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Abstract. The modeling and prediction of multivariate spatio-temporal
data involve numerous challenges. Dimension reduction methods can sig-
nificantly simplify this process, provided that they account for the com-
plex dependencies between variables and across time and space. Non-
linear blind source separation has emerged as a promising approach,
particularly following recent advances in identifiability results. Build-
ing on these developments, we introduce the identifiable autoregressive
variational autoencoder, which ensures the identifiability of latent com-
ponents consisting of nonstationary autoregressive processes. The blind
source separation efficacy of the proposed method is showcased through
a simulation study, where it is compared against state-of-the-art meth-
ods, and the spatio-temporal prediction performance is evaluated against
several competitors on air pollution and weather datasets.
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1 Introduction

In multivariate spatio-temporal data, the multivariate observations x(s, t) :=
xt := x ∈ X ⊂ RS are collected in various spatial locations s ∈ S ⊂ RD at times
t ∈ T ⊂ R, where X is the domain of x, S and T are spatial and temporal do-
mains, respectively, and D is a spatial dimension. Modeling and predicting such
data are highly challenging and computationally demanding due to the fact that
the spatio-temporal dependency structures, as well as the dependencies between
the variables, have to be accounted for. These dependencies are often mod-
eled through S × S dimensional covariance function C(x(s, t),x(s′, t′)). Mod-
eling the covariance function is especially complicated in case of nonstationary
data [20, 21], which means that the covariance function C cannot be simplified
to stationary form C(x(s, t),x(s′, t′)) = C(∥s − s′∥, |t − t′|). Instead, for non-
stationary data, the covariance function C changes when spatial or temporal
locations are shifted.
⋆ This research was supported by the Research Council of Finland (363261, 453691)
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Spatio-temporal data modeling can be simplified without restrictive assump-
tions like stationarity, by using blind source separation. In blind source sepa-
ration, it is assumed that the observation x is generated from the independent
latent component z(s, t) := zt := z ∈ RP through a mixing function f as

x = f(z). (1)

Once the latent components are successfully recovered, they can be modeled
independently due to their assumed statistical independence. The dependencies
among the components of the observed variable vector x are therefore presumed
to arise exclusively from the mixing function f . Blind source separation (BSS)
aims to recover the latent components by estimating the mixing and unmixing
functions from the observed data.

While most traditional BSS methods, such as spatio-temporal BSS (STBSS)
[19], are limited only to linear mixing function f(z) = Az, where A is a S ×
P matrix, nonlinear BSS variants have also been recently developed. In the
nonlinear case however stronger assumptions are needed for identifiability. One
such approach for nonlinear BSS assumes, for example, structural sparsity [16].
Other recent developments are mostly for time series, and they solve nonlinear
BSS by exploiting either stationary autocorrelation structure or nonstationary
variances. For these methods, see [9] and the references therein.

In particular, [13] introduced identifiable variational autoencoder (iVAE) for
nonlinear and nonstationary temporal BSS. Later, iVAE have been extended
to nonstationary spatial data in [23] and to nonstationary spatio-temporal data
in [22]. However, all previous iVAE methods are identifiable only if the latent
components possess nonstationary variance, and they do not incorporate previ-
ous observations in time in the model. Instead, the previous methods model the
nonstationary variance only based on the spatial and temporal location of the
observations.

In this paper, we assume that each latent component zi, for i = 1, . . . , P , is
generated by a nonstationary autoregressive process defined as follows:

zi(s, t) = µi(s, t) +

R∑
r=1

γi,r(s, t)
(
zi(s, t− r)− µi(s, t− r)

)
+ ωi(s, t), (2)

where µi is a nonstationary trend function, R is the autoregressive order, γi,r is
a time- and location-dependent autoregressive coefficient function, and ωi is the
innovation term, also varying over location s and time t. A similar model to (2)
is considered in [5] in the context of stationary subspace analysis for time series.

We propose an identifiable autoregressive variational autoencoder (iVAEar)
which extends the identifiability also to nonstationary autoregressive coefficients.
In Section 2, we discuss iVAEar’s model assumptions and identifiability condi-
tions, and in Section 3 we introduce the iVAEar method to estimate the model.
We demonstrate iVAEar’s latent component estimation performance through
comprehensive simulation studies in Section 4, and illustrate its multivariate
spatio-temporal forecasting potential in Section 5. Finally, the paper is con-
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cluded in Section 6. All proofs are given in the supplement3 together with some
additional material.

2 Autoregressive latent component model and
identifiability

In this section, we introduce an autoregressive latent component model and
its identifiability results under nonstationary data. We begin by establishing
general identifiability conditions for autoregressive latent component models in
Definition 1 and Theorems 1 and 2. We then examine specific cases that yield
stronger identifiability results: first, we provide general results for the case where
R = 0 (Proposition 1), followed by results for Gaussian latent components and
Gaussian autoregressive latent components (Propositions 2 and 3, respectively).
Note, that although we focus on spatio-temporal data in the paper, all the results
and estimation methods apply also for time series data by dropping the spatial
location out of the equations.

In original iVAE [13], the main assumption leading to identifiability of the
latent component model is that an additional variable u ∈ U , where U is the
domain of u, is observed so that the latent components z have a conditional dis-
tribution p(z|u) =

∏P
i=1 p(zi|u). In all previous iVAE methods, u has included

information on temporal, spatial, or spatio-temporal location of the observation.
In iVAEar, we assume that in addition to spatio-temporal location, we also have
the previous R observations in time, {x(s, t− 1), . . . ,x(s, t−R)} := x−, as the
additional data. The autoregressive assumption leads to the following generative
deep latent variable model:

p
(
x, z|x−;u

)
= p (x|z) p

(
z|z−;u

)
, (3)

where z− = {z(s, t−1), . . . ,z(s, t−R)} is the set of previous latent components
in time. Following [13], the distribution p(x|z) is defined as

p(x|z) = pϵ(x− f(z)), (4)

meaning that x decomposes into x = f(z) + ϵ, where ϵ is an independent noise
vector. In non-noisy nonlinear BSS (1), pϵ can be modeled with a zero mean
Gaussian distribution with infinitesimal variance. Further, it is assumed that
the conditional latent distribution is part of the exponential family:

pT ,λ(z|z−,u) =

P∏
i=1

Qi(zi, z
−
i )

Zi(u)
exp

 k∑
j=1

Ti,j(zi, z
−
i )λi,j(u)

 , (5)

where Qi(zi, z
−
i ) is a base measure, Zi(u) is a normalizing constant, Ti(zi, z

−
i ) =

(Ti,1(zi, z
−
i ), . . . , Ti,k(zi, z

−
i ))⊤ contains sufficient statistics, and λi(u) = (λi,1(u),

3 https://github.com/mikasip/iVAEar
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. . . , λi,k(u))
⊤ contains the parameters depending on u. The dimension k of each

sufficient statistic Ti(zi, z
−
i ) and λi(u) is assumed to be fixed. The formula-

tion (5) reduces to general exponential family formula if the autoregressive or-
der R = 0. The exponential family form in (5) includes variables zi generated
through AR processes with any exponential family innovations if the location µi

and AR coefficients γri are constant. Some AR processes, such as processes with
Gaussian or exponential distributed innovations, fall in this form even with non-
stationary location and AR coefficients. The properties of Gaussian AR processes
are discussed in more detail later in this section.

Assuming the generative model defined by the equations (3)-(5), and non-
linear BSS (1) problem, it is of interest to identify the latent components z
as well as possible to obtain information about the true generative process be-
hind the observed data. Hence, we next define two identifiability classes that
can be obtained with sufficient assumptions. In following, we use the notation
{f−1(x(s, t − 1)), . . . ,f−1(x(s, t − R))} := f−1(x−) to denote the unmixing
function applied to previous R observations in time individually.

Definition 1. Consider the real parameter set (f ,T ,λ) and the estimated one
(f̃ , T̃ , λ̃) of mixing functions, sufficient statistics and natural parameters such
that pf ,T ,λ(x|x−,u) = pf̃ ,T̃ ,λ̃(x|x−,u) for all x,x− ∈ X and u ∈ U . If there
exists an invertible Pk × Pk matrix A and a vector c so that

T̃ (f̃−1(x), f̃−1(x−)) = AT (f−1(x),f−1(x−)) + c (6)

for all x,x− ∈ X , the set (f ,T ,λ) is identifiable up to an affine transformation.
If A is a block permutation matrix, then the set (f ,T ,λ) is identifiable up to
block-affine transformation.

The block-affine identifiability is a stronger result, and often desirable. Block-
affine identifiability is closely related to permutation and signed scale indetermi-
nacy of z of linear BSS. To build intuition about how block-affine identifiability
relates to the identifiability of the latent components z, we next provide suf-
ficient conditions on the sufficient statistics T in the case R = 0 that ensure
identifiability of z up to permutation and component-wise nonlinearity.

Proposition 1. Assume that the set (f ,T ,λ) is identifiable up to block-affine
transformation and that the autoregressive order R = 0. Further assume:

(i) A non-noisy BSS model (1), i.e. that z = f−1(x).
(ii) There is a function g̃i : Rk → R for all i = 1, . . . P such that g̃i(T̃i(z̃i)) =

aiz̃i, where ai ̸= 0.

Then we have that f̃−1(x) = z̃ = P (g1(z1), . . . , gP (zP ))
⊤, where P is a P × P

permutation matrix and g1, . . . gP are component-wise nonlinearities.

Assumption (ii) of Proposition 1 holds for most of common exponential fam-
ily distributions such as Gaussian, beta, gamma, Pareto, Poisson and expo-
nential distributions, which have sufficient statistic of the form T (x) = x or
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T (x) = log(x). If we have a noisy nonlinear BSS instead of non-noisy, there is
an additional noise indeterminacy for each component. For the case R > 0
with autoregressive dependencies, similar results can be derived so that the
component-wise nonlinearities would depend also on their previous values, i.e.,
that f̃−1(x) = z̃ = P (g1(z1, z

−
1 ), . . . , gP (zP , z

−
P ))⊤. However, for specific au-

toregressive models, stronger identifiability results can be obtained. In particu-
lar, later in this section we demonstrate that for Gaussian autoregressive latent
processes, the latent components can be identified up to permutation, location
and scale transformations.

Next, we introduce two theorems that give sufficient conditions to achieve
affine or block-affine identifiability. The main identifiability theorem is as follows:

Theorem 1. When the data are generated according the generative model in
(3)-(5), and the following holds:

(i) The set {x ∈ X |ρϵ(x) = 0} has measure zero, where X is a domain of x and
ρϵ is a characteristic function of the density pϵ in (4).

(ii) The mixing function f in (4) is injective.
(iii) The sufficient statistics Ti,j in (5) are differentiable with respect to zi almost

everywhere, and the functions Ti,1, . . . , Ti,k are linearly independent on any
subset of X with positive measure.

(iv) There exist Pk + 1 distinct points u0, . . . ,uPk so that the Pk × Pk matrix
L = (λ(u1)− λ(u0), . . . , λ(uPk − λ(u0)) is invertible.

Then, the set (f ,T ,λ) is identifiable up to affine transformation.

While the assumptions (i)-(iii) are not very restrictive, the assumption (iv) is
crucial to understand as it restricts the identifiability only to cases where the
parameters λ(u) vary enough when u changes. Because of this assumption, the
latent components are identifiable only when the exponential family parameters
are nonstationary.

Although identifiability up to a affine transformation might already be use-
ful, in most cases it is desirable to achieve block-affine identifiability. The next
theorem gives sufficient conditions for such identifiability.

Theorem 2. Assume that the assumptions of Theorem 1 hold. Further assume:

(i) The dimension of sufficient statistics is k ≥ 2.
(ii) The sufficient statistics Ti,j are twice differentiable with respect to zi.
(iii) The mixing function f has all second-order cross derivatives.

Then, the set (f ,T ,λ) is identifiable up to block-affine transformation.

Theorem 2, combined with the additional conditions of Proposition 1, essen-
tially guarantees that latent components can be recovered up to permutation and
component-wise nonlinearity. For example, Gaussian distributed latent compo-
nents with unknown nonstationary mean and variance, with sufficient statistics
Ti(zi) = (zi, z

2
i )

⊤, fall within Theorem 2. In fact, we can show that for such
Gaussian data the identifiability can be further reduced to permutation, scale
and location shift, which is in par with identifiability results of linear BSS:
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Proposition 2. Assume that the assumptions of Theorem 2 hold and that the
data are generated through BSS model (1). Further, assume that the latent com-
ponents zi and the respective estimates z̃i are Gaussian, meaning that Ti(zi) =
(zi, z

2
i )

⊤ and T̃i(z̃i) = (z̃i, z̃
2
i )

⊤. Then we have that z̃ = PΛz+ d, where P is a
permutation matrix and Λ is a diagonal matrix with non-zero diagonal elements.

Since our main focus in this paper is on Gaussian autoregressive latent com-
ponents which always has k ≥ 2, we refer the reader to [13] for k = 1 case, where
sufficient conditions are provided for exponential family with R = 0. When the
autoregressive process (3) is assumed for the latent components with Gaussian
innovations, we have the following distribution:

p(z|z−,ut, . . . ,ut−R) =

P∏
i=1

1

2πσi(ut)
exp


(
zi − µi(u

t)−
∑R

r=1(γi,r(u
t)zt−r

i − µi(u
t−r))

)2

2σ2(ut)

 , (7)

where ut denotes the auxiliary variable for the observation xt.

Proposition 3. Assume that the assumptions of Theorem 2 hold and that the
data are generated through BSS model (1). Further assume that the latent com-
ponents zi and the respective estimates z̃i are generated through the Gaussian
AR process (2) with R ≥ 1. Then we have that z̃ = PΛz + d, where P is a
permutation matrix, Λ is a diagonal matrix with non-zero diagonal elements and
d is a constant vector.

Proposition 3 gives the main identifiability conditions for the Gaussian au-
toregressive latent components. In practice, the conditions on the mixing func-
tion are not very restrictive. However, condition (iv) of Theorem 1 requires
sufficient nonstationarity either in the AR coefficients γi,r or in the variance σi.
In Section 3, we introduce an estimation method for estimating the generative
model defined by equations (3)-(5).

3 Autoregressive identifiable variational autoencoder

The iVAEar method is an autoregressive extension of spatio-temporal iVAE,
introduced in [22]. It consists of an encoder g(x,u), a decoder h(x) and an
auxiliary function w(u). As the true AR order R is in general unknown, we use
W to refer to the AR order used in the iVAEar method. The method takes as an
input the current observations x and their auxiliary data u, and the W previous
observations in time and their auxiliary data (xt−r,ut−r), r = 1, . . . ,W .

The encoder aims to estimate the unmixing function q. It maps the obser-
vation and auxiliary data pair (x,u) into the mean vector µz|x ∈ RP and the
variance vector σz|x ∈ RP . For the current observation x, the encoder’s output
is used for reparametrization trick [14] to obtain a new latent representation z′.
The decoder aims then to estimate the mixing function f by trying to construct
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the original input x from z′. For the previous observations xt−r, the encoder is
used to obtain the corresponding latent component estimates ut−r

z|x,u, which are
provided by the mean function µz|x,u(x

t−r,ut−r). These are used to calculate
the mean of the Gaussian latent distribution (7).

The auxiliary function w aims to estimate the function λ by mapping the
auxiliary data u into parameters µz|u, σz|u,γ

1
z|u, . . . ,γ

W
z|u, that estimate the

true parameters of the autoregressive Gaussian distribution (7). In addition,
the auxiliary function is used to obtain the mean estimates µt−r

z|u based on the
auxiliary data ut−r of the previous observations.

The encoder, the decoder and the auxiliary function are modeled using deep
neural networks with parameters θg,θh,θw, that refer to the weights and bi-
ases of encoder, decoder and auxiliary function, respectively. The parameters
θ = (θg,θh,θu)

⊤ of the neural networks are optimized by minimizing the lower
bound of the data log-likelihood, or evidence lower bound (ELBO):

ELBO = Eqθ(z|x,u)

(
log pθh

(x|z) + log pθw(z|z−,u)− log qθg (z|x,u)
)
, (8)

where the first part, pθh
(x|z), controls the reconstruction accuracy and the sec-

ond part, log pθw(z|z−,u)− log qθg (z|x,u), is the Kullback-Leibler divergence,
which tries to keep the variational distribution log qθg (z|x,u) close to the prior
distribution log pθw(z|z−,u). Because Gaussian autoregressive latent data is as-
sumed (7), the distributions pθw , qθg and pθh

are assumed Gaussian, ensuring
that the estimated components follow the same distribution (7). Specifically, we
set pθw = N(z|µ∗, diag(σz|u)), where µ∗ = µz|u +

∑R
i=1 γ

t−r
z|u (µt−R

z|x,u − µt−R
z|u ),

qθg = N(z|µz|x,u, diag(σz|x,u)) and pθh
= N(x|x′, βI), where β > 0 is a small

constant that represents the variance of (4). By decreasing β, the weight of the
reconstruction loss is increased in the loss function similarly as in β-VAE [8].
The whole iVAEar framework is illustrated in R = 1 case in Figure 1. For more
details of iVAE framework, see [13,22,23].

For iVAEar, we construct the auxiliary data following [22] based on either
spatial and temporal segmentation or spatial and temporal radial basis functions.
In segmentation based algorithm, the spatial domain in divided into equally sized
two dimensional square segments, and the temporal domain into equally sized
one dimensional segments. The auxiliary variable then gives the spatial and
temporal segments corresponding to the observation. In radial basis function
based algorithm, multiple spatial and temporal node points are selected from
spatial and temporal domains. The auxiliary variable, i.e. radial basis functions,
are then constructed based on distance between the location of the observation
and each of the node points. Segmentation based iVAEar is denoted iVAEar_s
and radial basis function based iVAEar is denoted iVAEar_r in the rest of the
paper. For further details of constructing the auxiliary data, see [22].

If the underlying latent components satisfy the assumptions of Theorem 1 or
Theorem 2, then we have the following consistency result.

Theorem 3. Assume that the Theorem 1 or Theorem 2 hold. Further assume
that the family of the variational distributions qθg (z|x,x−,u) contains the dis-
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Encoder Auxiliary
function Encoder Auxiliary

function

Decoder

ELBO

Fig. 1. Schematic presentation of iVAEar method in R = 1 case.

tribution pf̃ ,T̃ ,λ̃(z|x,x−,u). Then iVAEar learns the true set (f ,T ,λ) up to the
identifiability classes given by Theorems 1 and 2 in the limit of infinite data.

In AR Gaussian latent data case, when also qθg is Gaussian, then by Propo-
sition 3, iVAEar estimates the true latents z up to permutation, signed scale
and location shift in the limit of infinite data.

The auxiliary function of iVAEar enables the method to be used for spatio-
temporal interpolation or forecasting purposes. Particularly, iVAEar_r method
provides smooth estimates of the spatio-temporal functions µi(u

t), γi,r(ut) and
σi(u

t), i = 1, . . . , P , r = 1, . . . , R. These can be used to predict the latent
components to new spatio-temporal locations, after which the predictions can be
transformed into observation space by using the decoder of the trained iVAEar.
The prediction capabilities of iVAEar are illustrated later in Section 5.

4 Simulations

The simulations of this paper are two-fold; in the first part in Section 4.1, various
simulations are performed under the assumption that the true AR order R is
known. In the second part in Section 4.2, the performance of iVAEar_r is studied
under the assumption that the true autoregressive order R is unknown. The
implementations of all iVAE and iVAEar variants together with the code to
simulate the data in all considered settings and to reproduce the case study of
Section 5, are available in GitHub4,5.
4 https://github.com/mikasip/NonlinearBSS
5 https://github.com/mikasip/iVAEar
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4.1 Main simulations

In this section, simulation studies are used to compare the performances of
iVAEar_r and iVAEar_s against segmentation and radial basis function based
spatio-temporal iVAE methods, iVAEs and iVAEr, respectively, as proposed
in [22], STBSS, and symmetric FastICA (FICA) with hyperbolic tangent non-
linearity [10]. In simulations, we generate the latent spatio-temporal fields z and
a mixing function f . We are particularly interested in performance in settings,
where the variance and/or the AR coefficients of the latent fields z are vary-
ing in space and in time. Hence, we select one setting with nonstationary AR1
coefficient, one with nonstationary variance and one with both AR1 coefficient
and variance nonstationary. In addition, each of the settings is considered with
and without nonstationary spatio-temporal trend function. Next, we give all the
simulation details and explain how z and f are generated.

In all simulations, we set the observed dimension S = 6 and the latent dimen-
sion P = 6. The number of spatial locations is ns = 100 and the number of time
points is nt = 500. The spatial locations s1, . . . sns are generated uniformly in the
domain [0, 1]×[0, 1], and the observations over time are set at times t = 1, . . . , nt.
The latent spatio-temporal fields are generated using the following vector AR
process. Assume the spatial field at time t to be δ(t) = (δ(s1, t), . . . , δ(sns

, t)).
By using the vector AR process we have then

δ(t) =

R∑
r=1

ρrKr(t)δ(t− r) + ϵδ(t), (9)

where r = 1, . . . , R is the order of AR process, ρr is the baseline AR coefficient
for the rth order, Kr(t) is a spatial kernel matrix for time t, which determines
the temporal correlation with spatial locations, and ϵδ(t) is a ns-dimensional
Gaussian noise vector with spatial covariance function C(ϵδ(s, t), ϵδ(s′, t)), s, s′ ∈
{s1, . . . , sns

}. If the kernel matrices Kr(t) are diagonal, the generated data have
separable spatio-temporal covariance function, i.e., data do not have any spatio-
temporal interaction. For the simulations, we set R = 1. As spatial covariance
function for time t we use variance modulated Matern covariance function

C(ϵδ(s, s
′, t)) = σ(s, t)σ(s′, t)

1

2ν−1Γ (ν)

(
||s− s′||

ϕ

)ν

Kν

(
||s− s′||

ϕ

)
, (10)

where σ modulates the variance based on the time and spatial location, Kν is
a modified Bessel function of second kind, and ϕ and ν are range and shape
parameters, respectively. The common Matern parameters for all settings are
provided in the supplementary material. In the simulations, we consider data
with and without trend. The spatio-temporal trend is generated as composition
of cyclical and liner trends as follows:

µ(s1, s2, t) = θs1s1 + θs2s2 + θtt+ α sin(ωs1s1 + ωs2s2 + ωtt+ ωc). (11)

The parameters are generated so that θs1 , θs2 ∼ Unif(−3, 3), θt ∼ Unif(−0.01, 0.01),
ωs1 , ωs2 ∼ Unif(0.2, 4), ωt ∼ Unif(0.01, 0.1), ωc ∼ Unif(0, 2π) and α ∼ Unif(−2, 2).
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Setting 1. The latent fields have constant variance σ(s, t) = 1 and varying
AR1 coefficients over space and time. The kernel matrix K1(t) is a diagonal
matrix with AR1 coefficients γ(s1, t), . . . , γ(sns , t) in the diagonal for each spatial
location s1, . . . , sns . The parameters γ(s, t) are generated as

γ(s, t) = cos
(
2πtb

nt
− c(s)

)
, (12)

where b is a scale parameter and c(s) is a shift parameter. To obtain variability
in space, we generate the shift parameters c(s) from the Gaussian distribu-
tion N(0, 0.3) with Matern spatial covariance function with parameters ϕc, νc.
The Matern parameters for shift are ϕc1 , νc1 = (0.25, 5), ϕc2 , νc2 = (0.15, 2),
ϕc3 , νc3 = (0.1, 3), ϕc4 , νc4 = (0.3, 4), ϕc5 , νc5 = (0.2, 1) for the latent compo-
nents z1, . . . , z5. The scale parameters b are generated from Unif(1, 10) and the
baseline AR1 parameters ρr are generated from Unif(0.6, 0.99) for each latent
component.

Setting 2. The zero-mean latent fields z∗i are generated as in Setting 1.
Then, the final latent fields are obtained as zi(s, t) = z∗i (s, t) + µi(s, t), where
µi(s, t) is generated as in (11).

Setting 3. The latent fields have constant AR1 coefficients and varying
variance over space and time. The kernel matrix is K1(t) is identity matrix
for all t. The spatial domain is divided randomly into 5 clusters and the time
domain into 10 segments providing 50 spatio-temporal segments S1, . . . , S50,
each having their own standard deviation σ1, . . . , σ50. The function σ is then
σ(s, t) =

∑50
k=1 1((s, t) ∈ Sk)σk, where 1 is an indicator function giving 1, if

the location (s, t) belongs in segment Sk, otherwise it gives 0. The baseline AR1
parameters ρr are generated from Unif(0.1, 0.9) for each latent component.

Setting 4. The zero-mean latent fields z∗i are generated as in Setting 3.
Then, the final latent fields are obtained as zi(s, t) = z∗i (s, t) + µi(s, t), where
µi(s, t) is generated as in (11).

Setting 5. The latent fields have varying variances and varying AR1 coef-
ficients over space and time. The fields are generated by combining settings 1
and 2. That is, we have an identical situation to Setting 2, but the function σ is
defined as in Setting 4.

Setting 6. The zero-mean latent fields z∗i are generated as in Setting 5.
Then, the final latent fields are obtained as zi(s, t) = z∗i (s, t) + µi(s, t), where
µi(s, t) is generated as in (11).

These simulation settings are considered to investigate how different types of
nonstationarities affect the performance of the algorithms. The Settings 1 and
2 do not have any nonstationarity in variance, but do have nonstationary AR1
coefficient, meaning that the identifiability results hold for iVAEar methods, but
not for iVAEs and iVAEr. In Settings 3-6 the variance is nonstationary, and hence
the identifiability holds for all iVAE methods. Nonetheless, these settings are
of interest when comparing performances when there are additional stationary
or nonstationary autocorrelation present. Nonstationary trend is considered in
Settings 2, 4 and 6 to see if that affects the performance.
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Mixing function. The observations x are obtained by applying a linear or
nonlinear mixing function fL to the generated latent components z. The function
fL is generated using multilayer perceptron (MLP) following, e.g. [11–13]. The
parameter L denotes the number of mixing layers used in MLP. Each layer
i consists of a P × P mixing matrix Bi and an activation function ψi. The
matrices Bi are normalized to have unit length rows and colums in order to
avoid vanishing of any of the latent components in the mixing process. The
mixing function fL can be then defined recursively as

fL(z) =

{
ψL(BLz), L = 1,

ψL(BLfL−1(z)), L ∈ {2, 3, . . . },

where the activation function ψL is linear for the first layer and exponential
linear unit (ELU), given as

ψi(x) =

{
x, x ≥ 0,

exp(x)− 1, x < 0,

for the other layers. This results f1 with one layer being linear mixing, and when
L increases, the mixing function becomes increasingly nonlinear.

Performance index. The performance of the algorithms is measured us-
ing the mean correlation coefficient (MCC), which is also used for example
in [7, 12, 22, 23]. MCC is a function of correlation matrix Ω = Cor(z, ẑ) of the
true and estimated latent components. MCC measures how similar the optimal
permutation of Ω is to P × P identity matrix, and is calculated as

MCC(Ω) =
1

P
sup
P∈P

tr(P abs(Ω)), (13)

where P is a set of all possible P × P permutation matrices, tr(·) is the trace
of a matrix and abs(·) denotes taking elementwise absolute values of a matrix.
The values of MCC vary in range [0, 1], where 1 is the optimal value, meaning
that estimated components ẑ correlate perfectly with the true components z.

Model specifications. All iVAE models have 3 hidden layers with 128 units
in encoder, decoder and auxiliary functions. All hidden layers use leaky rectified
unit (ReLU) activation function [18]. iVAEar_r and iVAEr are set up with spa-
tial resolution levels H = (2, 9) and temporal resolution levels G = (9, 17, 37).
In iVAEar1_s and iVAEs, 10 × 10 spatial segmentation is used by producing
100 equally sized segments, and temporal domain is divided into 100 segments,
each of which contains 5 consecutive time points. For details of constructing the
radial basis function based and segmentation based auxiliary variables, see [22].
All models are trained for 60 epochs with batch size of 64, and use the learning
rate of 0.001 with polynomial decay of second-order over 10000 training steps,
where the learning rate after the first 10000 training steps is 0.0001. STBSS
uses two spatial ring kernels (0, 0.15) and (0.15, 0.3), and time lag of 1. These
parameters were selected by training STBSS with multiple different parameters
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in each setting, and selecting the parameters that provided the best results on
average. For more about STBSS and its parameters, see [19].

Simulation results. The results of the simulations are provided in Fig-
ure 2. Overall, the best results, especially in nonlinear scenarios, are obtained by
iVAEar_r, followed by iVAEar_s in all settings. Nonstationary trend (Settings
2, 4 and 6) results in worse performance for all of the methods compared to
settings where the trend is not present (Settings 1, 3 and 6).

In Setting 1, where only AR1 coefficient is nonstationary, the latent compo-
nents are successfully recovered only by iVAEar_r and iVAEar_s under non-
linear mixing. Under linear mixing, FICA performs nearly as well as iVAEar_r
and iVAEar_s. STBSS is the fourth best performing method, followed by iVAEs
and iVAEr.

In Setting 2, where also nonstationary trend is added, iVAEar_r and iVAEar_s
are the only methods with decent performance, although their performance also
drops considerably in nonlinear settings.

In Setting 3 with nonstationary variance, all of the methods perform rela-
tively well. FICA and all iVAE based methods perform almost equally well under
the linear mixing, but under the nonlinear mixing, FICA’s performance suf-
fers more. iVAEar based methods perform better than their iVAE counterparts,
which is probably due to the fact that there are still stationary autocorrelation
present in the latent components.

In Setting 4, where the nonstationary trend is included into scenario of Set-
ting 3, all of the methods lose performance. However, iVAEar_r still maintains
its performance nearly as well as in Setting 3, being clearly the best method.

In Settings 5 and 6, where the variance and the AR1 coefficient are nonsta-
tionary, the results are very similar to the results of Settings 3 and 4, but the
performances of FICA and iVAE methods are consistently slightly better due to
the stronger nonstationarity. iVAE based methods maintain their performances
better in nonlinear cases, and all of the methods perform slightly worse when
the nonstationary trend is included.

Overall, autoregressive iVAE methods bring considerable improvement in
performance as compared to the existing nonlinear STBSS methods. Based on
the results, the methods can successfully estimate the latent components if there
is either nonstationarity in autocorrelation or in variance. Nonstationary trend
seems to be more challenging to tackle for the methods. Radial basis function
based iVAEar, iVAEar_r, is the best performing method in all of the settings,
and is the recommended choice for nonlinear nonstationary STBSS problems.

4.2 Sensitivity for AR order mismatch

In this section, we study how sensitive the best performing method, iVAEar_r,
is for AR order mismatch. The data are generated from Settings 1 and 5 with
the true AR orders R = 1 and R = 3, and the latent components z are esti-
mated using the iVAEar_r with AR orders W = 1, 3, 5, denoted iVAEar1_r,
iVAEar3_r and iVAEar5_r.
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Fig. 2. Mean correlation coefficients from 500 trials for Settings 1-6. The y-axis shows
MCC (optimal value = 1), while the x-axis represents different methods. Box colors
indicate the number of mixing layers in the mixing function.

In R = 1 scenario, the settings are identical to Settings 1 and 5 of the
Section 4.1. In R = 3 scenario, the data are generated as in Settings 1 and 5, but
the AR coefficients γr(si, t), r = 1, . . . , R, i = 1, . . . , ns, are generated as in (12).
The coefficients are then multiplied by constants dr, where dr ∼ Unif(0, 1), to
create varying magnitudes to the components. The baseline AR coefficients are
set to ρr = 1, r = 1, . . . , R. To guarantee the weak-sense stationarity of the AR
process, defined in Definition 2 (supplementary material), the AR coefficients
are scaled as follows:

γr(si, t) =
γr(si, t)

maxi,t(|γr(si, t)|+ |γr(si, t)|+ |γr(si, t)|) + 0.01
, (14)

for each latent component j = 1, . . . , P . This procedure guarantees |γr(si, t)|+
|γr(si, t)|+ |γr(si, t)| < 1 for all r = 1, . . . , R, i = 1, . . . , ns, which is a sufficient
condition for fulfilling the weak-sense stationarity.

The results are presented in Figure 3. In the case where only AR coefficients
are nonstationary, the best performance is achieved when the true AR order
W = R is used in the model. Based on the results, it is safer to use larger W
as the performance drops only by little when W > R. The performance drops
more significantly when too small W is used in the model. In the case where also
variance is nonstationary, the effect of incorrect AR order is negligible, although
the correct AR order still produces the best performance. In general, based on
the results, it is safer to use W = 3 or W = 5 in the model rather than W = 1.
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Fig. 3. Mean correlation coefficients of 500 trials for Setting 1 (top) and Setting 5
(bottom) with R = 1 and R = 3. The y-axis shows MCC (optimal value = 1), while
the x-axis represents different methods. Box colors indicate the number of mixing layers
in the mixing function.

5 Case study

We apply the iVAEar_r and iVAEar_s methods to an air pollution dataset [1] to
predict future values and compare their accuracy against iVAEr, spatio-temporal
kriging [3], ARIMA [2] and vector ARIMA (VARIMA) [17]. Spatio-temporal
kriging considers both spatial and temporal dependencies, while ARIMA models
only temporal structures, making predictions separately for each station. Both
kriging and ARIMA fit models univariately and do not account for cross-variable
dependencies. In contrast, VARIMA models cross-dependencies between the
variables through multivariate autoregressive process, but does modeling individ-
ually for each station. iVAEar_r and iVAEr incorporate cross-variable depen-
dencies through latent component decomposition and spatio-temporal trends.
Additionally, iVAEar_r estimates autoregressive structures of latent components
for improved prediction.

The data consist of hourly air pollution and weather measurements from
64 stations in Athens, Greece, spanning 2020–2023. We use daily observations
at 12 PM, resulting in nt = 1124. The data include seven weather variables
(wind speed U, wind speed V, dew point temperature, soil temperature, air
temperature, relative humidity, precipitation) and four air pollution variables
(PM10, PM2.5, NO2, O3). Precipitation is removed due to its predominantly
zero values, yielding S = 10. Six stations lacking complete data are excluded,
leaving ns = 58. The remaining 162 missing observations are imputed using
CUTOFF [4]. The last 24 time points serve as test data, while the first 1100 are
used for training.
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We estimate the latent dimension P by fitting iVAEar_r models with P =
5, . . . , 10, selecting the best model using knee-point detection and profile AIC
(pAIC) [22]. ELBOs for different latent dimensions are shown in Figure 4. Both
methods indicate P = 9 as optimal, which is used in final models.

For forecasting with iVAEar_r, iVAEar_s and iVAEr, auxiliary data must
remain within the training data bounds. Hence, we use seasonal periods ts =
1, . . . , 365 instead of absolute time t = 1, . . . , 1124 and introduce a one-hot en-
coded year factor to allow inter-year variability. Spatial resolution levels are set
to H = (2, 9), learning rate to 0.0001, variance parameter β = 0.02, batch size to
64, and training spans 40 epochs. A hyperparameter search optimizes temporal
resolution for iVAEar_r and iVAE_r, segmentation sizes for iVAEar_s, hid-
den units in the auxiliary function, and autoregressive order for iVAEar_r and
iVAEar_s. The best parameters are selected by leaving 10 last time points of
the training data for validation. Selected parameters are G = (9, 17), nθw

= 16,
and R = 2 for iVAEar_r, G = (9, 17), nθw = 16 for iVAE_r and spatial segment
size of 5000, temporal segment size of 5 and R = 3 for iVAEar_s.

For ARIMA, VARIMA and kriging, seasonal trends are removed as these
methods assume seasonal stationarity. Seasonality is modeled as

xi(s, t) = β0,i + β1,i cos(2πt/365) + β2,i sin(2πt/365) + xres,i(s, t),

where residuals xres,i are predicted using ARIMA and kriging. Kriging uses
product-sum covariance models, while ARIMA selects the best model for each
station via corrected AIC with AR orders 0, . . . , 5, MA orders 0, . . . , 5, and
integration determined by the KPSS test [15]. In VARIMA, we select the best
model for each station based on AIC. The options are models with AR = 1, . . . , 8
and MA = 0, or a model with AR = 1 and MA = 1. Integration order was
selected to be 1 for whole data, from options 1 or 0, based on better validation
accuracy. VARIMA models with larger number of parameters caused numerical
instability, and were hence not considered.
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Prediction accuracy is measured using mean squared error (MSE):

MSE(xi, x̂i) =
1

n

n∑
j=1

(xi,j − x̂i,j)
2,

where xi contains true values and x̂i predicted ones. Combined accuracy is
assessed via weighted MSE (wMSE):

wMSE(X, X̂) =
1

S

S∑
i=1

MSE(xi, x̂i)

σ2(xi)
,

where σ2(xi) is the variance of the deseasonalized variable.
Table 1 presents forecasting results. iVAEar_r outperforms competitors based

on wMSE. VARIMA has the second best combined performance, and the best
performance for predicting wind speeds. ARIMA has the second worst combined
performance but excels for PM10, PM2.5, and NO2. Kriging and iVAEr perform
similarly, with kriging being slightly better overall and excelling in soil tempera-
ture predictions. iVAEar_r achieves the lowest errors for dew point temperature,
air temperature and O3. iVAEar_s has the best prediction performance for rel-
ative humidity, and has high accuracy for O3 as well, but its high errors on soil
temperature, air temperature and NO2 makes it the worst method when con-
sidering the overall performance. Notably, O3 and relative humidity predictions
benefit significantly from incorporating cross-variable dependencies, underscor-
ing the advantage of iVAEar_r, iVAEar_s and VARIMA over univariate models.
However, iVAEar_s shows inconsistent performance in prediction and is subop-
timal for this task. Its segmentation-based auxiliary variables lead to a highly
non-continuous estimate of the trend function, which hinders the model’s ability
to generalize to future data. Therefore, iVAEar_r is the preferred method for
forecasting purposes.

Table 1. Mean squared errors for predictions in time.

Wind Speed U Wind Speed V Dewpoint Temp Soil Temp Temp Rel. Humidity PM10 PM2.5 NO2 O3 wMSE
iVAEar_r 1.57 6.16 3.42 1.08 3.44 64.15 81.31 30.42 106.87 93.09 0.49
iVAEar_s 1.70 7.25 4.70 8.75 7.22 47.29 81.56 30.71 200.20 94.91 0.84
iVAEr 2.05 11.36 4.24 0.60 4.60 96.40 84.60 31.89 114.69 174.50 0.63
Kriging 1.71 8.41 4.73 0.44 5.49 131.21 82.92 43.65 104.03 141.89 0.62
ARIMA 1.79 6.22 4.85 3.08 9.22 119.62 75.15 27.26 97.98 190.36 0.67
VARIMA 1.54 5.75 4.11 1.64 8.29 65.68 75.70 35.80 99.06 121.81 0.56

6 Conclusions and Discussion

We have proposed a novel autoregressive iVAE method for nonlinear spatio-
temporal BSS, extending identifiability results to cases with nonstationary au-
toregressive coefficients. Our simulation studies demonstrate superior latent com-
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ponent estimation compared to state-of-the-art methods, and real-world appli-
cations to air pollution and weather datasets show that iVAEar achieves signifi-
cantly improved multivariate spatio-temporal prediction accuracy. Furthermore,
we establish strong identifiability results, particularly for autoregressive Gaus-
sian latent components.

A limitation of iVAEar is its reliance on a strict autoregressive assumption
in time, making it optimal for separable spatio-temporal processes. Future work
should explore extensions to nonseparable models and to more general graph
structured data. As the identifiability under nonstationary AR coefficients was
studied in this paper mainly for Gaussian innovations, the robustness of the
method against innovations from other distributions should be studied in future.

In prediction tasks, careful hyperparameter selection and validation are nec-
essary to prevent overfitting, and auxiliary variables must be chosen to ensure
compatibility between training and test data. Additionally, iVAEar can be com-
bined with univariate spatio-temporal prediction methods such as graphLSTM
[6], allowing latent components to be predicted separately before reconstructing
the observed data.

As iVAEar can be used for both time series and spatio-temporal data, it is
a valuable method for latent component estimation and multivariate prediction
across various fields, including environmental sciences, meteorology, and neuro-
science, where applications often involve multiple temporal or spatio-temporal
variables representing the same underlying phenomenon.
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