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Abstract. As an essential component of graph neural networks, graph
pooling is indispensable for graph-level tasks such as graph classifica-
tion and generation. However, certain node-level tasks inherently require
graph pooling, particularly multiple instance learning (MIL) on graphs, a
weakly supervised learning paradigm where only set-level labels are avail-
able for training node-level predictors. Existing embedding-based pooling
aggregates node embeddings to obtain a holistic graph-level representa-
tion, neglecting direct inference of node labels. To address this limita-
tion, we propose instance-based pooling, which maps node embeddings
to node probabilities before generating graph representations. We prove
that embedding-based pooling methods can be seamlessly transformed
into instance-based ones without losing permutation invariance or ex-
pressiveness, while the latter offers better interpretability. Extensive ex-
periments on diverse benchmark datasets validate the effectiveness of
our proposed method, providing key insights into the selection of pool-
ing methods for different machine learning tasks on graphs.

Keywords: Graph Pooling - Graph Multiple Instance Learning - Instance-
level Learning - Weakly Supervised Learning

1 Introduction

Graph representation learning (GRL) is one of the most effective solutions for
machine learning tasks on graphs [21]. It consists of two fundamental compo-
nents: the message passing module, which learns node embeddings, and the pool-
ing module, which aggregates node information into subgraph representations.
Node-level tasks typically rely solely on message passing, while graph-level tasks
require both components.

However, certain node-level tasks inherently rely on graph pooling. A key rea-
son is the difficulty of obtaining sufficient node labels due to data annotation
constraints. Consider the task of multiple instance learning (MIL) on graphs.
MIL is a weakly supervised learning paradigm where instances are grouped into
sets, called bags, and only bag-level labels are available for training instance-
level predictors. Traditional MIL assumes that instances are i.i.d., while given
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the versatility of graphs in modeling complex relationships in real-world scenar-
ios, extending MIL to graph data can facilitate various practical tasks and attract
significant interest. For example, in drug discovery, the goal is to identify phar-
macophore molecules (instance/node labels) that contribute to the properties of
complex molecular compounds (bag/graph labels). In such a scenario, obtaining
bag labels is often significantly more cost-effective and feasible than acquiring in-
stance labels. Fig. 1 illustrates the distinction between semi-supervised learning
and multiple instance learning on graphs.

Semi-supervised Learning on Graphs  Multiple Instance Learning on Graphs

Fig. 1. An illustration of semi-supervised learning and multiple instance learning (our
task) on graphs. The colors represent node labels, with gray nodes indicating unlabeled
nodes. In multiple instance learning, nodes (called instances) are arranged in sets (called
bags), and bag labels are determined by unknown instance labels based on different
assumptions. To predict instance labels based on bag labels, both the message passing
layer and the graph pooling layer are essential.

Can ezisting graph pooling methods effectively address node-level MIL tasks?
Mainstream pooling approaches aggregate instance embeddings into a bag em-
bedding, followed by a classifier computing the bag probability [19]. We refer to
this as embedding-based pooling. This training paradigm does not involve
any inference or fitting of instance labels. To address this limitation, inspired
by instance-based MIL methods for non-graph data (e.g., [25, 27]), we propose a
novel graph pooling paradigm in this paper: instance-based pooling. Instead
of directly aggregating embeddings, it first maps instance embeddings to instance
probabilities and then constructs bag probabilities based on these instance prob-
abilities. We demonstrate that, under certain conditions, any embedding-based
pooling method can be seamlessly transformed into an instance-based pooling
method without any loss of permutation-invariance or expressive power. Further-
more, we show that, due to the linearity of instance-based models, SHAP values
[20] provide a more precise characterization of each instance’s contribution to
the model’s decision compared to attention scores.
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We analyze the performance of embedding-based pooling and instance-based
pooling using synthetic bags on four benchmark datasets. Specifically, we eval-
uate four commonly used attention modules and two feature aggregators. Two
strategies for generating bag labels from instance labels are examined. While our
primary focus is instance-level classification, we also conduct additional experi-
ments on bag-level tasks to assess the generality of the pooling models. The main
experimental findings are summarized as follows: (1) instance-based pooling is
more effective in instance classification tasks under the standard MIL assump-
tion; (2) both pooling strategies exhibit comparable performance for instance
classification under the collective MIL assumption; (3) for bag classification un-
der the standard MIL assumption, embedding-based pooling is more effective.

In summary, our contributions are as follows:

— We introduce the instance-level graph multiple instance learning task for
the first time, providing a deep exploration of the role of graph pooling in
node-level tasks.

— We propose a straightforward and general transformation rule that converts
embedding-based pooling models into instance-based models.

— We systematically analyze the key theoretical properties of embedding-based
and instance-based models, including their permutation invariance, expres-
siveness and interpretability.

— We conduct extensive experiments on standard graph datasets across various
MIL tasks, which offer valuable insights into the selection of pooling methods
when handling graph structures at different levels.

2 Problem Formulation and Notations

Let G = (V,€) denote the input graph with node set V and edge set £. V =
{v1,v2, ..., v, }, where n is the number of nodes. k denotes the number of classes.
Nodes (called instances) are arranged in sets (called bags). Only bag labels are
available during model training.

Let X denote a bag consisting of m instances {vi,vs, ..., vy }. In MIL, bag
label Y is determined by unknown instance labels {y1,y2, ..., ym } based on dif-
ferent assumptions. In this paper, the standard assumption [8] is mainly focused.
Given a trigger class t € {1,2,...,k}, we refer to the nodes that belong to t as
positive instances, and the other nodes as negative instances. The standard MIL
assumption states that positive bags contain at least one positive instance, and
negative bags contain only negative instances. Formally, ) is determined by:

Y= {+1 Zf Jy e {y,y2, s ymby =t (1>
-1 Zf Vye{ylvy%'"aym}7y7ét

Our target is then to learn an instance-level binary classifier to predict the
label of nodes within the bags. Our work is useful in many real-world scenarios
where it is desirable to detect key instances that trigger the bag label, such as
automating cancer diagnosis and grading.
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3 Preliminary: Embedding-Based Pooling

When dealing with set-level representation learning on graphs, a widely used
solution is embedding-based pooling [19]. In our problem, it computes the
bag probability 6(X) € [0, 1] in the following way:

O(X) = CLS(AGGR({cv; - MP(v;), v; € X'})) 2)

o = ATT(UZ‘) (3)

Here, 6(X) consists of 4 functions: MP, CLS, ATT, and AGGR. MP consists of
message-passing layer(s), and works as a node feature extractor. Attention mod-
ule ATT computes the attention weight «; for node v;, which can be used to
measure the instance contribution in the bag representation and interpret model
predictions. The aggregator AGGR aggregates the attended instance embeddings
to obtain a bag representation. The most common practice is sum, with alter-
native choices including max [23|. Finally, the bag embedding is processed by
the classifier CLS, and a bag label is predicted. The selection of MP, CLS, ATT
and AGGR jointly determines the implementation of a pooling method and its
effectiveness and complexity.

4 Proposed Method: Instance-Based Pooling

One inherent limitation of embedding-based pooling is its inability to train in-
stances in the label space. For node-level MIL tasks, a natural assumption is that
an effective pooling method should be capable of estimating instance probabili-
ties during training. To achieve this, we do not require complex designs—simply
swapping CLS and AGGR in embedding-based models suffices. We refer to the new
model as instance-based pooling, which is formulated as follows:

6(X) = AGGR({CLS(a; - MP(v;)), v; € X)) (4)

Q; = ATT(’UZ) (5)

Different from embedding-based pooling, CLS learns the instance probability
6(v;) during training, which is then combined by AGGR to form the bag probability
6(X). This allows the learning model to effectively accommodate both bag-level
training and instance-level inference 3. Similarly, the implementations of MP,
ATT, CLS and AGGR are task-specific. Finally, an illustration of aforementioned
two types of pooling paradigms is shown below in Fig. 2.

3 Another alternative design of instance-based pooling follows the formulation 8(X) =
AGGR(cv; - {CLS(MP(v;)),v; € X'}), oy = ATT(v;).
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Fig. 2. A comparison between embedding-based pooling (existing) and instance-
based pooling (proposed). Embedding-based pooling: instance embedding -> bag em-
bedding -> bag probability; instance-based pooling: instance embedding -> instance
probability -> bag probability.

5 Key Theoretical Properties of Pooling Models

In this section, we first prove that the transformation from embedding-based
pooling to instance-based pooling does not compromise the original model’s
permutation invariance (Sec. 5.1) or expressive power (Sec. 5.2), which are key
properties of MIL models and graph neural networks, respectively. Finally, by in-
vestigating the relationship between instance probability and SHAP values (Sec.
5.3), we demonstrate that instance-based models offer superior interpretability.

5.1 Permutation-invariance

The standard MIL assumption (please refer to Eq. (1)) suggests that neither
the ordering nor the dependency of instances within a bag exists. Therefore,
when computing the bag probability 6(X), for any permutation m, we should
have §({v1,va, ...,V }) = 9({v,r(1), Vr(2)s -+or vﬁ(m)}). Such property is referred to
as permutation-invariance. To verify whether the pooling models possess this
property, we first introduce the following Fundamental Theorem of Symmetric
Functions with monomials [30, 11]:

Theorem 1. A function F(X) operating on a countable set X is invariant to
the permutation of instances in X if and only if it can be decomposed in the form
Py, cx ¥(vi)), where p and 3 are suitable transformations.
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Theorem 1 introduces a general form of functions that satisfy the property
of permutation invariance. Based on it, we make the following corollary:

Corollary 1. When AGGR is the summation operater, both embedding-based pool-
ing and instance-based pooling are invariant to permutation.

Proof. The set function F(X) in Theorem 1 is the bag probability 6(X). For
embedding-based pooling, when sum is the aggregator, transformation ¢ and p
corresponds to «; - MP(v;) and CLS, respectively. For instance-based pooling, v is
the instance probability CLS(c; - MP(v;)), and p is the identity function. O

5.2 Expressiveness

The expressive power of a GNN refer to its ability to encode and process feature
information on the graph as well as graph structure information, e.g., the ability
to distinguish non-isomorphic graphs [31]. In graph theory, the Weisfeiler-Leman
test (WL test) is a classic heuristic method to judge whether two graphs are
isomorphic [16]. We prove below that when certain conditions are satisfied, both
embedding-based pooling and instance-based pooling are capable of retaining
distinct information in the graph. To begin, we first state the following theorem
concerning the expressive power of graph pooling operators [1]:

Theorem 2. For WL-distinguishable graphs, a graph pooler satisfying the fol-
lowing conditions will produce coarsened graphs that remain WL-distinguishable:
(1) the message-passing layers compute different sums of node features; (2) the
cluster assignment matriz is right-stochastic up to a constant X\; (3) the features
of supernodes are convexr combinations of the input node features.

We assume that the pooling models discussed in Sec. 3 and Sec. 4 satisfy the
above properties. Note that in this case, MP is implied to be powerful, and AGGR
is implied to be the summation operator. We prove below that, under additional
constraints on CLS, both instance-based pooling and embedding-based pooling
preserve the expressive power of MP:

Corollary 2. Let X! and X? denote two WL-distinguishable bags, the pooled
bags X! and X2 generated by an instance-based model remain WL-distinguishable
if the following additional conditions hold: (4) CLS is an additive function; (5)
CLS is an injective function.

Proof. Suppose that X! /X? contains m nodes, while X1 / X? contains [ supern-
odes (I < m). Let U, U?, U' and U2 denote the corresponding node embed-
ding /probability matrix of X1, X2, X' and X2, respectively. Here, U and U2
are computed by MP. Given condition 1, we have:

i ul + zmj u? (6)
1=1 =1
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Here, U} and U? denote the i-th row of U* and U? respectively, which cor-
respond to the vector of the i-th instance in the bag. Suppose that X! and &2

are not WL-distinguishable. Then, there exists a one-to-one mapping w from
{1,2,...,1} to {1,2,...,1} such that:

U =12 ;)Y =1,2,...1 (7)

Let M € R™*! denote the assignment matrix, where M,; represents the
weight that assigns a node 4 to a supernode j. Given condition 3, we have:

> cLsu) - M ZCLS UZ - M), Y =1,2,...1 (8)

=1

Give condition 4, we can swap CLS with the summation operator as:

cLs() u! - Mj;) = cLs( Zu ML) Vi =1,2, (9)

=1

Given condition 5, we have:

Zul ZuQ =1,2,...,1 (10)

We sum the vectors of all supernodes:

I m
Zzu} ZZU2 Muu(]) (11)

Jj=11i=1 =1

which can be rewritten as:

m !
doupy M 2”2 ZMzwm (12)
i=1 j=1

Since Z;:l Zj 1 My =A Vi=1,2,...,m (Cond. 2). We have:

Zul ZLF (13)

Notice that the above equation contradicts Eq. (6). Therefore, X' and X2
remain WL-distinguishable. O

For embedding-based models, note that Eq. (9) can be directly derived from
Eq. (7). That means, it is not necessary to assume the additivity of CLS func-
tion to generate WL-distinguishable coarsened bags, while the remaining four
conditions are required to hold.
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5.3 Interpretability

In this study, we adopt the SHAP framework [20] to analyze the interpretability
of MIL methods motivated by [12], where SHAP values provide insights into
how each input instance contributes to a bag-level prediction. A key distinction
from [12] is that our analysis targets at input instances which are not mutually
independent, which is a fundamental characteristic of graph-structured data.

Clearly, instance-based pooling is a linear model. Regarding the independence
of instances, we consider the following two cases: (1) the interdependence among
instances will be sufficiently captured by MP, and thus instances can be assumed
independent during the pooling phase for computational simplicity; (2) instances
remain dependent during pooling. We discuss both cases separately below. In
what follows, we denote the SHAP value of 0(v;) as ¢(v;).

Independent Instances For linear models with independent features, the com-
putation of SHAP values relies on the following theorem [20]:

Theorem 3. Give a linear regression model f(z) = >\ w;x; + b, where all
features x1,xo, ..., T, are independent, we have:

P(xi) = wi(w; — Elzi]) (14)
which immediately inspires our computation as follows:

Corollary 3. For instance-based pooling models, ¢(v;) takes the following sim-
ple form, where instance probabilities 6(v1), 6(vs), ..., 8(vy,) are independent:

¢(vi) = 0(vi) — E[0(vs)] (15)

Proof. In Eq. (14), 2;, w;, and b correspond to 0(v;), 1, and 0 in Eq. (4), respec-
tively. Note that AGGR is required to be the summation operator. O

Dependent Instances For linear models with dependent features, the com-
putation of SHAP values becomes more complex. First, we state the following
theorem regarding the contribution function 7(-) defined on an instance subset
Xs, where XZ denote a subset of input instances:

Theorem 4. For instance-based pooling models, 7(Xs) takes the following form,
where instance probabilities (v1), 0(va), ..., 8(vy,) are dependent:

T(Xs)= > E[f(vi)|Xs = X5+ > 0(vy) (16)

v; EXg v, €EXs

Proof. We make the following derivations:
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7(Xs) = E[0(X)|Xs = X5] (17)
=E[ Y 0vi)+ Y 0(vi)|Xs = 3] (18)
v €EXF v;€Xs
= > E[0(v)|Xs = X5+ D E[6(v:)|Xs = X3] (19)
v; EXg v;€EXs
= Y Elf(w)lXs = X3+ Y 6(v) (20)
v; €EXF v; €Xs

Notice that a key distinction from independent instances is that, when v; €
Xg, we have p(0(v;)|Xs = X&) # p(0(v;)), which leads to E[f(v;)|Xs = Xg] #
E[0(v;)]. In this case, solving for 7(Xs) depends on a proper and efficient esti-
mation of E[f(v;)|Xs = X&], which is typically more difficult than estimating
E[0(v;)]. Given 7(Xs), ¢(v;) can be then computed based on the definition of
the Shapley value [20]. O

6 Experimental Settings

6.1 Datasets

We use four widely-used benchmark datasets consisting of diverse types of net-
works, including Cora-ML [2], CITESEER [28], AMAZON [24] and ACTOR [22].
All of the above datasets are available at PyTorch Geometric Library [7]. Below
is a brief description of each dataset above.

— CORrA-ML is a citation network consisting of 2,995 scientific publications
classified into one of 7 classes. Each publication in the dataset is described
by a 2879-dim 0/1-valued word vector indicating the absence/presence of
the corresponding word from the dictionary. The network contains 16,316
citation links in total.

— CITESEER is another classical citation network containing of 3,327 scientific
publications from 6 research areas, such as AI, DB, and HCI. Similarly,
each paper is described by a 3703-dim 0/1-valued word vector. This citation
network consists of 9,104 links.

— AMAZON denotes a Amazon product network, where nodes represent goods
and edges represent that two goods are frequently bought together. Given
product reviews as 745-dim bag-of-words node features, the classification
task is to map goods to their respective product category. This network
contains 7,650 nodes, 238,162 edges and 8 classes.

— ACTOR refers to an actor network, where each node corresponds to an ac-
tor, and the edge between two nodes denotes co-occurrence on the same
Wikipedia page. The 932-dim node features correspond to some keywords
in the Wikipedia pages. The task is to classify the nodes into categories in
term of words of actor’s Wikipedia. This network contains 7,600 nodes, 30,
019 edges and 5 classes.
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6.2 Analyzed Methods and Metrics

We implement and test four representative embedding-based pooling models
with their instance-based version. They include: (1) two most straightforward
and commonly used methods, sum-pool and mean-pool; (2) two attention models,
GlobalAttention [18] and Set2Set [26]. To enhance the reproducibility of the
experimental results, we rely on the open source implementation of all models
provided by PyTorch Geometric Library [7]. For a fair comparison, all models
use GraphSAGE [10] as the node feature extractor MP, and a 1-layer MLP as the
classifier CLS. For sum-pool, ATT is equivalent to the identity function. All the
analyzed methods are evaluated by the classification accuracy and AUC.

6.3 Bag Label Generation

We design the following process to synthesize bags and their label, which is
consistent with the standard MIL assumption (please refer to Eq. (1)). Let bag
X = {v1,v2,...,0,} with label ) as defined in Sec. 2, the following steps are
conducted: (1) a trigger class ¢ is randomly selected based on the uniform distri-
bution; (2) m nodes are randomly sampled to form a bag X'. Then, Y =1 if X
contains an instance belonging to ¢, and ) = —1 otherwise. Step 2 is repeated
until the number of bags reaches the set value. Note that when ¢ represents
a minority class, the classification task becomes more challenging due to the
imbalanced class distribution, which is common in real-world scenarios [5].

6.4 Key Experimental Configurations

We set the number and size of bags to 500 and 2, respectively. Then, we randomly
split the bags into a 60%/20%/20% split for training, validation, and testing.
Note that bag labels are used during training, while node labels are used for hy-
perparameter tuning and testing. Hyperparameters of MP (learning rate, weight
decay, number of hidden units, and dropout rate) are tuned on the validation set.
All models are trained using the Adam optimizer [14] until convergence, with the
maximum training epoch being 500. A server equipped with an NVIDIA RTX
6000 Ada GPU is used to conduct the experiments in this study.

7 Experimental Results

7.1 Performance of Analyzed Methods in Node Prediction

Tab. 1 shows the comparison between representative embedding-based methods
and their instance-based version in instance prediction. It can be observed that,
out of a total of 32 comparisons, instance-based models outperform in 19 cases,
underperform in 10 cases, and perform equally with embedding-based models in
3 cases. Thus, instance-based models exhibit a clear advantage. The experiments
indeed suggest that when training node classifiers with set labels, adopting the
instance-based pooling is more likely to be a better practice.
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Table 1. Performance of all analyzed methods in terms of instance-level MIL on graphs.
“-emb” and “-ins” represent embedding-based and instance-based models, respectively.
In the comparison, results where instance-based models perform better are underlined
in blue (positive results), those where embedding-based models perform better are
underlined in red (negative results), and equivalent results are underlined in gray.

Datasets Cora-ML CITESEER AMAZON AcToR

Metrics Accuracy AUC| Accuracy AUC| Accuracy AUC| Accuracy AUC
sum-emb 0.963 0.953 0.874 0.877] 0.888 0.520 0.602 0.690
sum-ins 0.947 0.961] 0.901 0.908 0.888 0.693 0.689 0.683
mean-emb 0.926 0.765 0.927 0.742 0.909 0.510, 0.675 0.536
mean-ins 0.942 0.843 0.875 0.828 0.909 0.634 0.634 0.532
GlobalAttention-emb 0.935 0.881] 0.891 0.882 0.948 0.968 0.684 0.610
GlobalAttention-ins| 0.871 0.938 0.896 0.835 0.948 0.885 0.652 0.613
Set2Set-emb 0.828 0.501) 0.868 0.951) 0.751 0.515 0.878 0.526
Set2Set-ins 0.930 0.746] 0.873 0.936| 0.838 0.739 0.913 0.589

7.2 Pooling with max as the Aggregator

While most MIL models use sum as the aggregator, max that takes the feature-
wise maximum across all instances is still regarded as an effective alternative
in certain scenarios [23,11]. With max as the aggregator, the embedding-based
pooling takes the following form:

6(X) = CLS(max({a; - MP(v;),v; € X})) (21)
Similarly, the instance-based pooling is re-formulated as:
0(X) = max({CLS(cv; - MP(v;)),v; € X'}) (22)

We additionally conduct a comparative analysis of embedding-based pool-
ing and instance-based pooling when max is used. Consistent with sum-pool,
GraphSAGE and a 1-layer MLP are selected as MP and CLS, respectively. ATT is
implemented as an identity function. The results are summarized in Tab. 2.

Table 2. Performance of pooling methods with max as the aggregator. Positive, negative
and equivalent results are underlined in blue, red and gray, respectively.

Datasets| Cora-ML CITESEER AMAZON AcTor

Metrics | Accuracy AUC| Accuracy AUC| Accuracy AUC| Accuracy AUC
max-emb 0.909 0.860 0.874 0.775 0.985 0.788 0.582 0.546
max-ins 0.936 0.842 0.905  0.899 0.738 0.905 0.663 0.546

It is encouraging to see from Tab. 2 that with max as the aggregator, instance-
based pooling still exhibits as a better practice in most test scenarios (5/8).
Embedding-based models outperform in only 25% of the comparisons. It is worth
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noting that although instance-based pooling using max can still be proved to
be permutation-invariant as long as it can be arbitrarily approximated by a
Hausdorff continuous symmetric function [23], its WL-test-equivalence as well
as superior interpretability over embedding-based models no longer hold.

7.3 Pooling under the Collective MIL Assumption

Our previous discussion focuses on the standard MIL assumption, which can
be relaxed to the collective MIL assumption, where bags are not triggered by a
single instance, but by an accumulation of multiple instances. More concretely,
under the collective assumption, a bag X = {v1,va,..., v} is positive if and
only if it contains more than - m positive instances. The label generation rule
is formally presented as follows, where v € [0, 1], y; € {0,1}:

il Nz ym 5
Y {—1 if YiLivi<y-m (23)

To synthesize bags, we conduct the following sampling process: (1) a trigger
class ¢ is randomly selected as the positive label; (2) m nodes are arbitrarily
sampled to form a bag X. Then, Y = 1 if X’ contains no less than =y - m instance
belonging to ¢, and ) = —1 otherwise. Step 3 is repeated until the number of
bags reaches the predefined value. In our experiments, we set m = 3 and v = 0.5.
This means that a bag is labeled as positive only if it contains at least two trigger
instances. To prevent the number of positive bags from being too small, we ensure
that 20% of the bags include two trigger instances and one non-trigger instance.
In this way, at least 20% of the bags are positive. The experimental results show
that, under the collective MIL assumption, instance-based and embedding-based
models perform comparably: each leads in 13 comparisons, while they tie in 6
cases. Taken together with the results in Tab. 1, Tab. 2, and Tab. 3, we consider
the performance of instance-based models on node-level tasks to be reliable.

Table 3. Model performance under the collective MIL assumption. Positive, negative
and equivalent results are underlined in blue, red and gray, respectively.

Datasets Cora-ML CITESEER AMAZON AcTOR

Metrics Accuracy AUC| Accuracy AUC| Accuracy AUC| Accuracy AUC
sum-emb 0.959 0.584 0.830 0.624] 0.941 0.553] 0.645 0.500
sum-ins 0.948 0.621] 0.961 0.622 0.781 0.576] 0.645 0.516
mean-emb 0.970 0.583] 0.882 0.600, 0.862 0.523 0.671 0.546
mean-ins 0.867 0.616/ 0.857 0.616] 0.862 0.512 0.671 0.553

GlobalAttention-emb 0.910 0.606] 0.844 0.588 0.828 0.515 0.675 0.565

GlobalAttention-ins| 0.847 0.592] 0.873 0.616/ 0.828 0.507] 0.699 0.548

Set2Set-emb 0.885 0.592) 0.816 0.621] 0.803 0.511] 0.745 0.503
Set2Set-ins 0.874 0.594] 0.882 0.609] 0.803 0.503 0.755 0.503
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7.4 Performance of Analyzed Methods in Bag Prediction

A pooling model that generalizes across different graph structures would bring
significant benefits to graph learning tasks. In this section, we examine whether
instance-based models can retain their performance advantage in bag-level tasks.
To achieve this, we test the performance of all methods on bag-level MIL tasks
(see Tab. 4). Following the synthetic method described in Sec. 6.3, we construct
1,500 bags, with 300, 200, and 1,000 bags used for training, validation, and
testing, respectively. Following [6], the bag size is increased to be 10.

For bag-level classification tasks, embedding-based models deliver superior
performance in the majority of comparisons (18 out of 32). Specifically, their
advantage is more pronounced in terms of accuracy. This observation contrasts
with the results presented in the preceding sections, and implies that instance-
based pooling and embedding-based pooling excel at capturing local and global
features, respectively. Therefore, for tasks such as graph classification, our ex-
periments suggest continuing to use classical embedding-based models, unless
there are additional requirements for model interpretability. Developing a pool-
ing model that is applicable to both graph-level and node-level learning tasks
would be an interesting and challenging direction for future work.

Table 4. Performance of all analyzed methods on the bag prediction task. Positive,
negative and equivalent results are underlined in blue, red and gray, respectively.

Datasets Cora-ML CITESEER AMAZON AcCTOR

Metrics Accuracy AUC| Accuracy AUC| Accuracy AUC| Accuracy AUC
sum-emb 0.736 0.772] 0.878 0.702] 0.961 0.924 0.676 0.501
sum-ins 0.682 0.669 0.878 0.635 0.681 0.893 0.676 0.535
mean-emb 0.809 0.717] 0.901 0.670, 0.896 0.819 0.851 0.499
mean-ins 0.806 0.677] 0.895 0.681] 0.623 0.860, 0.851 0.514

GlobalAttention-emb| 0.834 0.818 0.787 0.860| 0.644 0.500] 0.917 0.499
GlobalAttention-ins| 0.788 0.763 0.737 0.783 0.644 0.500 0.917 0.501
Set2Set-emb 0.859 0.895 0.845 0.782 0.642 0.502 0.945 0.488
Set2Set-ins 0.791 0850 0.837 0.689 0.642 0.500 0.945 0.496

8 Discussions

In this section, we provide additional discussions as follows:

— For node-level tasks, if training with bag labels can achieve expected perfor-
mance, it would substantially reduce the effort for node label annotations.
Moreover, since the number of bag labels is typically much smaller than that
of node labels, this also leads to more efficient model training.

— This study has certain experimental limitations. For example, we have not
evaluated the models on a wider range of benchmark datasets or with more
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embedding-based models. In addition, we did not examine how model perfor-
mance varies with bag size. For MIL tasks based on the standard assumption,
classification typically becomes more difficult as the bag size increases, es-
pecially in the case of synthetic data. Finally, compared to other paradigms
for describing the graph pooling process (e.g., the SRC model [9]), the gen-
eralizability of embedding-based models is limited.

— Large Language Models (LLMs) can assist MIL on graphs in several key
ways. First, LLMs can generate high-quality synthetic labels or bag-level de-
scriptions to augment training data under weak supervision. Second, LLMs
may facilitate the interpretation of MIL decisions by generating natural
language explanations for instance-level contributions. Finally, their ability
to generalize across modalities allows for flexible integration of multimodal
metadata, aiding cross-domain graph representation learning.

9 Related Works

This work explores a novel task in Multiple Instance Learning (MIL), a type of
weakly supervised learning problem that originated in the 1990s [13, 4]. Instead
of receiving a set of instances that are individually labeled, the learning model
receives a set of labeled bags, each containing many instances. Due to the diverse
characteristics of tasks, MIL can be classified into four categories based on the
following attributes: the composition of bags, the types of data distribution,
the ambiguity of instance labels, and the task to be performed, each presenting
different challenges [3]. MIL typically involves two levels of tasks: bag-level and
instance-level, and we tackle the latter. MIL algorithms are often only effective
for one of them [11, 3]. Given the prevalence of weakly supervised inexact data in
real-world scenarios, MIL finds numerous applications in diverse domains (e.g.,
[17]). Since MIL is a long-established field that covers a diverse range of topics,
we refer the readers to surveys (e.g., [3]) for more information.

On the other hand, this work is closely related to graph pooling from the
methodological perspective. Graph pooling models condense a graph into a
smaller-sized graph or a single vector, thus working as an essential component
for graph-level tasks that require holistic graph-level representations, such as
graph classification and graph generation. Generally, designs of graph pooling
could be roughly divided into flat pooling (e.g., [18, 26]) and hierarchical pooling,
while the latter can be further categorized into node cluster pooling (e.g., [29])
and node drop pooling (e.g., [15]). Existing pooling methods have been demon-
strated to be successful in capturing high-order information on a wide range of
applications; however, designing effective pooling operators for node-level tasks
are still key challenges [19]. Furthermore, graph pooling faces critical challenges
including interpretability, robustness, efficiency, expressiveness and so on. Simi-
larly, we refer the readers to [19, 9] for a more complete and detailed introduction
on graph pooling techniques. Our work addresses the lack of designs of effective
pooling model for node-level tasks, and provides a comprehensive discussion of
the key properties of different pooling paradigms.
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10 Conclusions

In this work, we introduce the node-level MIL task for the first time and inves-
tigate the role of graph pooling in this context. We propose a general approach
to transform classical embedding-based pooling into an instance-based style,
which is intrinsically more suitable for node-level tasks. Furthermore, we ana-
lyze key theoretical properties of both frameworks, including permutation invari-
ance, expressiveness, and interpretability. Experimental evaluations on bench-
mark datasets, simulating various application scenarios, demonstrate the effec-
tiveness of instance-based models. This work pioneers the extension of graph
pooling beyond graph-level tasks to node-level tasks, providing both theoretical
and empirical insights. As future work, we will explore the design of pooling
mechanisms with stronger generalization capabilities and higher efficiency.
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