found in Supplementary Material B.

4.2 Investigating Task Prompt Vectors Properties

In this section, we aim to address the following research question (RQ):

RQ1: How universally can we apply task prompt vectors to a) different prompt
initializations and b) different tasks?

There are two fundamental properties that are crucial for the effectiveness of task
prompt vectors: 1) If prompt vectors should be applied universally, they must be inde-
pendent of random initialization (since soft prompts are usually initialized randomly,
unlike PLM for task prompts in [20]). 2) The similarity of task prompt vectors between
similar tasks should be high enough in order to be able to combine task prompt vectors.

To evaluate these properties, we train a set of soft prompts on specified source
tasks for inference classification (MNLI, QNLI, RTE), topic classification (DBPedia,
TREC), sentiment classification (SST2, Yelp Polarity), paraphrase classification (QQP,
MRPC), grammatical correctness (CoLA), semantic textual similarity (STS-B), question
answering (SQuADv2) and math problems solving (MATH) resulting in a set of 13 soft
prompts that were trained from a single random initialization. We sample 3 random
initializations from which we create the task prompt vectors as described in equation 2]
Since SQuADv2 and MATH are more complex tasks that T5 struggles with, we report for
these tasks only results for LLaMa-3.1-8B-Instruct and DeepSeek-LLM-7B-Chat. We
aggregate results by averaging across random initializations in Table|l|and Figures
At first, we evaluate task prompt vectors’ independence of the random initialization
and continue with experiments to confirm whether task prompt vectors trained for the
same task are always pointing in a similar direction of the PLM embedding space, similar
to part c) of Figure[T}

The performance of task prompt vectors is independent of the random initialization for
the majority of observed tasks. We conduct experiments to evaluate the performance
of applying task prompt vectors to different (mixed) random initializations. For each
task and each random initialization, we apply the task prompt vector (according to
the equation [3) to all of the other random initializations and evaluate performance for
each task prompt vector-initialization pair on the test set of the particular dataset. The
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Table 1: Comparison of test results across 3 random soft prompt initializations for
T5-base, LLaMa-3.1-8B, and DeepSeek-LLM-7B models. The first column (Original)
represents the results of prompt tuning. The second column (Mixed) represents the
results of moving a specific initialization in the direction of a task prompt vector created
from different (mixed) initializations. N/A means that the task was too complex for the
TS5 model, and the results were underperforming.

TS LLaMa DeepSeek
Original Mixed A | Original Mixed A | Original Mixed A

MNLI 85401 85302 -0.1 | 89.70.2 89.702 +0.0| 86.11.9 86.020 -0.1
QQP 87301 87401 +0.1 | 84.60.1 84.60.1 +0.0| 84.491 84401 +0.0
QNLI 9330 9325, -0.1 92.00 92.00.1 +0.0] 90.31.4 90413 +0.1

Task

m SST2 93.80_3 93.20_6 -0.6 95.90_4 96.00_5 +0.1 95.60.1 95.60_1 +0.0
S STS-B | 8930> 8865, -0.7 | 899, 89805 -0.1| 88703 88704 +0.0
O  MRPC | 90805 83.0;, -7.8 | 8770 88.1%, +0.4| 87511 87411 -0.1
RTE 50342 6347, +13.1| 89703 89406 -03 | 84307 84307 +0.0
CoLA 85902 84953 -1.0 | 87316 87.612 +0.3| 87306 87.605 +0.3
avg 84.51 84.01_9 -0.5 89.60_7 89.70_6 +0.1 88.10_8 88.10_8 +0.0
TREC 95517 26.5755 -69.0 | 95803 96.00.3 +0.2| 95710 95.610 -0.1
< DBPedia | 99.1p 99.05; -0.1 99.2¢ 99.29 +40.0| 99.10.1 99.1p1 +0.0
g Yelp 9720  97.151 -0.1 | 98.60.1 98.60.1 +0.0| 98491 98401 +0.0

SQuADv2 | N/A N/A N/A | 66309 66409 +0.1| 63.809 63.806 +0.0
MATH N/A N/A N/A 36.80_2 36.90,1 +0.1 32.10_1 32.2041 +0.1

aggregated results in the "Mixed init" rows in Table[T]differ only slightly in most tasks
for all three models, compared to the results of prompt tuning in the "Original init" rows.
This indicates that task prompt vectors perform well, irrespective of their initialization.
The only exception is the TREC task, where the performance decreases significantly
for the T5-base model. We suspect that this may be caused by the task being harder for
the T5-base model to learn, which also confirms the higher standard deviation from the
mean of prompt tuning performance. We can also see that for LLaMa-3.1-8B-Instruct
and DeepSeek-LLM-7B-Chat, there is no statistically significant difference between
using the original initialization or different task prompt vector initializations, and for
SST2, CoLA, TREC, and MATH, average performance even slightly increased, but in
most cases the performance remained unchanged, according to statistical significance
tests. In some cases, the performance of the original initialization of the TS5 model was
similar or even better than for much larger instruction-fine-tuned LLaMa or DeepSeek
models, which goes in line with findings of recent related work [33116].

Task prompts and task prompt vectors maintain good performance even if they do not
always point to the exactly same location in the task subspace. To see whether the trained
task prompts end up in the same task sub-space, we evaluate cosine similarity across
multiple random initializations. We train multiple task prompts for 3 different random
initializations and each source task (60 task prompts in total), and compute the cosine
similarity from trained task prompts for each combination of random initializations
and for each combination of tasks. We then average this cosine similarity for each task
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(a) Cosine similarities of task prompts. (b) Cosine similarities of task prompt vectors.

Fig. 2: Comparison of average cosine similarities between task prompts and task prompt
vectors fine-tuned on different tasks for the T5-base model. The average is calculated
across all combinations of 3 random initializations (i.e., row QNLI column MNLI was
calculated as the average of all cosine similarities between MNLI and QNLI for all
initialization combinations, omitting the combinations of the same vectors). The diagonal
represents the cosine similarities within the same task. It provides an estimate of natural
in-task variation of task prompts and task prompt vectors, against which other similarities
should be compared.

combination across all random initialization combinations. If task prompts are initialized
from different random initializations and point in different directions in the task sub-
space, we should also witness this phenomenon with their corresponding task prompt
vectors. Therefore, we repeat this process for task prompt vectors.

Results in Table[T|row 1 indicate that the downstream performance of prompt tuning
on the source tasks across 3 different random initializations has a low standard deviation
from the average. This shows that the task prompts end up in a subspace with sufficient
task performance without necessarily residing in the same task subspace. In addition, we
do not observe any difference in findings from experiments with NLI and NLG tasks.

Subsequently, Figures 2 and [2b] show the comparison of cosine similarities between
task prompts and task prompt vectors from different tasks, averaged over all random
initialization combinations. The cosine similarities on the diagonal serve as a baseline
for comparison with the cross-task cosine similarities. We can see that cosine similarities
for both task prompts as well as task prompt vectors are higher for combinations of
tasks that are from similar problem domains or have similar labels and data structures.
Another observation is that the cosine similarity of task prompts vectors provides a better
measurement (in comparison with task prompts) of actual tasks’ similarity as well as of
the performance that can be achieved by a transfer between them (see also Figure [3). For
example, QNLI and TREC exhibit a relatively high similarity for their task prompts and a
low similarity for task prompt vectors, which appropriately reflects their mutual diversity.
In addition, we notice in Figures [2a]and 2| that task prompt vectors generally achieve
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lower cosine similarities than task prompts. Based on our results, we cannot determine
the reason for this difference, and it can be a potential subject of future research.

More detailed and disaggregated cosine similarities of Figures[2aand[2b]can be found
in Supplementary Material C, Figures 1, and 2. We also evaluated cosine similarities of
task prompts and task prompt vectors for LLaMa-3.1-8B-Instruct and DeepSeek-LLM-
7B-Chat in Supplementary Material C in Figures 3a, 3b, 4a, 4b.

Task prompt vectors from similar problems are more similar. Additionally, we evaluate
the similarity of different task prompt vectors across different tasks. Figure [2b]shows that
certain pairs of tasks are more similar than others, reflecting the shared properties of these
tasks, such as the same number of classes, the same labels, or solving a similar problem.
Problem similarity can be seen in the MNLI-QNLI task prompt vectors, and a similarity
in the number of classes is observed in the MNLI task prompt vector, which tends to
have higher cosine similarity with task prompt vectors for tasks with more classes (e.g.,
DBPedia, TREC). Increased similarity can also be seen in tasks that have common data
formats (e.g., question-based QQP and QNLI). We also notice that MNLI-QQP and
QNLI-QQP have even higher similarity than some tasks from common problems (e.g.,
MNLI-QNLI). This shows that the similarity of task prompt vectors may also appear
for more dissimilar tasks. However, this phenomenon only appears in the case of the TS
model, but not necessarily in the results for LLaMa and DeepSeek models (available in
Supplementary Material C).

4.3 Combination of Task Prompt Vectors via Addition for Multi-Task Transfer

This section addresses the following research question: RQ2: Can we combine multiple
task prompt vectors and maintain multi-task performance on the source tasks?
To answer this research question, we investigate the prompt arithmetics by task
prompt vector addition on 55 task pair combinations from the set of NLU datasets
(MNLI, QOP, ONLI, SST72, STS-B, MRPC, RTE, CoLA, TREC Coarse, DBPedia, Yelp
Polarity). We also evaluate combinations of task prompt vectors in a simulated limited
data environment by providing 0-100 training examples before evaluation on the test set.

Combinations of task prompt vector pairs maintain good single-task performance on
the majority of observed task combinations. To evaluate whether combinations of task
prompt vectors maintain single-task performance, we conduct experiments where we
create paired combinations from all source tasks (according to equation[d). We can see
from the results in Figure[3|that most binary classification tasks retain their single-task
performance on both tasks, which implies that task prompt vectors can be used for
solving multi-task problems, and also corresponds with previous finding that state that
some tasks are mutually beneficial [1/45]. In some cases, the single-task performance
was kept only for a single source task. This is, however, an expected behavior, because
similar to other transfer learning approaches, a combination of task prompt vectors
from too diverse tasks must inevitably end up in a negative transfer (e.g., for tasks with
completely different features and meanings of labels). In some cases, the combination of
two tasks even increased performance, for example, in the case of MNLI+RTE, possibly
due to the shared task type (in this case, NLI/entailment). However, this increase is not
clearly significant, as other NLI combinations do not show the same trend.
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Performance relative to prompt tuning

W FirstTask W Second Task |

Fig. 3: Comparison of relative exact match performance of combinations of task prompt
vectors across averaged across 3 different random initializations and all task combina-
tions. The results are relative to the original single-task performance (1 is the performance
of single-task prompt tuning). The task combinations in bold are the combinations that
achieved over 50% of single-task performance on both of the tasks.

Task prompt vector combinations are good initializations for zero-shot and few-shot
learning. We select two target tasks for inference classification (SciTail, SNLI), topic
classification (AG News, Yahoo Answers), and sentiment classification (SST5, IMDB)
while keeping the same set of source tasks. We compare initialization with randomly
initialized soft prompts, soft prompts trained on single and multiple source tasks (equiv-
alent to SPoT [43]]), the multi-task ATTEMPT [1]] method, and a combination of task
prompt vectors of both of the source tasks.

The 0-shot and 100-shot results (Table [2) indicate that a combination of task prompt
vectors can outperform initialization with a single-task source soft prompt on SciTail
and IMDB, and the multi-task source soft prompt only for SciTail. The combination
matches the SPoT baseline in cases like AG News, possibly because DBPedia and TREC
together retain little TREC-specific information that could improve results. For SNLI,
Yahoo Answers, and SSTS tasks, we can see that combinations of source task prompt
vectors do almost match the results of the SPoT baseline.

ATTEMPT is also significantly underperforming when using a smaller set of pre-
trained source soft prompts. Another observation is that ATTEMPT performs better
on the AG News task. This may be caused by using the original implementation of
ATTEMPT, where the authors, instead of using textual labels (i.e., "entailment", "not
entailment"), used textual numbers as labels (i.e., "0", "1"), which makes the model
predict numbers instead of specific words.

4.4 Additional Results: Few-Shot Comparison

In this section, we study how increasing the number of demonstration data affects the
performance of prompt tuning on a target task initialized by a combination of task prompt
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Table 2: Test results of training T5-base model with random, single- and multi-task
soft prompt transfer (SPoT), multi-task ATTEMPT, and our task prompt vectors on
0-shot and 100-shot data for all of our observed source and target tasks. We show the
initialization with different combinations for NLI classification, topic classification, and
sentiment classification. The subscript represents the standard deviation from the average.
The best results are bold, while the second-best results are underlined. The * in the
superscript represents that the results are statistically significant from the second-best
result, by two-sample Student’s t-test [43]].

SciTail (NLI) SNLI (NLI)
F1 F1
Source tasks 0 shots 100 shots Source tasks 0 shots 100 shots
Random 54.9¢.6 75.60.5 |Random 46.51.5 47.61.9
MNLI (SPoT) 70.40.4 87.80.9 |MNLI (SPoT) 79.50.3 80.80.4
QNLI (SPoT) 57.713.1 77.71.3 |QNLI (SPoT) 47.10.3 49.10.9
QNLI + MNLI (SPoT) 70.41.2 87.70.6 |QNLI+ MNLI (SPoT) 79.60.2" 8lo4"
QNLI + MNLI (ATTEMPT) 63.84.2  83.63 |QNLI+ MNLI (ATTEMPT) 78.50.5 79.61.6
QNLI + MNLI (ours) 71.50.8" 88.1¢.9 |QNLI + MNLI (ours) 79.21.4  80.30.3
AG News (Topic) ‘ Yahoo Answers (Topic)
F1 F1
Source tasks 0 shots 100 shots Source tasks 0 shots 100 shots
Random 0o 50.411.2 [Random 0o 27.610.6
DBPedia (SPoT) 0o 83.40.6" |DBPedia (SPoT) 0o 61.3117
TREC (SPoT) 0o 65.75.6 |TREC (SPoT) 0o 36.55.7
DBPedia + TREC (SPoT) 0o 82.1p0.9 |DBPedia + TREC (SPoT) 0o 60.72
DBPedia + TREC (ATTEMPT) 11.51.7 20.72.s |DBPedia + TREC (ATTEMPT) 0.1¢ 8.15.6
DBPedia + TREC (ours) 0o 830.9 |DBPedia + TREC (ours) 0o 61.1p.9
IMDB (Sentiment) SSTS5 (Sentiment)
F1 F1
Source tasks 0 shots 100 shots Source tasks 0 shots 100 shots
Random 77.29.6 89.40.4 |Random 0o 83.25.8
SST2 (SPOT) 88(]_5 90203 SST2 (SPOT) 940_3* 93.90_3*
Yelp (SPOT) 900.3 90.30.2 Yelp (SPOT) 88.60.8 90.60.5
SST2 + Yelp (SPoT) 90.80.2 90.8¢.2 |SST2 + Yelp (SPoT) 93.70.5 93.80.5
SST2 + Yelp (ATTEMPT) 79.26  89.40.5 [SST2 + Yelp (ATTEMPT) 16.445 37.87
SST2 + Yelp (ours) 90.1p.5 90.40.2 |SST2 + Yelp (ours) 89.90.8 91.50.5

vectors of similar source tasks. We keep the same experiment setup as in the previous
section and evaluate the soft prompt initialization on 5, 10, 25, 100, 250, and 500 shots.

The results in Figure {] indicate that the performance of the combination of task
prompt vectors for SciTail and IMDB target tasks outperforms using a single-task
initialization for multiple shots. We can also see that our method outperforms the multi-
task initialization for the SciTail dataset across all shots of data.

Comparing the results from Figure [3|and Figure 4] if we choose a combination of
tasks that maintains a significant amount of the source task performance (MNLI + QNLI
and SST2 + Yelp), the few-shot performance of the task prompt vector combination
tends to be higher than single-task transfer. In addition, we can see that in the case of the
SSTS5 task, the SST?2 initialization performs the best. We think that the reason for this
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Fig. 4: Test results of training T5-base model with random, single, and multi-task soft
prompt transfer (SPoT), multi-task ATTEMPT, and our task prompt vectors combination
on increasing numbers of shots of data. We can see that for SciTail and IMDB tasks, a
combination of task prompt vectors outperforms single task transfer.

may also be the similarity of SST5 and SST2, and that the combination of source tasks
does not retain enough information to match the SSTS baseline.

5 Discussion and Limitations

Comparison of task prompt vector properties with most relevant PEFT methods. Table
|§| compares attributes beneficial for multi-task training for SPoT, ATTEMPT, and task
prompt vector methods. SPoT exhibits low multi-task modularity, with a need to re-train
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Table 3: Task prompt vectors maintain high task modularity and multi-task performance
and are independent of the number of pre-trained source soft prompts.

Multi-task ~ Source prompt

Method | Modularity performance independence

SPoT X
ATTEMPT X
TPV (ours)

the source soft prompt every time the set of source tasks changes. ATTEMPT, while
having sufficient task modularity, depends heavily on the quality and number of source
soft prompts. While task prompt vectors, in general, are able to match the results of full
multi-task soft prompt transfer (SPoT), initialization of prompt tuning using task prompt
vector combinations also retains high task modularity, which means that new tasks can
be added without the necessity of training, ultimately decreasing computational costs
considerably. Task prompt vectors thus have both — modularity and source prompt
independence — and also retain sufficient multi-task performance.

High reusability of the task prompt vectors. In our experiments, we demonstrated multi-
ple important properties of task prompt vectors. At first, we showed (Section.2) that
task prompts and their corresponding task prompt vectors from different initializations
do not necessarily point to the same space and that some vector combinations are more
similar than others. Despite that, task prompt vectors created from one initialization
and applied to a different initialization maintain their performance for the majority of
observed tasks. The implication of this finding means that it is possible to combine
different task prompt vectors from different initializations.

Furthermore, we showed (Section £.3)) that combinations of task prompt vectors
for similar tasks maintain their source single-task performance (Figure[3)) and that the
combinations of task prompt vectors can be used for initialization of prompt tuning
in low resource settings (zero-/few-shot settings) on the set of target tasks (Table[2).

Based on both of these observations, we can very effectively re-use pre-trained task
prompt vectors for different tasks and use them in downstream scenarios (even without
a need for any further training). Since task prompt vectors are independent of their
initialization, we can also re-use pre-trained task prompt vectors shared by other
researchers and practitioners (e.g., on a designated vector hub).

Identification of appropriate source task prompt vectors. High reusability of task prompt
vectors, however, requires identifying an appropriate source task prompt vector or a
combination of them. To identify such a single vector/a combination of vectors, we
propose to perform an evaluation on held-out validation sets. Another possible factor
that can be included in the identification of an appropriate combination is the similarity
of combined tasks. This similarity can be determined by data analysis by looking at
commonalities in the task domain, data structure, or labels. Additionally, similarity can
be quantified using the cosine similarities of task prompt vectors, which tend to correlate
better with the resulting performance when compared to task prompts.
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Theoretical implications and analysis. It lies beyond the scope of our work to further
deliver theoretical analyses for diverse properties of task prompt vectors, which we will
leave for future work. However, we still want to discuss some hypotheses that arise from
the empirical results achieved during the experiments with task prompt vectors.

At first, we can derive from the obtained findings that the sub-space with optimal
values in the soft prompt space has probably a convex shape. This may be indicated
by the fact that task prompts trained from different random initializations for the same
task do not necessarily point in the same direction (based on Figures 2a]and 2b), but still
achieve identical results.

Second, prompt arithmetics (task prompt vector addition) is possible even though
the soft prompt space is non-linear. The rationale behind this could be that task prompt
vectors are linear approximations of how soft prompts change during training.
Another possibility may be that the task prompt vectors are sparse, and a combination of
2 sparse task prompt vectors creates a vector that contains more information about both
tasks. These findings can be further useful for machine unlearning tasks, where one
could also exploit task prompt vector subtraction.

Limitations. To keep our focus on the evaluation of task prompt vectors, we utilize only
monolingual models in the scope of our work, as well as 12 NLU and 2 NLG datasets in
the English language only. Extension to multilingual models and datasets may reveal
additional interesting findings about task prompt vectors features in multilingual settings.

In this work, we employed the set of 3 common NLU problems, each covering 4
different tasks, and 2 common NLG problems, covering 2 different tasks. We consider
this set as sufficient to evaluate the properties of task prompt vectors, also taking compu-
tational costs into account — adding more tasks would also result in more computational
costs. Nevertheless, additional tasks may still strengthen findings presented in this paper.

Even though there are many other PLMs capable of conditional generation that beat
T5 models in performance on various benchmarks, we focus our experiments on the
T5-base model as it is commonly used as a representative model in many PEFT methods.
Additional experiments on a larger set of models, therefore, represent another potential
extension of our work.

6 Conclusion

In our work, we introduce and investigate task prompt vectors as a method of multi-task
transfer from prompt tuning. We show that the task prompt vectors are not dependent on
random initialization and that the performance across different random initializations
does not change significantly in the majority of observed source tasks. We show that for
similar and mutually related tasks, the combination via arithmetic addition maintains the
single-task performance or even improves it. Finally, we show that certain combinations
of task prompt vectors can be a better option for initialization for certain tasks while
maintaining higher multi-task modularity than other soft prompt-based methods like
SPoT and ATTEMPT.

In the future, we would like to evaluate the cross-model performance of task prompt
vectors. We think that further experiments with generation tasks may be another inter-
esting extension. Moreover, task prompt vector arithmetic has the highest potential for
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improving the unlearning in PLMs by negating the task prompt vectors for the tasks we
want to unlearn. Such an option is enabled by introducing task prompt vectors, which
would not be possible with the existing state-of-the-art methods.
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