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Abstract. Protein inverse folding is a fundamental problem in bioinfor-
matics, aiming to recover the amino acid sequences from a given protein
backbone structure. Despite the success of existing methods, they still
have two limitations: (1) widely used topological modeling via GNNs
may not effectively integrate geometric context of the entire protein 3D
structure by focusing on only local residue message passing, and (2) cur-
rent denoising processes primarily rely on geometric relations to update
residue representations, while neglecting the semantic and functional cor-
relations between different amino acid types. In this work, we propose an
Alternate Geometric and Semantic Denoising Diffusion (AGSDD) that
performs two types of denoising, i.e., geometric denoising and seman-
tic denoising in turn, in the joint Geo-semantic residue representation
space: (1) the geometric denoising module uses a geometric contextual
aggregator to encode global contextual information from the entire pro-
tein structure and selectively distributes information to each residue;
and (2) the semantic denoising module uses a learnable key-value dic-
tionary of residue-types to facilitate communication between them so
that learned residue features can be more accurately aligned to proper
residue types. In experiments, we conduct extensive evaluations on the
CATH4.2, TS50 and TS500 datasets, and observe that even without us-
ing any pre-trained protein language models, AGSDD still outperforms
leading methods, achieving state-of-the-art performance and exhibiting
strong generalization capabilities.

Keywords: Protein Inverse Folding · Diffusion Model · Alternate De-
noising.

1 Introduction

Protein inverse folding, a crucial task in bioinformatics and computational biol-
ogy, aims to reversely explore possible amino acid (AA) sequences from a given
protein 3D structure [24, 15, 43]. These predicted sequences can autonomously
fold into functional proteins, enabling the design of novel proteins with desired
structural and functional properties. Moreover, some of these designed proteins,
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which may not occur naturally, have significant applications in biological re-
search, including drug design and antibody engineering [18, 3, 40].

Numerous studies have revealed the effective application of neural networks
in analyzing protein [27, 36, 2, 47]. Predicting AA sequences based on protein
backbone structures is a 3D structure-to-sequence mapping problem. Numerous
studies have utilized GNNs [30, 33] to extract protein structural features (i.e.,
residue features and their connections) [15, 3, 16], followed by the Transformer
to generate protein sequences in an autoregressive manner [38, 4].

Recently, diffusion models have been extensively applied for generating mean-
ingful contents in both vision and language [11, 26, 29, 44, 1, 41, 9], due to their
ability to produce highly diverse yet faithful data from the desired distribution.
Notably, diffusion models have shown promise in analyzing and interpreting pro-
tein structures. For instance, DPLM [39] adopted a discrete diffusion framework
to train protein sequences, exhibiting the potential of the diffusion model for
protein representation learning. Similarly, Grade-IF [42] proposed a graph dif-
fusion model for protein inverse folding, effectively learning latent protein rep-
resentations by capturing inter-residue interactions, which encapsulate various
reasonable sequences for a given backbone structure.

Despite the wide application of diffusion models to proteins, current diffusion-
based inverse folding has two challenges. First, existing methods typically employ
GNNs to establish inter-residue interaction through geometry-driven denoising.
However, the locality of GNN-based message passing fails to effectively inte-
grate the contextual information across the entire protein chain, thereby limiting
comprehensive residue representation learning. From a biological standpoint, the
state of a protein chain is intrinsically linked to the collective contributions of
its residues [28, 32, 31]. Viewing a protein chain as a steady-state system, each
residue is vital for maintaining overall stability. Therefore, effective communica-
tion among residues is essential for protein representation learning. Furthermore,
existing diffusion models predominantly rely on single-pattern geometry denois-
ing that focuses on connection relationships between residues of the chain, while
overlooking the impact of semantic correlations between different residue types
on residue representation. In protein sequences, AA types are not merely dis-
crete tokens but embody functional, biological, and evolutionary relationships
between residues. Considering the semantic communication of the type of residue
with all AA types can better update the residue representation and assign the
residue to the most appropriate AA type.

To tackle these drawbacks, we propose an alternate geometric and semantic
denoising process to perform more effective residue representation learning:
(1) Geometric Denoising: while preserving high-fidelity local structure mod-
eling through GNNs, we introduce a Contextual Aggregator (CA) module. This
module dynamically aggregates contextual information across the entire protein
chain and distributes it selectively to each residue, enabling each residue to be
aware of whole-chain geometric context and update. We also call this protein-
specific denoising because it depends on the chain-level structural specificity.
(2) Semantic Denoising: we construct a learnable residue key-value dictio-
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nary containing predefined semantic embeddings for all AA types and introduce
a Semantic Alignment (SA) module. This module allows residue to dynami-
cally aggregate type-specific semantic features through attention-based cross-
type communication during denoising, facilitating flexible transformations be-
tween residue types and enhancing residue representation. We also call this
protein-agnostic denoising because it operates on semantic features of AA and is
independent of specific protein instances. Therefore, the alternate denoising pro-
cess incorporates both a geometry-based learning channel that is protein-specific
and a semantics-based learning channel that is protein-agnostic.

To evaluate the performance and generalization capacity of our method, we
conduct experiments on the CATH4.2, TS50 and TS500 datasets [15, 20]. Exten-
sive experiments demonstrate that our method significantly outperforms baseline
methods and achieves state-of-the-art performance. Finally, we provide detailed
visualization and analysis to illustrate the effectiveness of our method.

The contributions of this work are summarized below:

– We introduce a diffusion model with an alternate geometric and semantic
denoising strategy to achieve optimization based on both geometric context
and semantic relationships for residue representation learning;

– We design a contextual aggregator module and a semantic alignment module,
which enhance residue representations by using the context of the entire
chain and facilitating communication between residue types;

– Our method demonstrates strong generalization and surpasses state-of-the-
art approaches on the CATH4.2, TS50 and TS500 datasets.

2 Related Work

Protein inverse folding can be formulated as a structure-based conditional gen-
eration, where 3D structure can be encoded to a knn-graph. Node and edge
features represent residues and their relationships. Previous work like Graph-
Trans [15] extracted protein backbone features (e.g., angles and distances) for
autoregressive sequence decoding. Recent works enhanced structural representa-
tion: GVP-GNN [16] introduced geometric vector perceptions to jointly model
geometric and relational features, ProteinMPNN [3] incorporated virtual Cβ

atoms as additional input features for improved performance, PiFold [8] and
VFN [22] leveraged virtual atoms to capture hidden structural patterns. Be-
sides, to fully consider sequence information in the mapping process, ESM-IF [13]
augmented training data and used this additional data to train, resulting in sig-
nificant improvements. LM-Design [46] and KWDesign [6] employed pre-trained
language models to refine amino acid sequences iteratively. These methods have
achieved significant success in sequence recovery.

In recent years, generative models have garnered significant attention [19,
10, 35]. DDPM [11] utilized the Diffusion paradigm by progressively introducing
Gaussian noise into images and learning its reverse process, which has achieved
remarkable success in image generation. Furthermore, Latent Diffusion [29] and
ControlNet [44] enhanced controllability by incorporating text as a condition
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Fig. 1. Overview of AGSDD model, illustrated in (a), (b), (c). We take a certain
residue type (highlighted in the figure) as an example. (b) The correct type (green)
transforms to the incorrect noise type (underlined red). (d) We show the semantic
alignment module in semantic denoising. The Key-value dictionary initializes the se-
mantic features of all AA types. The true type is used to enforce the residue alignment
to the proper type. (e) It is the contextual aggregator module in geometric denoising,
where the anchor is initialized randomly to gather context of the protein-specific chain.

for image generation. In Addition, D3PM [1] has extended the multinomial dif-
fusion model by [12] to handle discrete data. DPLM [39] applied diffusion for
unconditional protein sequence generation, leading to a better understanding of
proteins. DiffPreT [45] pre-trained a protein encoder by sequence-structure joint
diffusion modeling and enhanced by SiamDiff, a method to capture the correla-
tion between different conformers of a protein. CPDiffusion-SS [14] is a latent
graph diffusion model that generates protein sequences based on coarse-grained
secondary structure, enhancing the reliability and diversity of the generated pro-
teins. GRADE-IF [42] proposed an innovative graph denoising diffusion model
for structure-based protein sequence design, demonstrating significant potential
in generating diverse protein sequences.

3 Method

In this section, we introduce our novel method AGSDD, using the diffusion
model for protein inverse folding. As shown in Fig. 1, our approach starts with
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feature extraction from input protein structure and diffusion modeling. We then
delve into our alternate denoising network, comprising geometric denoising and
semantic denoising.

3.1 Feature Extraction from Protein Structure

To obtain protein 3D structure features, we parse the backbone structure and
construct a K-nearest neighbor graph G(X,E) based on the coordinates of Cα

atoms, where K is 30 at default. The G(X,E) comprises node features X ∈
RN×dn and edge features E ∈ RM×de , where these features are used to represent
residues and their relationships, and N and M denote the numbers of nodes and
edges, respectively. Following [42], node and edge features are defined as follows:

X = EncoderNode (Xb;Xsasa;Xa;Xs) , (1)
E = EncoderEdge (Ek;Esp;Ese) , (2)

where B-Factor Xb ∈ RN×1 and solvent-accessible surface area (SASA) Xsasa ∈
RN×1 are derived from the scalar values of Cα atoms. B-Factor reflects the
static stability of the protein, while SASA provides insights into protein folding
and hydrophobicity. Angle features Xa ∈ RN×4 contain the sine and cosine of
backbone dihedral angles ψ and ϕ, i.e., local geometry of residues. Surface-aware
features Xs ∈ RN×5 are encoded as vectors according to a set of hyperparame-
ters λ, representing the normalized distances between the central amino acid and
its one-hop neighbors [5]. For edge features, kernel-based distances Ek ∈ RM×15

are described using Gaussian radial basis functions (RBF) with varying band-
widths to capture distance information between connected residues at different
scales, totaling 15 different distance features. Esp ∈ RM×12 are derived from the
heavy atom positions of the corresponding residues, totaling 12 relative position
features [42]. The relative sequence distances Ese ∈ RM×66 use 65-dimensional
one-hot vectors as bins to encode the relative sequence distance of two residues in
the protein chain, along with a binary feature indicating whether the Euclidean
distance between two connected residues is less than a specified threshold.

3.2 Diffusion Modeling

Our method is based on a diffusion modeling framework [1] for protein inverse
folding, which includes both diffusion and denoising processes.

Diffusion Process. In the diffusion process, noise is introduced to the clean AA
type S0 ∈ RN×20 of nodes. Specifically, at timestep t, each node’s AA type
s0 ∈ R20 in the sequence transforms to other amino acid types using a probability
transfer matrix Qt = αtI + (1− αt)1k1

⊤
k /k,Qt ∈ R20×20 with I being the

identity matrix and k being the number of AA types and 1 being the one vector
of dimension k, i.e.,

p (st|st−1) = Qt · st−1, (3)
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where st and st−1 represent node’s noise AA type in step t and t−1, respectively.
Similar to DDPM [11], we can compute node’s noise AA type in step t from initial
step, denoted as follows:

p (st|s0) = Q̄t · s0. (4)

Q̄t denotes transition probability from initial step to t directly, and s0 represents
node’s original AA type.

Denoising Process. In the denoising process, each node’s noise AA type is sam-
pled from the uniformly prior distribution and iterated back to the initial dis-
tribution. The transformation between distributions is sketched as follows:

pθ (st−1|st,G)=
∑
ŝ0

q (st−1|ŝ0, st,G) pθ (ŝ0|st,G) , (5)

where ŝ0 is predicted AA type and q(st−1|ŝ0, st,G) represent posterior that can
be computed as follows:

q (st−1|ŝ0, st,G)=DIST

(
st−1|

QT
t st⊙Q̄T

t−1ŝ0

sTt Q̄tŝ0

)
, (6)

where DIST is a categorical distribution over 20 AA types with probabilities
computed by the posterior distribution [42].

3.3 AGSDD Denoising Network

As shown in Fig. 1, we propose AGSDD, including an alternate denoising net-
work ϵθ(St, t,G) to predict the distribution pθ(ŝ0|st,G) of each node. The net-
work includes two denoising phases: (1) geometric denoising consists of message
passing and the contextual aggregator module, and (2) semantic denoising in-
cludes the semantic alignment module. We concatenate the corresponding St and
X to form the initial node representation H = {h1, ...hi, ...hN},H ∈ RN×d.

Message Passing. The Message Passing module updates node representations
using information from neighboring nodes and their relationships. Firstly, given
a node hi as an example, a gating mechanism within the Cell in Eq.(7-9),
dynamically adjusts both node and edge features, producing the message m′

ij .
Specifically, the node hi is concatenated with its neighboring node hj as the
message mij , which is then merged with the edge features eij as gates, i.e.,

g
(1)
ij = σ (Linear ([eij ;mij ])) , g

(2)
ij = σ (Linear ([eij ;mij ])) , (7)

where σ is the sigmoid function. g(1)
ij and g

(2)
ij are two gates, which are used to

update message mij , i.e,

nij = Act
(
Linear(eij) + g

(1)
ij ⊙ Linear (mij)

)
, (8)

m′
ij= g

(2)
ij ⊙mij + (1− g

(2)
ij )⊙ nij , (9)
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where Act(.) is the activation function. Subsequently, messages from all neigh-
boring nodes are aggregated to update the central node’s representation, i.e.,

h′
i = MLP

hi,
∑
j∈Ni

m′
ij

 , (10)

where h′
i is the updated feature of node i, and Ni represents the set of neighbors

of node i.

Contextual Aggregator. To effectively enhance representations for residues, we
propose the contextual aggregator module, as shown in Fig. 1e, which integrates
the contextual information of the entire protein chain and selectively distributes
it to each residue for access. Specifically, a learnable virtual anchor hs ∈ Rd is
initialized at first. Subsequently, it is transformed to the query space, while the
node representations updated from the Message Passing are transformed to the
key and value spaces, i.e,

Qs = W s
q · hs, Kh = W h

k ·H ′, Vh = W h
v ·H ′, (11)

where W s
q ∈ Rd×d, W h

k ∈ Rd×d, W h
v ∈ Rd×d are the projection matrices. hs

is randomly initialized, and H ′ = {h′
1, ...h

′
i, ...h

′
n} represents all nodes in the

protein. We compute the attention score between them and use the score to
adaptively aggregate information from the entire protein chain, i.e,

hg = Softmax

(
Qs ·KT

h√
d

)
Vh, (12)

where the output hg ∈ Rd, encapsulates the contextual information of the entire
protein-specific structure, which is then provided to each residue for access. We
employ the Cell module with a gating mechanism shown in Eq.(13-15), which
selectively receives the quantity of information based on the current node to
enhance residue representation, i.e.,

g
(1)
i = σ(Linear([h′

i; hg]), g
(2)
i = σ(Linear([h′

i; hg])), (13)

where σ is the sigmoid function. g(1)
i and g

(2)
i are two gates, which are used to

receive information from the protein-specific contextual feature hg according to
node h′

i, i.e,

ci = Act
(
Linear(h′

i) + g
(1)
i ⊙ Linear(hg)

)
, (14)

h̃i= g
(2)
i ⊙ hg + (1− g

(2)
i )⊙ ci, (15)

where Act(.) is the activation function, h̃i is the updated feature of node i.
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Semantic Alignment. To make residue align to proper types more accurately
during the denoising process, we introduce the semantic alignment module, in
Fig. 1d. It adaptively integrates type-specific semantic features to enable cross-
type communication. Firstly, all amino acid types are initialized as a learnable
residue key-value dictionary Hc ∈ R20×d. They are then mapped to the key and
value spaces served as a reference, the node feature h̃i is mapped to the query
space served as a request, i.e.,

Q
(i)
h = Wq · h̃i, Kc = Wk ·Hc, Vc = Wv ·Hc, (16)

where Wq ∈ Rd×d, Wk ∈ Rd×d, and Wv ∈ Rd×d are the projection matrices.
We calculate the correlation between the node and the 20 AA types using scaled
dot-product attention, i.e.,

p(hi) = Softmax

(
Q

(i)
h ·KT

c√
d

)
, (17)

where p(hi) ∈ R20 represents the correlation between the i-th node and the 20
AA types. The type semantic embeddings are then weighted to the node, i.e.,

hl
i = p(hi) · Vc. (18)

To ensure each node aligns with the corresponding AA type more accurately, we
apply cross-entropy loss to constrain the correlation matrix, i.e.,

Lattn = − 1

N

N∑
i=1

p(h
(i)
true) log(p(hi)), (19)

where N is the number of nodes, and p(h
(i)
true) ∈ R20 is the ground truth AA

types of node i. Finally, after two types of alternate denoising, the node repre-
sentations are enhanced in each layer.

Following the diffusion framework [26], the time step t is mapped to γ and
β to dynamically adjust the scale of features after computing the representation
at each layer:

hl
i = hl

i ∗ (γ + 1) + β, (20)

γ and β denote scale and shift respectively. The dimensions of them are consistent
with the node representation hl

i. The final node representation in layer m is
mapped to the 20 AA types, which are associated with the secondary structure
embedding ss [42]:

pi = MLP (hm
i + Linear(ss)) , (21)

where pi ∈ R20 represents the predicted amino acid type of the i-th node.
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3.4 Training Objective

For the model training, we employed cross-entropy loss to optimize the model’s
final predictions for each node type, i.e.,

Lpred = − 1

N

N∑
i=1

p(h
(i)
true) log(pi), (22)

L = α · Lpred + λ · Lattn, (23)

where α and λ are weight coefficients, and p(h
(i)
true) represents the true type

of the i-th residue, pi represents the predicted type of the i-th residue and L
represents the final loss, which includes the prediction cross-entropy loss Lpred

and the constraint loss Lattn in semantic denoising.

4 Experiments

4.1 Dataset and Evaluation Metrics

In our experiments, we compare our method against other approaches on the
CATH4.2 dataset, a widely-used benchmark categorized based on the CATH
topology classification [25]. Following the data-splitting in previous works, e.g.,
GraphTrans [15], PiFold [8], and GRADE-IF [42], we divide the dataset into
18,024 proteins for training, 608 proteins for validation, and 1,120 proteins for
testing. In addition, we extend our evaluation to the TS50 and TS500 datasets to
validate the generalization capability of our model. We employ two evaluation
metrics for assessing generated AA sequences, i.e., Recovery rate and Per-
plexity. The recovery rate quantifies the accuracy of the generated sequences
compared to the ground truth, providing insight into the model’s precision. Per-
plexity measures the uncertainty in the model’s predictions, reflecting its confi-
dence and ability to generalize to unseen data.

4.2 Experimental Setting

To comprehensively evaluate the model’s performance to recover sequences, we
divide the test data into three categories: “short”, “single”, and “all”, as shown in
Table 1. The “short” comprises proteins with AA sequence lengths fewer than
100, and “single” includes proteins composed of a single chain; “all” encompasses
the entire test dataset. The denoising network consists of six stacked layers, and
the timestep for the diffusion model is set to 500. The model is trained for a
total of 70,000 steps with a batch size of 32 and gradient accumulation over
two steps on an NVIDIA A6000 GPU. We employ the Adam optimizer with a
learning rate of 0.0005 and a weight decay of 0.00001. The weight of α and λ
are both 0.5. In the inference process, we utilize accelerated inference methods
based on [42, 34], with a skip interval of 500 and a single denoising step, striking
a balance between recovery rate and perplexity.
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Table 1. Experiment result on the CATH4.2 dataset.

Method Perplexity↓ Recovery(%)↑

Short Single All Short Single All

StructGNN [15] 8.29 8.74 6.40 29.44 28.26 35.91
GraphTrans [15] 8.39 8.83 6.63 28.14 28.46 35.82
GCA [37] 7.09 7.49 6.05 32.62 31.10 37.64
GVP [16] 7.23 7.84 5.36 30.60 28.95 39.47
AlphaDesign [7] 7.32 7.63 6.30 34.16 32.66 41.31
ProteinMPNN [3] 6.21 6.68 4.61 36.35 34.43 45.96
PiFold [8] 6.04 6.31 4.55 39.84 38.53 51.66
GRADE-IF [42] 5.49 6.21 4.35 45.27 42.77 52.21
VFN-IF [22] 5.70 5.86 4.17 41.34 40.98 54.74
AGSDD (ours) 4.06 4.76 2.93 53.57 48.95 64.07

w/ External Knowledge

LM-Design [46] 6.77 6.46 4.52 37.88 42.47 55.65
KW-Design [6] 5.48 5.16 3.46 44.66 45.45 60.77

4.3 Main Results

To validate the effectiveness of our method, we compared it with other strong
competitors using the CATH4.2 benchmark, and the results are shown in Ta-
ble 1. Experimental results demonstrate that our model achieves state-of-the-
art performance in AA sequence recovery and perplexity. To the best of our
knowledge, our method is the first to achieve 60% recovery without external
knowledge of pre-trained language models. In addition, compared to the VFN-
IF model, our approach improves the recovery rate by 9.33%, confirming its
superior performance. Compared with GRADE-IF, our method increases the re-
covery rate by 11.86%, indicating the effectiveness of semantic denoising in the
denoising network for sequence recovery. Furthermore, while the LM-Design and
KW-Design models utilize external knowledge from the pre-trained ESM [21],
achieving recovery rates of 55.65% and 60.77%, respectively, our model improves
the recovery rates by 8.42% and 3.30%. This demonstrates that our model de-
livers strong sequence recovery capabilities without external knowledge, thereby
reducing computational complexity during the inference stage.

4.4 Generalization Capability Analysis

To verify the generalization capability of our model, we directly evaluated the
trained model on the TS50 and TS500 datasets. The TS50 and TS500 datasets
consist of 50 and 500 test proteins, respectively. As shown in Table 2, our model
achieves state-of-the-art performance on both datasets, significantly outperform-
ing existing methods. Specifically, our model achieves a perplexity (PPL) of 2.67
on TS50 and 2.31 on TS500, substantially outperforming existing approaches
such as GRADE-IF and VFN-IF. For recovery rate (Rec), our model achieves
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Table 2. Results of experiments on the TS50 and TS500 datasets. PPL refers to
Perplexity, and Rec indicates Recovery (%).

TS50 TS500
Method PPL Rec PPL Rec

StructGNN [15] 5.40 43.89 4.98 45.69
GraphTrans [15] 5.60 42.20 5.16 44.66
GVP [16] 4.71 44.14 4.20 49.14
GCA [37] 5.09 47.02 4.72 47.74
AlphaDesign [7] 5.25 48.36 4.93 49.23
ProteinMPNN [3] 3.93 54.43 3.53 58.08
PiFold [8] 3.86 58.72 3.44 60.42
GRADE-IF [42] 3.71 56.32 3.23 61.22
VFN-IF [22] 3.58 59.54 3.19 63.65
AGSDD (ours) 2.67 67.03 2.31 71.61

w/ External Knowledge

LM-Design [46] 3.50 57.89 3.19 67.78
KW-Design [6] 3.10 62.79 2.86 69.19

67.03% on TS50 and 71.61% on TS500. Notably, it is the first model, to our
knowledge, that exceeds a recovery rate of 70% on the TS500 and over 65% on
the TS50 without leveraging external knowledge in training. These results under-
score the robustness and generalization capability of our approach. While models
incorporating external knowledge in training, such as LM-Design [46] and KW-
Design [6], also achieve competitive results, our model demonstrates that better
performance can be reached purely through alternate denoising, thus reducing
the reliance on external domain-specific information.

4.5 Ablation Study

To evaluate the impact of each module within the alternate denoising network,
we conduct an ablation study, and the results are shown in Table 3. The per-
formance metrics are evaluated across three datasets: CATH, TS50, and TS500.
Firstly, removing the semantic alignment (“w/o SA”) disrupts the model’s under-
standing of various residue types, leading to a decline in performance across the
CATH, TS50, and TS500 datasets. It demonstrates the necessity of the model’s
understanding of various residue types by aligning their representation during
the denoising process. Similarly, excluding the contextual aggregator module
(“w/o CA”) also leads to a marked decline in performance. Without this module,
the model is restricted to relying purely on graph neural network (GNN-based)
neighbor inter-residue interactions, without leveraging holistic information from
the entire protein chain. This limitation hinders the model’s ability to contextual-
ize residue interactions, as evidenced by decreased recall and increased perplexity
across all datasets. These results confirm the effectiveness of integrating global
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Table 3. Ablation study. “w/o SA” indicates the model without semantic alignment,
“w/o CA” refers to the model without contextual aggregator in the geometric denoising,
“w/o ALL” denotes the model without SA, CA and the cell module in message passing.

Model CATH TS50 TS500

Rec PPL Rec PPL Rec PPL

AGSDD 64.07 2.93 67.03 2.67 71.61 2.31

w/o SA 63.13 3.00 64.46 2.80 70.32 2.39
w/o CA 61.60 3.16 64.24 2.89 68.74 2.52
w/o SA & CA 61.48 3.17 63.68 2.92 68.73 2.51
w/o ALL 60.96 3.21 63.61 2.95 68.36 2.54

[1,2] [2,3] [3,4] [4,5] [5,6]
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Fig. 2. Nonlinear features analysis of contextual aggregator module on layer output.
The x-axis shows two adjacent layers, and the y-axis represents the logarithm of KL
divergence, which measures changes in node feature distributions. The polyline depicts
nonlinear divergences in node representations for 50 randomly selected protein cases
from CATH4.2 test set with or without the CA module. Arrows indicate the direction
towards nodes with stronger nonlinear features.

chain-level information to enrich residue representations and improve predictive
accuracy. When both the semantic alignment and contextual aggregator module
are simultaneously removed (“w/o SA & CA”), the model suffers further per-
formance degradation. This reinforces the complementary contributions of these
two components, highlighting that both are indispensable for capturing complex
residue dependencies within the denoising network. Lastly, we explore the role
of the Cell module within the Message Passing part, which integrates node and
edge representations from neighboring nodes. When the Cell module is replaced
with a MLP, model performance declines, indicating the crucial role of the Cell
module in effectively integrating neighboring node and edge representations.

4.6 Nonlinear Analysis in Contextual Aggregator

To better understand the effectiveness of the CA module, we examine its in-
fluence on the nonlinear characteristics of layer outputs. In Fig. 2, we compare
two scenarios: one where the CA module is used and another where it is not.
The y-axis represents the logarithm of the KL divergence, which quantifies the
changes in feature distributions between adjacent layers. A higher value indicates
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Fig. 3. How a specific position in the se-
quence attends to all AA types across
layers in semantic alignment module.
(vertical: different layers, horizontal: 20
AA types). The specific residue can in-
corporate the semantic information of the
correct type as the layer goes deeper.
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Fig. 4. How each position in the sequence
attends to the correct type at the final
layer in the semantic alignment module.
(Vertical: prediction types of a segment,
horizontal: 20 AA types). Residues with
accurately predicted types (red) align to
corresponding type semantic features.

a greater divergence, suggesting more pronounced nonlinear transformations.
The results reveal that incorporating the CA module significantly increases the
KL divergence across layers, especially in the earlier stages. This indicates that
CA enhances the model’s ability to capture and propagate complex nonlinear
patterns, thereby improving its representation of inter-residue relationships. In
contrast, without the CA module, the divergence remains consistently lower, sug-
gesting limited capacity for nonlinear feature extraction. Thus, the CA module’s
impact is particularly beneficial for tasks that require nuanced representation of
protein structures.

4.7 Visualization of Semantic Alignment

To investigate the impact of the semantic alignment module, we present visual-
ization results of attention between residues and semantic features of all type.
Specifically, we analyze the AA types to which individual residues attend across
different layers of the denoising network, as shown in Fig. 3. We also show the
AA types attended to by multiple residues in a continuous segment at the final
layer, in Fig.4. In Fig. 3, the vertical axis (L1 to L6) represents the network
layers, while the horizontal axis represents the 20 AA types. The values indicate
the attention weights computed in the semantic denoising phase for the specific
residue and each of the 20 AA types. For the 5tvo.B protein, the true type of
the randomly chosen residue is glutamic acid (E), and for the 1aaz.A protein,
it is lysine (K). The results demonstrate that as the number of layers increases,
the attention weight for the node corresponding to the true AA type features of
each residue gradually rises. By the final layer, the residue aligns with its true
AA type, suggesting that the model effectively aligns residues with the seman-
tic information of their true AA types and incorporates this information into
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Recovery: 0.663 (PDB ID: 4u13)

RMSD: 0.565; avg.pLDDT: 95.39 

Recovery: 0.679 (PDB ID: 3fkf)

RMSD: 0.917; avg.pLDDT: 90.39 

Recovery: 0.654 (PDB ID: 2bng)

RMSD: 0.923; avg.pLDDT: 89.63 

Fig. 5. Comparison of the folding between predicted (Blue) and native (Green)
structures, where the predicted structures are generated using AlphaFold2 based on
AGSDD-designed AA sequences.

the residue to facilitate flexible transition of types to enhance representation. In
addition, Fig. 4 visualizes the attention of multiple residues in the model’s fi-
nal layer. These residues are from a randomly selected continuous segment. The
horizontal axis represents the 20 AA types, while the vertical axis represents
the predicted amino acid types of these residues, where the red represents ac-
curate prediction. The visualization shows that the correctly predicted residues
have the highest attention weights for their true types in the semantic align-
ment module, which indicates that injecting type semantic information into the
residue representations is beneficial for prediction.

4.8 Folding Ability

We further explore the folding ability of the generated amino acid sequences
to verify its rationality. Specifically, we randomly select test proteins 3fkf, 4u13
and 2bng from the CATH4.2 test set and utilize the protein structure predic-
tion method ColabFold [23], which offers user-friendly access to AlphaFold2 [17]
for predicting the 3D structures of the generated amino acid sequences. These
predicted structures are then aligned with the corresponding PDB structures.
As shown in Fig. 5, the recovery rate of the generated sequences 3fkf is 0.679,
and secondary structure elements such as α-helices and β-sheets are effectively
formed. The average pLDDT score is 90.39, and the RMSD is 0.917, where
the average pLDDT score assesses confidence in the predicted structure, and the
RMSD measures the deviation between the predicted and fixed structures. These
results demonstrate the validity and rationality of our model in generating new
sequences based on fixed backbone structures.

5 Conclusion

In this paper, we propose an alternate geometric and semantic denoising diffu-
sion AGSDD that performs protein-specific geometric denoising and protein-
agnostic semantic denoising for protein inverse folding. Firstly, after local struc-
ture modeling through GNNs, our method integrates contextual information
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from the entire 3D structure and assigns it selectively to each residue to maintain
inter-residue communication, enhancing the residue representation. Moreover,
we introduce a semantic denoising that use a learnable key-value dictionary of
residue-types to facilitate communication between them in the denoising process.
In addition, our cell module effectively decouples and computes the relevance of
adjacent node and edge information. In experiments, our method surpasses ex-
isting leading approaches on the CATH4.2, TS50 and TS500 datasets.
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