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Abstract. Time series anomaly detection is a critical task with a wide
range of applications including industrial monitoring, financial fraud de-
tection, and medical diagnostics. Among existing methods, C22MP rep-
resents the state-of-the-art by combining Matrix Profile with catch22,
a hand-crafted feature set, to enhance anomaly detection performance.
However, catch22 features are limited in their ability to capture a full
range of temporal characteristics in time series data. Recent advances
in random convolutional kernel methods, such as the ROCKET family,
have demonstrated strong performance in time series classification and
clustering tasks. In this work, we propose RandomAD, a semi-supervised
anomaly detection approach that leverages thousands of random convo-
lutional kernels to extract a rich set of features. Our method adopts
MiniRocket’s random kernel generation strategy to produce a large pool
of kernels with randomly initialized weights based on the training data.
To address the lack of labeled anomalies in the semi-supervised setting,
we introduce a kernel selection mechanism to retain only the most in-
formative kernels. Additionally, we incorporate a multi-window selection
strategy with an anomaly filtering module to optimize both window size
and detection results. Through extensive experiments on the benchmark
datasets, we demonstrate that RandomAD consistently outperforms ex-
isting state-of-the-art methods.

Keywords: Random convolutional kernel · Anomaly detection · Time
series.

1 Introduction

Time series anomaly detection (TSAD) focuses on detecting unusual subse-
quences (often referred to as discords when they represent the most anomalous
patterns) or time points within long data streams. Due to its significance in wide-
ranging applications including industrial monitoring, fraud detection and medi-
cal diagnostics [11], it has attracted considerable attention from researchers [19].
One remarkable approach for finding discords is the Matrix Profile (MP) [26],
a data structure that stores each subsequence’s Euclidean distance to its near-
est neighbor. MP-based methods [26,15] are effective at finding anomalies that
stand out due to their distinctive shapes.
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However, relying solely on shape-based comparisons has limitations. In many
real-world applications, anomalies may not manifest as distinct shapes but in-
stead as subtle deviations in statistical characteristics or underlying dynamics.
Incorporating features such as variance, entropy, or autocorrelation can capture
these subtle changes, thereby improving the performance. To address this prob-
lem, C22MP [21] is introduced as an extension of the traditional MP framework
by integrating catch22 [16], a collection of 22 domain-independent time series
features. By using catch22 to extract features from each subsequence and with
an early-abandoning mechanism, C22MP can detect anomalies efficiently and
accurately. While this fusion is able to detect feature-based anomalies and im-
prove TSAD performance, it also brings two challenges since it relies on a fixed
set of handcrafted features: (1) it cannot capture complex anomalies outside the
predefined feature space, and (2) it requires domain knowledge or labeled data
when selecting the most relevant features for a specific dataset.

Inspired by recent success of random convolutional kernel techniques in time
series classification [6,7,22] and clustering [13], we propose RandomAD, which
extracts a rich set of features using random convolutional kernels. Specifically, we
adopt the random kernel generation mechanism in MiniRocket [7] to generate
thousands of different convolutional kernels with randomly initialized weights
based on the training set. Unlike MiniRocket, which is a supervised method that
leverages class labels to guide kernel selection, the semi-supervised anomaly de-
tection does not have access to labeled anomalies. Therefore, we propose a kernel
selection mechanism to retain only the most informative kernels capable of ef-
fectively capturing underlying patterns under semi-supervised setting. Each se-
lected kernel is then applied to extract features from subsequences, transforming
each subsequence into a feature representation.

Additionally, we introduce a multi-window selection strategy to adaptively
determine the window sizes used in the framework. Existing methods typically
rely on fixed window lengths or manually tuned "magic numbers", which are
often suboptimal when handling different types of anomalies with varying char-
acteristics [14]. Several approaches have been proposed to address this problem.
For example, MADRID [14] efficiently computes time series discords across all
subsequence lengths by leveraging shared computations, iterative doubling, and
forward pruning. Similarly, MERLIN [17] iteratively compares subsequences of
varying lengths with their immediate neighbors in a parameter-free manner to
detect discords. However, both methods rely on raw distance comparisons be-
tween subsequences and still require a large search space for window selection.

In contrast, our approach adopts a large number of random convolutional
kernels to extract a diverse set of features from subsequences. These random
kernels highlight specific local regions of interest and therefore are less sensitive
to small changes in window size. This property enables us to restrict the search
to a small set of candidate window sizes within a predefined range, rather than
exhaustively testing every possible value. We will discuss this in more detail in
Section 4.6. Furthermore, by integrating the anomaly filtering mechanism, which
selects the most effective window size based on anomaly scores, RandomAD can
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automatically identify an appropriate window size and produce reliable final
anomaly detection results.

In summary, our contributions are as follows:

– To the best of our knowledge, we are the first to introduce random con-
volutional kernel feature extraction for time series anomaly detection and
propose a novel kernel selection mechanism to identify effective kernels in a
semi-supervised setting.

– We propose a multi-window selection strategy combined with an anomaly
filtering mechanism that automatically determines the optimal window size
and final anomaly detection result based on the anomaly scores.

– Extensive experiments on 250 datasets demonstrate that our proposed method
outperforms all tested state-of-the-art approaches.

2 Related Work

2.1 Time Series Anomaly Detection

Time series anomaly detection has been extensively studied, with hundreds of
methods proposed in recent decades [19]. Due to space constraint, we refer read-
ers to the comprehensive survey [19] for a broader overview and focus here on
key approaches that serve as baselines in our work.

Matrix Profile (MP) [26], a data structure that stores the Euclidean distance
of each subsequence to its nearest neighbor, is a widely used method for time
series anomaly detection. Intuitively, the matrix profile can be used to detect
discord—the most unusual subsequence in the time series—by identifying the
subsequence with the largest nearest neighbor distance. Since its initial intro-
duction, many variants and follow-up works have been proposed to enhance its
capabilities. SCRIMP [27] efficiently computes exact MPs in an anytime fash-
ion, while MERLIN [17] eliminates the need to predefine subsequence lengths.
DAMP [15] extends MP to real-time detection in streaming data, and C22MP [21]
integrates catch22 [16] features with MP to detect anomalies by using time series
characteristics instead of shapes.

Deep learning methods are popular in recent years. Autoencoder-based mod-
els such as LSTM-VAE [18] and USAD [2] learn to reconstruct normal se-
quences and detect anomalies based on the reconstruction error. Telemanom [9]
trains LSTMs to predict future values, and then applies a dynamic threshold
to the prediction error to detect anomalies. Transformer-based approaches like
TranAD [23] use attention mechanisms to capture long-term dependencies, while
adversarial training enhances anomaly detection stability.

Some methods detect anomalies based on density and distribution. RRCF [8]
maintains an ensemble of random binary trees, assigning anomaly scores based
on data perturbation effects. MDI [3] detects anomalies by identifying subse-
quences whose distributions differ significantly from the rest of the series us-
ing divergence measures. GANF [5] combines normalizing flows with Bayesian
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networks to model joint probability distributions and detect anomalies as low-
density observations. NormA [4] builds a model of normal behavior and detects
anomalies by measuring (dis)similarity to this reference model.

These methods offer a strong foundation for time series anomaly detection
and demonstrate competitive performance, making them well-suited for inclusion
as baseline comparisons in our evaluation.

2.2 Random Convolutional Kernel

Random convolutional kernel methods have played an important role in time se-
ries classification and clustering in recent years. The first such method, ROCKET
[6], was proposed by Dempster et al. It applies tens of thousands of convolutional
kernels with random weights to input data, calculates two aggregated features,
and forms a high-dimensional feature vector. The feature vector is then used
for classification using a linear model. MiniRocket [7] streamlines the process
by using a small fixed set of kernels with predetermined weights, which reduces
variability and significantly improves efficiency while maintaining classification
accuracy. MultiRocket [22] further extends MiniRocket by incorporating addi-
tional pooling strategies and combining features from multiple kernel sets to
capture a richer representation. In time series clustering, Li et al. proposed Ran-
domNet [13], a CNN-LSTM framework with random weights and an ensemble
mechanism to filter out irrelevant representations for clustering.

Despite their success in classification and clustering, such a method has not
been explored in the context of semi-supervised time series anomaly detection.
To the best of our knowledge, our work is the first to explore using random
convolutional kernels in this setting.

3 Methodology

3.1 Problem Formulation

We investigate the problem of semi-supervised time series anomaly detection.
Specifically, we consider a univariate time series as the training set, represented
as a sequence of observations of size T :

T = {a1, . . . , aT }, (1)

where each data point at is collected at a specific timestamp t and at ∈ R. The
training dataset consists of historical normal data without anomalies.

Given an unseen test time series T̂ of length T̂ with an anomaly, we compute
anomaly score sequence S = {s1, . . . , sT̂ }, where each st ∈ R+ represents the
degree of anomaly at timestamp t. The final anomaly location is determined
based on the anomaly score sequence.
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Fig. 1: Overview of RandomAD.

3.2 Overview of RandomAD

Next, we present a novel anomaly detection framework that leverages random
convolutional kernels with adaptive selection mechanisms to select the best ker-
nels and window sizes. As illustrated in Figure 1, our framework preprocesses
time series under multi-window selection strategy using multiple sliding
windows of different sizes. The preprocessed data are then fed into multiple ran-
dom kernel channels, each corresponding to a specific window size. Each channel
consists of three key components: (1) a random kernel module that gener-
ates various convolutional kernels, (2) an adaptive kernel selection mecha-
nism that filters the kernels to extract the most informative features, and (3)
a kNN-based anomaly scoring mechanism that calculates anomaly scores
based on deviations in the feature space. Each channel independently produces
an anomaly score sequence, and finally the anomaly filtering module selects
the final result based on these scores. In the following subsections, we provide a
detailed explanation of each component.

3.3 Multi-Window Selection Strategy

In time series analysis, selecting an appropriate window size is crucial, as differ-
ent time series—or even different segments within the same series—can exhibit
varying temporal dynamics, making some anomalies detectable only at specific
window sizes [14]. Therefore, relying on a fixed window size, as is common in
many existing methods [21,15,23,19], can lead to suboptimal performance. To ad-
dress this problem, we introduce a multi-window selection strategy that adapts
to the intrinsic temporal scales present in the time series data.

Our window size selection strategy defines appropriate lower and upper bounds,
within which candidate window sizes are generated uniformly. The lower bound
is set to a fixed value to ensure a minimum context length for capturing subtle
local patterns. To determine the upper bound m, we perform an autocorrelation
analysis on time series. Specifically, we compute the autocorrelation function for
non-negative lags and, within a predefined lag interval (from 10 to 1000), we
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identify the first significant peak. The peak reflects the dominant periodicity of
the series and is selected as the upper bound.

Once the lower and upper bounds are determined, we generate multiple can-
didate window sizes by evenly dividing the interval. For example, if the upper
bound m = 40 and we select four candidate window sizes, the resulting candidate
window sizes would be 10, 20, 30, and 40.

Through the integration of multi-window selection strategy, our framework is
able to dynamically adapt to the diverse temporal characteristics present in time
series data. With the anomaly filtering module, our method provides robust and
accurate performance across diverse time series applications. We will discuss the
anomaly filtering module in the following subsection.

3.4 Random Kernel-based Feature Extractor

Although C22MP [21] demonstrates strong performance, it relies on a hand-
crafted feature extraction method catch22 [16] to capture time series character-
istics, which may miss important features unique to different time series datasets.
Inspired by the random convolutional kernel methods [6,7,22,13], we adopt ran-
dom kernel feature extraction to provide a richer data representation that is
capable of capturing a broader range of features. Specifically, we use the ran-
dom kernel generation mechanism in MiniRocket [7], which has been shown to
produce a smaller yet effective feature representations in a fraction of time.

Length and weights. MiniRocket’s kernel generation mechanism uses con-
volutional kernels of length 9. The weights of each kernel are restricted to two
values, -1 and 2, and the sum of the weights equals zero. This zero-sum property
ensures that the kernels only focus on relative magnitude in the input rather
than absolute values, making them invariant to constant offsets in the data.

Bias. The bias of each kernel is directly obtained from the convolution output
by sampling quantiles from randomly selected training examples.

Dilation. To capture patterns at multiple scales, each kernel is applied
with various dilation factors, which spread the kernel across the input sequence.
Specifically, a kernel with dilation d processes every dth element of the input. The
dilation values are selected from a fixed range D = {⌊20⌋, . . . , ⌊2max⌋}, where
the exponents are uniformly spaced between 0 and max = log2

(
linput−1
lkernel−1

)
, where

linput and lkernel are length of input and kernel, respectively.
Padding. Padding is alternated across kernel/dilation combinations so that

half use padding and half do not. Zero padding is added at the start and end of
the time series, which ensures the convolution operation begins and ends with
the kernel centered on the first and last elements of the sequence.

Feature Extraction. Finally, the extracted features are summarized using
Proportion of Positive Values (PPV), which effectively captures the essential
characteristics of the convolution output.
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3.5 Kernel Selection through Kernel Selection Score

The previous module generates a large number of random kernels to extract
diverse features from all subsequences. Unlike classification task, where ran-
dom kernel methods [7,6,22] can leverage class labels to learn weights for fea-
tures through classifier training, semi-supervised anomaly detection relies only
on normal data. Without access to labeled anomalies, it requires an effective
mechanism to identify informative kernels based on the distribution of normal
patterns. To that end, we propose a kernel selection scoring function, which we
describe below.

Let X ∈ RN×M denote the feature matrix, where N represents the number
of subsequences extracted via a sliding window, and M is the total number of
random kernels. The i-th column, Xi, corresponds to the feature values produced
by kernel i across all subsequences.

To address the kernel selection challenge, we introduce Kernel Selection Score
(KSS) based on entropy and mutual information. For each kernel i, we first
compute its entropy, denoted as:

H(Xi) = −
∑
x∈Vi

pi(x) log pi(x), (2)

where Vi is the set of feature values from kernel i and pi(x) is the empirical
probability of output x. A lower entropy indicates that the kernel’s output is
more stable and less noisy.

Next, we quantify the similarity between the outputs of different kernels by
computing the mutual information. For any two kernels i and j, the mutual
information is defined as:

I(Xi,Xj) =
∑

(x,y)∈Vi×Vj

pi,j(x, y) log
pi,j(x, y)

pi(x)pj(y)
, (3)

where pi,j(x, y) is the joint probability that kernel i outputs x and kernel j
outputs y simultaneously. High mutual information implies that kernel i shares
commonality with another kernel, suggesting that it captures underlying pat-
terns within the data.

To integrate these two aspects, we define KSS for kernel i as follows:

KSS(Xi) = α

 1

|N (i)|
∑

j∈N (i)

I(Xi,Xj)

− β H(Xi), (4)

where N (i) denotes the set of all kernels excluding i. α and β are positive scal-
ing factors that balance the contributions of mutual information and entropy,
respectively. Entropy and multual information are closely related: entropy mea-
sures the stability of features generated by a single kernel, while mutual in-
formation evaluates the relationships between different kernels. Integrating both
metrics enables the selection of kernels that are both stable and share meaningful
commonalities. Setting either parameter to 0 eliminates its corresponding effect.
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We evaluate the impact of each in the following section. The kernels are then
ranked in descending order based on their KSS values, and the top γ fraction
are selected.

By selecting kernels with high KSS values, we can identify random kernels
that have both strong mutual information with others and low entropy, thereby
extracting stable and meaningful patterns from the data. Such a method is par-
ticularly beneficial in semi-supervised anomaly detection, where the algorithm
must rely on the inherent structure of the data.

3.6 kNN-based Anomaly Scoring

After selecting the kernel, each channel undergoes feature extraction and anomaly
scoring. For each channel, we apply the selected kernel to both the training and
test sets, and generate feature vectors to capture the characteristics of each
subsequence in the time series.

The anomaly scoring mechanism employs the k-nearest-neighbor (kNN) al-
gorithm to quantify the anomaly level of each test subsequence. Specifically, for
each test subsequence, we compute its Euclidean distance to all training subse-
quences in the feature space and identify the k nearest neighbors. The anomaly
score assigned to the last timestamp of the test subsequence is the average Eu-
clidean distance to these top-k neighbors.

Using random kernels, the distance calculation focuses on the difference of the
features rather than raw time series values. As a result, each channel produces
its own sequence of anomaly scores.

3.7 Anomaly Filtering

To determine the best result from multiple channels, each corresponding to a
different candidate window size, we introduce an anomaly filtering mechanism
that utilizes the detection index ∆ to quantify the difference between anomalous
subsequences. For each channel, we obtain a sequence of anomaly scores, S =
{s1, s2, . . . , sT̂ }, computed with a candidate window size w. The filtering process
is performed as follows:

1. Identifying the Primary Anomaly:
We first locate the highest anomaly score sh1 in S and its corresponding
index ih1.

2. Defining an Exclusion Range:
To avoid selecting nearby points that may belong to the same anomaly, we
define an exclusion range centered around ih1. Specifically, we set:

EXstart = max{0, ih1 − w}, (5)

EXend = min{T̂ , ih1 + w}. (6)

Within the interval [EXstart, EXend], none of the scores can be further
considered.
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3. Computing the Detection Index:
Next, we search for the highest anomaly score outside the exclusion range,
denoted as sh2. The detection index is then calculated by:

∆ = sh1 − sh2. (7)

A larger ∆ indicates a more obvious difference between the most anomalous
subsequence and the rest of the data, which indicates that the corresponding
window size is more effective in capturing anomalies.

4. Channel Selection:
By comparing the detection index of all channels, we select the channel with
the largest ∆ as the final result. With this mechanism, our framework is
able to dynamically adapt to the most appropriate window size, therefore
enhancing the robustness and accuracy of the anomaly detection.

4 Experiments

4.1 Experimental Settings

In this section, we describe the details of our experimental setup.
Dataset. To evaluate our proposed method, we conduct experiments on various
public time series datasets. Given the concerns raised by Wu and Keogh [25]
regarding flaws in existing anomaly detection benchmarks, we select datasets
that provide realistic and meaningful challenges for anomaly detection. Specifi-
cally, we use all 250 datasets from the Hexagon ML/UCR Time Series Anomaly
Archive [24], which was introduced to address the problems from other bench-
mark datasets [10,20,12,1] such as trivial anomaly patterns, unrealistic anomaly
densities, and mislabeled ground truth. The datasets span diverse domains, in-
cluding medicine, sports, biology, industry, etc [25,21]. Each dataset is split into
a training set which contains no anomalies, and a test set which contains exactly
one labeled anomaly. The sequence lengths and anomaly lengths vary greatly
across datasets, with sequence length ranging from 6674 to 900000 data points
and anomaly length ranging from 1 to 1701 data points. In addition to this
archive, we also use 10 datasets from [21] to intuitively visualize our results.
Evaluation Metrics. To ensure fair and meaningful evaluation, we follow
the accuracy metric recommended by the dataset creators and previous works
[25,15,21]. Specifically, let L be the length of the labeled anomaly, the prediction
is considered correct if the location of the highest anomaly score predicted by
the algorithm falls within ±L data points of the ground truth anomaly location.
If L < 100, we set L = 100. The final accuracy score we present is computed as
the ratio of correctly detected anomalies across all datasets.
Equipment. The experiments are run on a machine with AMD Ryzen 9 5900X
and 64 GB RAM. Since the method does not involve neural network training,
there is no need to use a GPU.
Hyper-parameters. To balance the contributions of entropy and mutual infor-
mation, we set both α and β to 1 in Equation 4. Each channel uses 1000 random
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Table 1: Comparison of our method against 13 baseline methods on 250 UCR
Time Series Anomaly Archive datasets.

Method Score Method Score
RandomAD (Full) 0.704 DAMP 0.556
RandomAD (α = 0) 0.688 C22MP 0.568
RandomAD (β = 0) 0.688 USAD 0.276
AutoEncoder 0.236 Telemanom 0.468
LSTM-VAE 0.198 SCRIMP 0.416
RRCF 0.030 MERLIN 0.440
MDI 0.470 NormA 0.474
TranAD 0.190 GANF 0.240

kernels, with a total of 4 channels. We set γ = 0.5 for the kernel selection rate
and for kNN anomaly scoring, we set k = 3.
Baseline Methods. we compare our method against 13 state-of-the-art meth-
ods: TranAD [23], MDI [3], RRCF [8], LSTM-VAE [18], AutoEncoder [2], USAD [2],
Telemanom [9], SCRIMP [27], MERLIN [17], NormA [4], GANF [5], DAMP [15]
and C22MP [21]. See Section 2 for more details. Our source code is publicly
available1.

4.2 Experimental Results

Table 1 shows the accuracy scores of our proposed approach and 13 baseline
methods on 250 datasets from the UCR Anomaly Archive. All results of baseline
methods are from [21]. Due to space constraint, we are unable to show the
selected window size and anomaly detection result of our method on each dataset.
Interested readers can refer to our GitHub repository1 for the full results.

From Table 1, we can observe that our proposed work, RandomAD, achieves
an accuracy score of 0.704, which outperforms all baseline methods and has
around a 24% performance improvement over the second-best method, C22MP
(0.568). Additionally, we include results where the impact of mutual information
(RandomAD, α = 0) and entropy (RandomAD, β = 0) are individually removed
in Equation 4. Both have anomaly score of 0.688 which shows the importance of
combining both in kernel selection.

It is worth noting that in the C22MP paper [21], the authors also presented
an ensemble of DAMP and C22MP with an accuracy score of 0.692. However,
this approach is not a true algorithm; it is a post-hoc ensemble that selects the
better algorithm after manually observing the labels. Our method achieves higher
accuracy without relying on any manual selection processes, as all modules are
automatically adapted to the data.

These results demonstrate the superiority of RandomAD, which leverages
random kernel feature extraction, over approaches based on shape comparison
and fixed features. The superiority reflects the ability of our random kernel

1https://github.com/Jackxiini/RandomAD

https://github.com/Jackxiini/RandomAD
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Fig. 2: The performance of RandomAD on 10 datasets outside the UCR Anomaly
Archive. The top portion (black) is the original test data, and the bottom portion
(blue) is the corresponding anomaly score computed by RandomAD. Ground-
truth anomalies are marked by red boxes.

module to effectively capture the underlying patterns in the data, as well as the
effectiveness of the multi-window selection and anomaly filtering mechanisms.

4.3 Visualization

To demonstrate the effectiveness of our method, Figure 2 presents the visualiza-
tion of anomalies detected by RandomAD across ten datasets used in previous
studies [21], none of which are part of the UCR Anomaly Archive [24]. Each
dataset is divided into training set and test set, with the test set containing a
single anomaly. The upper portion of each subfigure (shown in black) represents
the original test data, while the lower portion (in blue) shows the anomaly scores
calculated by our model. The ground-truth anomalies are highlighted with red
boxes. Our method effectively detects anomalies and their correct locations in
all datasets. It is worth noting that even in datasets without clear patterns, such
as subfigures (a) and (j), our method can correctly locate the anomalies.
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Table 2: Ablation study results show the impact of each module on the perfor-
mance.

Method Variant Score

RandomAD (Full) 0.704
w/ fixed window size (10) 0.548
w/ fixed window size (AT) 0.668
w/o kernel selection 0.688
w/o random kernels 0.580

4.4 Ablation Study

To verify the effectiveness of each component in our framework, we conduct an
ablation study by removing or replacing individual modules and evaluating the
resulting performance. Table 2 summarizes the accuracy scores under various
configurations.

As shown in Table 2, the full model achieves the highest score of 0.704.
Replacing the multi-window selection strategy with a fixed window size leads
to a significant performance drop: with a fixed window size of 10, the score
decreases to 0.548, while using a fixed window size based on autocorrelation (AT,
equivalent to setting the upper bound as the window size) results in a score of
0.668. This demonstrates the importance of the multi-window selection strategy
and the anomaly filtering module in adapting to the varying characteristics of
different datasets.

In addition, removing the kernel selection mechanism leads to a slight drop
in performance (to 0.688). It is worth noting that since removing this mechanism
significantly increases the feature length, it significantly increases the total run-
ning time (from 3.8 hours to 7.3 hours). The result highlights the effectiveness
of this mechanism in selecting more informative kernels.

Finally, removing random kernels and applying kNN directly on the raw sub-
sequences for anomaly detection reduces the accurcay score to 0.580, illustrating
the effectiveness of random convolutional kernels in capturing meaningful fea-
tures.

4.5 Sensitivity Analysis

To investigate the sensitivity of our method’s performance to hyperparameters,
we evaluated five hyperparameters: number of kernels, kernel selection rate γ,
number of channels and the scaling factors in Equation 4, α and β. Figure 3
shows the results for the first three hyperparameters, along with a linear re-
gression curve fit demonstrating how the running time differs from the linear
trend.

Number of Kernels The number of generated kernels directly affects the
ability of our method to extract features. Figure 3a demonstrates that increasing
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Fig. 3: Sensitivity analysis illustrating the trade-offs between accuracy and com-
putational cost under different configurations.

the number of kernels generally improves accuracy; however, this improvement
stops after reaching a certain value. Specifically, the accuracy score increases
from 0.652 at 100 kernels to a peak of 0.704 at 1000 kernels, and then decreases
slightly to 0.688 at 2000 kernels. This suggests that exceeding a certain number
of kernels may generate too many irrelevant kernels, which can hurt performance.

In contrast, the running time increases almost linearly with the number of
kernels, from 0.76 hours with 100 kernels to 8.38 hours with 2000 kernels. While
using more kernels (e.g.,1000 kernels) can improve performance, choosing fewer
kernels can significantly reduce the computational cost. Notably, choosing only
100 kernels reduces the running time by about one-tenth compared to 1000
kernels, while still maintaining competitive accuracy. It is also worth mentioning
that even with only 100 kernels, the accuracy score of 0.652 is still significantly
higher than other compared methods. This demonstrates the superiority of using
random convolutional kernels.

Kernel Selection Rate Choosing an appropriate kernel selection rate is critical
to performance. A selection rate that is too low may discard many informative
kernels, while a selection rate that is too high may introduce irrelevant ker-
nels, both of which have a negative impact on accuracy. Figure 3b shows that
as the kernel selection rate increases, the accuracy improves until about 0.5,
after which the accuracy decreases slightly. In addition, the computation time
increases nearly linearly with the increase in the selection rate. Therefore, we
suggest using 0.5 as the kernel selection rate to balance accuracy and computa-
tional efficiency.

Number of Channels Increasing the number of window size candidates in the
Multi-Window Selection Strategy directly corresponds to an increased number of
channels, with each window size corresponding to a separate channel. Figure 3c
demonstrates the impact of varying the number of channels on performance.
The accuracy score improves significantly when the number of channels increases
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Fig. 4: Anomaly detection results with (blue) and without (green) random kernels
across different window sizes (10, 15, 30) on the NASA spacecraft dataset. The
black line shows a test segment with an anomaly ("blip" in red box).

from 2 to 4, but additional channels (from 4 to 8) do not continue to improve
the accuracy score. This demonstrates the effectiveness of our proposed multi-
window selection strategy and anomaly filtering mechanism, and also shows that
our method is insensitive to small changes in the window size, which allows our
method to provide good performance with a small set of window size candidates.
We further analyze this in the following section.

Scaling Factor We further analyze the sensitivity of the accuracy score to α
and β. We have highlighted the importance of balancing these two factors, as
demonstrated in Table 1, where setting either α or β to 0 leads to performance
degradation. To further investigate their influence, we conduct additional exper-
iments by setting α = 0.2 and β = 0.8, which obtain an accuracy score of 0.672.
Reversing these values (α = 0.8, β = 0.2) achieves a similar accuracy score of
0.66. These results indicate that both factors significantly affect performance.
Given that assigning equal values produces the best result, we recommend set-
ting α and β equally to balance their contributions.

4.6 Effectiveness Analysis

To further illustrate the advantages of using random kernels and demonstrate
that our method is less sensitive to small changes in window size, we conduct
experiments on a real dataset from NASA spacecraft. The top part of Figure 4
(black line) represents a segment of the test set, where we highlight the anomaly,
a small unique "blip" of length 15, within the red dashed box. The blue line
in the figure shows the anomaly scores produced by our method under three



A Random Kernel-based Anomaly Detector for Time Series 15

different window sizes: 10, 15, and 30. The green line represents the results when
removing the random kernel feature extraction and relying on raw subsequences
for kNN-based anomaly scoring.

The results clearly demonstrate that with random kernels, all three window
sizes successfully detect the anomaly. In contrast, when using raw values, only the
window size of 15 correctly detects the anomaly, while the others fail. Moreover,
without random kernels, the anomaly score struggles to differentiate abnormal
subsequences from normal ones. For instance, with a window size of 30, some
normal subsequences on the right side exhibit high anomaly scores. In compari-
son, the random kernel method maintains clear separation between normal and
abnormal subsequences across all window sizes and the normal regions do not
experience abrupt changes in anomaly scores due to changes in window size.

The comparison highlights two advantages of our method. First, the random
kernels selected by the kernel selection mechanism can effectively extract mean-
ingful features that can capture the underlying patterns. Second, this method is
less sensitive to the window size, allowing us to search the appropriate window
size in a small search space.

5 Conclusion

In this work, we introduce RandomAD, the first random convolutional kernel
method for time series anomaly detection. While the idea of using convolutional
kernels with random weights to generate diverse features is not new, the main
contribution of our work lies in the kernel selection mechanism to select infor-
mative kernels that capture meaningful pattern in the sequence. In addition,
since the random kernel module is robust to small variations in window size,
we introduce an efficient multi-window selection strategy with a small search
space. Incorporated with the anomaly filtering mechanism, our method effec-
tively determines the appropriate window size and final anomalies. Extensive
experiments on 250 datasets from the UCR Anomaly Archive demonstrate that
RandomAD outperforms state-of-the-art methods.
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